期刊文献+
共找到9,059篇文章
< 1 2 250 >
每页显示 20 50 100
5G network planning in connecting urban areas for trains service using a genetic algorithm
1
作者 Evangelos D.Spyrou Vassilios Kappatos 《High-Speed Railway》 2025年第2期155-162,共8页
The adoption of 5G for Railways(5G-R)is expanding,particularly in high-speed trains,due to the benefits offered by 5G technology.High-speed trains must provide seamless connectivity and Quality of Service(QoS)to ensur... The adoption of 5G for Railways(5G-R)is expanding,particularly in high-speed trains,due to the benefits offered by 5G technology.High-speed trains must provide seamless connectivity and Quality of Service(QoS)to ensure passengers have a satisfactory experience throughout their journey.Installing base stations along urban environments can improve coverage but can dramatically reduce the experience of users due to interference.In particular,when a user with a mobile phone is a passenger in a high speed train traversing between urban centres,the coverage and the 5G resources in general need to be adequate not to diminish her experience of the service.The utilization of macro,pico,and femto cells may optimize the utilization of 5G resources.In this paper,a Genetic Algorithm(GA)-based approach to address the challenges of 5G network planning for 5G-R services is presented.The network is divided into three cell types,macro,pico,and femto cells—and the optimization process is designed to achieve a balance between key objectives:providing comprehensive coverage,minimizing interference,and maximizing energy efficiency.The study focuses on environments with high user density,such as high-speed trains,where reliable and high-quality connectivity is critical.Through simulations,the effectiveness of the GA-driven framework in optimizing coverage and performance in such scenarios is demonstrated.The algorithm is compared with the Particle Swarm Optimisation(PSO)and the Simulated Annealing(SA)methods and interesting insights emerged.The GA offers a strong balance between coverage and efficiency,achieving significantly higher coverage than PSO while maintaining competitive energy efficiency and interference levels.Its steady fitness improvement and adaptability make it well-suited for scenarios where wide coverage is a priority alongside acceptable performance trade-offs. 展开更多
关键词 High speed train 5G network planning Genetic algorithm
在线阅读 下载PDF
Enhancing operational planning of active distribution networks considering effective topology selection and thermal energy storage
2
作者 Vineeth Vijayan Ali Arzani Satish M.Mahajan 《iEnergy》 2025年第2期98-106,共9页
Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and pea... Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and peak demand incidents.While battery and hydrogen storage are commonly used for peak shaving,ice-based thermal energy storage systems(TESSs)offer a direct way to reduce cooling loads without electrical conversion.This paper presents a multi-objective planning framework that optimizes TESS dispatch,network topology,and photovoltaic(PV)inverter reactive power support to address operational issues in active distribution networks.The objectives of the proposed scheme include minimizing peak demand,voltage deviations,and PV inverter VAr dependency.The mixed-integer nonlinear programming problem is solved using a Pareto-based multi-objective particle swarm optimization(MOPSO)method.The MATLAB-OpenDSS simulations for a modified IEEE-123 bus system show a 7.1%reduction in peak demand,a 13%reduction in voltage deviation,and a 52%drop in PV inverter VAr usage.The obtained solutions confirm minimal operational stress on control devices such as switches and PV inverters.Thus,unlike earlier studies,this work combines all three strategies to offer an effective solution for the operational planning of the active distribution network. 展开更多
关键词 Operational planning power distribution network PV inverters thermal energy storage systems topology selection
在线阅读 下载PDF
Bilevel Planning of Distribution Networks with Distributed Generation and Energy Storage: A Case Study on the Modified IEEE 33-Bus System
3
作者 Haoyuan Li Lingling Li 《Energy Engineering》 2025年第4期1337-1358,共22页
Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution netwo... Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution network planning model incorporating distributed wind turbines(DWT),distributed photovoltaics(DPV),and energy storage systems(ESS).K-means++is employed to partition the distribution network based on electrical distance.Considering the spatiotemporal correlation of distributed generation(DG)outputs in the same region,a joint output model of DWT and DPV is developed using the Frank-Copula.Due to the model’s high dimensionality,multiple constraints,and mixed-integer characteristics,bilevel programming theory is utilized to structure the model.The model is solved using a mixed-integer particle swarmoptimization algorithm(MIPSO)to determine the optimal location and capacity of DG and ESS integrated into the distribution network to achieve the best economic benefits and operation quality.The proposed bilevel planning method for distribution networks is validated through simulations on the modified IEEE 33-bus system.The results demonstrate significant improvements,with the proposedmethod reducing the annual comprehensive cost by 41.65%and 13.98%,respectively,compared to scenarios without DG and ESS or with only DG integration.Furthermore,it reduces the daily average voltage deviation by 24.35%and 10.24%and daily network losses by 55.72%and 35.71%. 展开更多
