Recycled manure solids(RMS)are dried cow dung processed using a manure dewatering machine and subsequently sun-dried to~20%moisture.Benefits of RMS include abundant availability,low cost,and eco-friendliness,but its u...Recycled manure solids(RMS)are dried cow dung processed using a manure dewatering machine and subsequently sun-dried to~20%moisture.Benefits of RMS include abundant availability,low cost,and eco-friendliness,but its use as bedding material for cows is hindered by a moisture content that promotes microbial growth.This in vitro study evaluated impacts of calcium hydroxide(CH;5 and 7.5%)and sodium hydrosulphate(SHS;6 and 8%),independently and in combinations,at various depths of RMS,on physicochemical and microbial properties.The CH-treated groups had increased pH and reduced moisture on Day 0.Incorporating 7.5%CH+6%SHS at 15-20 cm,and 7.5%CH+8%SHS at all depths,effectively suppressed Escherichia coli and Klebsiella spp.Furthermore,a combination of 7.5%CH+8%SHS at 20 cm inhibited coliform growth,whereas 7.5%CH with 6%SHS inhibited Streptococcus spp.In conclusion,a combination of 7.5%CH with either 6 or 8%SHS at a depth of 15 cm in RMS was particularly effective in controlling environmental mastitis-causing pathogens,specifically E.coli and Klebsiella spp.展开更多
The initial step in the resource utilization of Chinese medicine residues(CMRs)involves dehydration pretreatment,which results in high concentrations of organic wastewater and leads to environmental pollution.Meanwhil...The initial step in the resource utilization of Chinese medicine residues(CMRs)involves dehydration pretreatment,which results in high concentrations of organic wastewater and leads to environmental pollution.Meanwhile,to address the issue of anaerobic systems failing due to acidification under shock loading,a microaerobic expanded granular sludge bed(EGSB)and moving bed sequencing batch reactor(MBSBR)combined process was proposed in this study.Microaeration facilitated hydrolysis,improved the removal of nitrogen and phosphorus pollutants,maintained a low concentration of volatile fatty acids(VFAs),and enhanced system stability.In addition,microaeration promoted microbial richness and diversity,enriching three phyla:Bacteroidota,Synergistota and Firmicutes associated with hydrolytic acidification.Furthermore,aeration intensity in MBSBR was optimized.Elevated levels of dissolved oxygen(DO)impacted biofilm structure,suppressed denitrifying bacteria activity,led to nitrate accumulation,and hindered simultaneous nitrification and denitrification(SND).Maintaining a DO concentration of 2 mg/L enhanced the removal of nitrogen and phosphorus while conserving energy.The combined process achieved removal efficiencies of 98.25%,90.49%,and 98.55%for chemical oxygen demand(COD),total nitrogen(TN),and total phosphorus(TP),respectively.Typical pollutants liquiritin(LQ)and glycyrrhizic acid(GA)were completely degraded.This study presents an innovative approach for the treatment of high-concentration organic wastewater and provides a reliable solution for the pollution control in utilization of CMRs resources.展开更多
In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high con...In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high content of MgO and CaO as the feedstock.Several experimental parameters such as chlorine flow and reaction temperature were discussed and the morphology and components of reaction product were analyzed.According to the results,the conversion rate of TiO2 is up to 90%.It is found that the combined fluidized bed has good anti-agglomeration ability because the accumulation of MgCl2 and CaCl2 on the surface of unreacted slag was carried out of the reactor.展开更多
This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by mo...This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by molten CaCl2 and MgCl2. The combined fluidized bed consists of at least a riser tube and a semi-circulating fluidized bed. Two kinds of high titanium slag, in which the total mass content of CaO and MgO is 2.03% and 9.09% respectively, are employed to examine the anti-agglomeration effect and the conversion of the materials when the temperature ranges are between 923.15K and 1073.15K, gas apparent velocity 0.7--1.1m.s-1, and inlet amount of solid materials is 4.6-7.0kg·h^-1. It is found that the anti-agglomeration effect in the combined fluidized bed is satisfactory and the new method can achieve a TiCl4 production capacity of 14.0-75.4t·m^-2·d^-1 in relation to 25.0-- 40.0t·m^-2·d^-1 from the conventional bubble bed. Furthermore, low-temperature chloridization, for example, at 923K or 973K, can also be used to produce TiCl4 and avoid agglomeration.展开更多