关键词 Distribution network planning frank-copula joint output model bilevel programming theory
在线阅读 下载PDF
Quantum-accelerated active distribution network planning based on coherent photonic quantum computers
4
作者 Yu Xin Haipeng Xie Wei Fu 《iEnergy》 2025年第2期107-120,共14页
Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing o... Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing offers a transformative approach to solve ADN planning.To fully leverage the potential of quantum computing,this paper proposes a photonic quantum acceleration algorithm.First,a quantum-accelerated framework for ADN planning is proposed on the basis of coherent photonic quantum computers.The ADN planning model is then formulated and decomposed into discrete master problems and continuous subproblems to facilitate the quantum optimization process.The photonic quantum-embedded adaptive alternating direction method of multipliers(PQA-ADMM)algorithm is subsequently proposed to equivalently map the discrete master problem onto a quantum-interpretable model,enabling its deployment on a photonic quantum computer.Finally,a comparative analysis with various solvers,including Gurobi,demonstrates that the proposed PQA-ADMM algorithm achieves significant speedup on the modified IEEE 33-node and IEEE 123-node systems,highlighting its effectiveness. 展开更多
关键词 Active distribution network planning coherent photonic quantum computer photonic quantum-embedded adaptive ADMM algorithm quantum computing
在线阅读 下载PDF
Real-time UAV path planning based on LSTM network 被引量:2
5
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(LSTM)
在线阅读 下载PDF
Improved Double Deep Q Network Algorithm Based on Average Q-Value Estimation and Reward Redistribution for Robot Path Planning
6
作者 Yameng Yin Lieping Zhang +3 位作者 Xiaoxu Shi Yilin Wang Jiansheng Peng Jianchu Zou 《Computers, Materials & Continua》 SCIE EI 2024年第11期2769-2790,共22页
By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning... By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation. 展开更多
关键词 Double Deep Q network path planning average Q-value estimation reward redistribution mechanism reward-prioritized experience selection method
在线阅读 下载PDF
Design of Aided Decision-Making Program for Prioritizing Construction Projects in Urban Road Network Planning
7
作者 任刚 王炜 顾志康 《Journal of Southeast University(English Edition)》 EI CAS 2002年第3期249-253,共5页
The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rol... The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rolled method are chosen as the theoretical foundations of the program, and then benefit model is improved to accord with the actuality of urban traffic in China. Consequently, program flows, module functions and data structures are designed, and particularly an original data structure of road ... 展开更多
关键词 prioritizing construction projects program design urban road network planning aided decision making
在线阅读 下载PDF
Specific Problems in the Planning and Development of Power Network in China
8
作者 张运洲 《Electricity》 2003年第4期23-26,共4页
In light of the situation that the nationwide interconnection of power networks in China in the coming years will take shape, it is imperative to emphasize the importance of setting up rational power network configura... In light of the situation that the nationwide interconnection of power networks in China in the coming years will take shape, it is imperative to emphasize the importance of setting up rational power network configuration. Combined with the characteristics of regional power networks in China, problems in network planning that need to be solved are put forward in this paper, such as, the access of power plants to grid by layers and zones, the share of external power in the load of local network, the power network configuration study in-depth in planning and design stage, and enforcement of receiving-end power network trunk etc. The background of these problems and their countermeasures are also analyzed in the paper. 展开更多
关键词 power network planning power network configuration INTERCONNECTION
在线阅读 下载PDF
Reuse partitioning based frequency planning for two-hop cellular network 被引量:2
9
作者 李平 戎蒙恬 薛义生 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期168-173,共6页
Following the principle of reuse partitioning, two new frequency planning schemes are proposed, the coverage-oriented scheme and the efficiency-oriented scheme, for the cellular system with two-hop fixed relay nodes ... Following the principle of reuse partitioning, two new frequency planning schemes are proposed, the coverage-oriented scheme and the efficiency-oriented scheme, for the cellular system with two-hop fixed relay nodes (FRNs). Compared with the effficiency-oriented scheme, the coverage-oriented scheme has higher reuse distances and is developed with emphasis on the coverage, while compared with the coverage-oriented scheme, the efficiency-oriented scheme has smaller reuse distances and is developed with emphasis on the spectral efficiency. Taking uplink as an example, both simplified analysis and intensive computer simulations are presented to offer comparisons among FRN enhanced systems with the proposed schemes, with a known channel-borrowing based frequency planning scheme and the conventional cellular system without relaying. Studies show that the FRN enhanced system with the coverage-oriented scheme provides the best coverage, while that with the efficiency-oriented scheme offers the highest area spectral efficiency. 展开更多
关键词 cellular system frequency planning RELAYING multi-hop network
在线阅读 下载PDF
Motion Planning for Autonomous Driving with Real Traffic Data Validation 被引量:1
10
作者 Wenbo Chu Kai Yang +1 位作者 Shen Li Xiaolin Tang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期74-86,共13页
Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed bas... Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method.To begin with,a trajectory prediction model is established based on the graph neural network(GNN)that is trained utilizing the INTERACTION dataset.Then,the validated trajectory prediction model is used to predict the future trajectories of surrounding road users,including pedestrians and vehicles.In addition,a GNN prediction model-enabled motion planner is developed based on the model predictive control technique.Furthermore,two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach,i.e.,merging and roundabout scenarios.The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method. 展开更多
关键词 Trajectory prediction Graph neural network Motion planning INTERACTION dataset
在线阅读 下载PDF
Optimization of beamforming and path planning for UAV-assisted wireless relay networks 被引量:16
11
作者 Ouyang Jian Zhuang Yi +1 位作者 Lin Min Liu Jia 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第2期313-320,共8页
Recently, unmanned aerial vehicles (UAVs) acting as relay platforms have attracted considerable attention due to the advantages of extending coverage and improving connectivity for long-range communications. Specifi... Recently, unmanned aerial vehicles (UAVs) acting as relay platforms have attracted considerable attention due to the advantages of extending coverage and improving connectivity for long-range communications. Specifically, in the scenario where the access point (AP) is mobile, a UAV needs to find an efficient path to guarantee the connectivity of the relay link. Motivated by this fact, this paper proposes an optimal design for beamforming (BF) and UAV path planning. First of all, we study a dual-hop amplify-and-forward (AF) wireless relay network, in which a UAV is used as relay between a mobile AP and a fixed base station (BS). In the network, both of the AP and the BS are equipped with multiple antennas, whereas the UAV has a single antenna. Then, we obtain the output signal^to-noise ratio (SNR) of the dual-hop relay network. Based on the criterion of maximizing the output SNR, we develop an optimal design to obtain the solution of the optimal BF weight vector and the UAV heading angle. Next, we derive the closed-form outage probability (OP) expression to investigate the performance of the dual-hop relay network conveniently. Finally, computer simulations show that the proposed approach can obtain nearly optimal flying path and OP performance, indicating the effectiveness of the proposed algorithm. Furthermore, we find that increasing the antenna number at the BS or the maximal heading angle can significantly improve the performance of the considered relay network. 展开更多
关键词 Aircraft communication Beam forming Path planning Unmanned aerial vehicles Wireless relay networks
原文传递
Generative Adversarial Network Based Heuristics for Sampling-Based Path Planning 被引量:12
12
作者 Tianyi Zhang Jiankun Wang Max Q.-H.Meng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期64-74,共11页
Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the conf... Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set. 展开更多
关键词 Generative adversarial network(GAN) optimal path planning robot path planning sampling-based path planning
在线阅读 下载PDF
A hybrid particle swarm optimization approach with neural network and set pair analysis for transmission network planning 被引量:2
13
作者 刘吉成 颜苏莉 乞建勋 《Journal of Central South University》 SCIE EI CAS 2008年第S2期321-326,共6页
Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, networ... Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA. 展开更多
关键词 transmission network planning SET PAIR analysis PARTICLE SWARM optimization NEURAL network
在线阅读 下载PDF
Path Planning and Tracking for Vehicle Parallel Parking Based on Preview BP Neural Network PID Controller 被引量:11
14
作者 季学武 王健 +3 位作者 赵又群 刘亚辉 臧利国 李波 《Transactions of Tianjin University》 EI CAS 2015年第3期199-208,共10页
In order to diminish the impacts of extemal disturbance such as parking speed fluctuation and model un- certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based ... In order to diminish the impacts of extemal disturbance such as parking speed fluctuation and model un- certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based on pre- view back propagation (BP) neural network PID controller. The forward BP neural network can adjust the parameters of PID controller in real time. The preview time is optimized by considering path curvature, change in curvature and road boundaries. A fuzzy controller considering barriers and different road conditions is built to select the starting po- sition. In addition, a kind of path planning technology satisfying the requirement of obstacle avoidance is introduced. In order to solve the problem of discontinuous curvature, cubic B spline curve is used for curve fitting. The simulation results and real vehicle tests validate the effectiveness of the proposed path planning and tracking methods. 展开更多
关键词 parallel parking path tracking path planning BP neural network curve fitting
在线阅读 下载PDF
A Novel MILP Model Based on the Topology of a Network Graph for Process Planning in an Intelligent Manufacturing System 被引量:7
15
作者 Qihao Liu Xinyu Li Liang Gao 《Engineering》 SCIE EI 2021年第6期807-817,共11页
Intelligent process planning(PP)is one of the most important components in an intelligent manufacturing system and acts as a bridge between product designing and practical manufacturing.PP is a nondeterministic polyno... Intelligent process planning(PP)is one of the most important components in an intelligent manufacturing system and acts as a bridge between product designing and practical manufacturing.PP is a nondeterministic polynomial-time(NP)-hard problem and,as existing mathematical models are not formulated in linear forms,they cannot be solved well to achieve exact solutions for PP problems.This paper proposes a novel mixed-integer linear programming(MILP)mathematical model by considering the network topology structure and the OR nodes that represent a type of OR logic inside the network.Precedence relationships between operations are discussed by raising three types of precedence relationship matrices.Furthermore,the proposed model can be programmed in commonly-used mathematical programming solvers,such as CPLEX,Gurobi,and so forth,to search for optimal solutions for most open problems.To verify the effectiveness and generality of the proposed model,five groups of numerical experiments are conducted on well-known benchmarks.The results show that the proposed model can solve PP problems effectively and can obtain better solutions than those obtained by the state-ofthe-art algorithms. 展开更多
关键词 Process planning network Mixed-integer linear programming CPLEX
在线阅读 下载PDF
Analysis of effect factors-based stochastic network planning model 被引量:1
16
作者 Chu Chunchao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期112-118,共7页
Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependenc... Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependence among activity durations when more than one activity is possibly affected by the same indeterminate factors. On this basis of analysis of indeterminate effect factors of durations, the effect factors-based stochastic network planning (EFBSNP) model is proposed, which emphasizes on the effects of not only logistic and organizational relationships, but also the dependent relationships, due to indeterminate factors among activity durations on the project period. By virtue of indeterminate factor analysis the model extracts and describes the quantitatively indeterminate effect factors, and then takes into account the indeterminate factors effect schedule by using the Monte Carlo simulation technique. The method is flexible enough to deal with effect factors and is coincident with practice. A software has been developed to simplify the model-based calculation, in VisualStudio.NET language. Finally, a case study is included to demonstrate the applicability of the proposed model and comparison is made with some advantages over the existing models. 展开更多
关键词 stochastic network planning ACTIVITY DURATION effect factor
在线阅读 下载PDF
Planning,monitoring and replanning techniques for handling abnormity in HTN-based planning and execution
17
作者 KANG Kai CHENG Kai +2 位作者 SHAO Tianhao ZHANG Hongjun ZHANG Ke 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1264-1275,共12页
A framework that integrates planning,monitoring and replanning techniques is proposed.It can devise the best solution based on the current state according to specific objectives and properly deal with the influence of... A framework that integrates planning,monitoring and replanning techniques is proposed.It can devise the best solution based on the current state according to specific objectives and properly deal with the influence of abnormity on the plan execution.The framework consists of three parts:the hierarchical task network(HTN)planner based on Monte Carlo tree search(MCTS),hybrid plan monitoring based on forward and backward and norm-based replanning method selection.The HTN planner based on MCTS selects the optimal method for HTN compound task through pre-exploration.Based on specific objectives,it can identify the best solution to the current problem.The hybrid plan monitoring has the capability to detect the influence of abnormity on the effect of an executed action and the premise of an unexecuted action,thus trigger the replanning.The norm-based replanning selection method can measure the difference between the expected state and the actual state,and then select the best replanning algorithm.The experimental results reveal that our method can effectively deal with the influence of abnormity on the implementation of the plan and achieve the target task in an optimal way. 展开更多
关键词 hierarchical task network Monte carlo tree search(MCTS) planning EXECUTION abnormity
在线阅读 下载PDF
Integration of Neural Networks and Cellular Automata for Urban Planning 被引量:2
18
作者 Anthony Gar-on Yeh 《Geo-Spatial Information Science》 2004年第1期6-13,共8页
This paper presents a new type of cellular automa ta (CA) model for the simulation of alternative land development using neural netw orks for urban planning. CA models can be regarded as a planning tool because th ey ... This paper presents a new type of cellular automa ta (CA) model for the simulation of alternative land development using neural netw orks for urban planning. CA models can be regarded as a planning tool because th ey can generate alternative urban growth. Alternative development patterns can b e formed by using different sets of parameter values in CA simulation. A critica l issue is how to define parameter values for realistic and idealized simulation . This paper demonstrates that neural networks can simplify CA models but genera te more plausible results. The simulation is based on a simple three-layer netw ork with an output neuron to generate conversion probability. No transition rule s are required for the simulation. Parameter values are automatically obtained f rom the training of network by using satellite remote sensing data. Original tra ining data can be assessed and modified according to planning objectives. Altern ative urban patterns can be easily formulated by using the modified training dat a sets rather than changing the model. 展开更多
关键词 neural networks cellular automata GIS urban simulation urban planning
在线阅读 下载PDF
Sensor planning method for visual tracking in 3D camera networks 被引量:1
19
作者 Anlong Ming Xin Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期1107-1116,共10页
Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks a... Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks are usually simplified as 2D points in previous literature. However in actual application scenes, not only cameras are always heterogeneous with different height and action radiuses, but also the observed objects are with 3D features(i.e., height). This paper presents a sensor planning formulation addressing the efficiency enhancement of visual tracking in 3D heterogeneous camera networks that track and detect people traversing a region. The problem of sensor planning consists of three issues:(i) how to model the 3D heterogeneous cameras;(ii) how to rank the visibility, which ensures that the object of interest is visible in a camera's field of view;(iii) how to reconfigure the 3D viewing orientations of the cameras. This paper studies the geometric properties of 3D heterogeneous camera networks and addresses an evaluation formulation to rank the visibility of observed objects. Then a sensor planning method is proposed to improve the efficiency of visual tracking. Finally, the numerical results show that the proposed method can improve the tracking performance of the system compared to the conventional strategies. 展开更多
关键词 camera model sensor planning camera network visual tracking
在线阅读 下载PDF
Correlation knowledge extraction based on data mining for distribution network planning 被引量:3
20
作者 Zhifang Zhu Zihan Lin +4 位作者 Liping Chen Hong Dong Yanna Gao Xinyi Liang Jiahao Deng 《Global Energy Interconnection》 EI CSCD 2023年第4期485-492,共8页
Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.Th... Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme. 展开更多
关键词 Distribution network planning Data mining Apriori algorithm Gray correlation analysis Chi-square test
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部