The effects of carbon/slag molar ratio, chloride amount and temperature on equilibrium molar ratio (REq) of CO to CO2 for off-gas produced by carbochlorination of titanium slag were firstly investigated by thermodynam...The effects of carbon/slag molar ratio, chloride amount and temperature on equilibrium molar ratio (REq) of CO to CO2 for off-gas produced by carbochlorination of titanium slag were firstly investigated by thermodynamic calculation of equilibrium components of off-gas. The experimental CO/CO2 molar ratio (REx) was then obtained to be 0.2-0.3 by the carbochlorination experiment using a novel combined fluidized bed as chlorination reactor. To further investigate the reaction effect of the novel process mentioned above, REx, REq and corresponding reference data (RRe) were compared. The results indicate that REx is similar to RRe (0.5-1.2) but different from REq (≥4.3), which is consistent with anticipation of REx for the novel combined fluidized bed. The difference between REx and corresponding REq is mainly attributed to short retention time (about 1 s) of materials in combined fluidized bed and carbochlorination of oxide impurities contained in titanium slag, such as CaO, MgO and SiO2.展开更多
A new combined desulfurization/denitration (DeSOx/DeNOx,) process was tested in this study. The process uses the so-called powder-particle fluidized bed (PPFB) as the major reactor in which a coarse DeNOx catalyst, se...A new combined desulfurization/denitration (DeSOx/DeNOx,) process was tested in this study. The process uses the so-called powder-particle fluidized bed (PPFB) as the major reactor in which a coarse DeNOx catalyst, several hundred micrometers in size, is fluidized by flue gas as the fluidization medium particles, while a continuously supplied fine DeSOx sorbent, several to tens of micrometers in diameter, is entrained with the flue gas. Ammonia for NOx reduction is fed to the bottom of the bed, thus, SOX and NOX are simultaneously removed in the single reactor. By adopting a model gas, SO2-NO-H2O-N2-air, to simulate actual flue gas in a laboratory-scale PPFB, simultaneous SO2 and NO removals were explored with respect to various gas components of flue gas. It was found that the variations of SO2 removal with concentrations (fractions) of oxygen, water vapor, SO2 and NO in flue gas are little affected by the simultaneous NOx reduction. However, the dependencies of NO removal upon such gas components are closely related to the inter-actions between DeSOx sorbent and DeNOx catalyst.展开更多
结合有限元离散元方法(finite-discrete element method,FDEM),对计算流体力学(computational fluid dynamics,CFD)软件FLOW-3D进行二次开发,建立了基于CFD-DEM的流固耦合模型,模拟了多块石入水、沉降以及触底的动力过程,分析了不同块...结合有限元离散元方法(finite-discrete element method,FDEM),对计算流体力学(computational fluid dynamics,CFD)软件FLOW-3D进行二次开发,建立了基于CFD-DEM的流固耦合模型,模拟了多块石入水、沉降以及触底的动力过程,分析了不同块石等效直径、形状和入水速度对触底速度和反力的影响。研究发现,块石入水后速度迅速减小,并逐渐趋于定值,随后做动态平衡沉降运动,直至与底面发生碰撞。块石抛填的触底速度随等效直径的增大而增大,不同等效直径下球形块石触底速度绝对值最大,其次是纺锤形块石,最小为圆盘形块石。最大触底反力也随等效直径的增大而增大,成非线性关系,通过拟合得到了触底反力的经验公式。显著性分析结果表明,块石等效直径对触底反力影响最大,其次是块石形状,最小为入水速度。展开更多
This paper presents the thermodynamic performance analysis and comparison of four kinds of advanced pressurized fluidized bed combustion combined cycle (APFBC-CC) system schemes, two based on pressurized fluidized bed...This paper presents the thermodynamic performance analysis and comparison of four kinds of advanced pressurized fluidized bed combustion combined cycle (APFBC-CC) system schemes, two based on pressurized fluidized bed (PFB) combustion and the other two based on atmospheric circulating fluidized bed (CFB) combustion. The results show that the first scheme avoids high temperature gas filter, but has the lower cycle efficiency and syngas heating value. The second scheme can gain the highest cycle efficiency, however it is better to now lower the filter operating temperature. The third and fourth schemes, based on CFB, have lower efficiencies than the second one. But the fourth one, with preheating air/steam for gasification, can obtain the highest heating value of syngas and gain higher efficiency than the third one.展开更多
文摘Recycled manure solids(RMS)are dried cow dung processed using a manure dewatering machine and subsequently sun-dried to~20%moisture.Benefits of RMS include abundant availability,low cost,and eco-friendliness,but its use as bedding material for cows is hindered by a moisture content that promotes microbial growth.This in vitro study evaluated impacts of calcium hydroxide(CH;5 and 7.5%)and sodium hydrosulphate(SHS;6 and 8%),independently and in combinations,at various depths of RMS,on physicochemical and microbial properties.The CH-treated groups had increased pH and reduced moisture on Day 0.Incorporating 7.5%CH+6%SHS at 15-20 cm,and 7.5%CH+8%SHS at all depths,effectively suppressed Escherichia coli and Klebsiella spp.Furthermore,a combination of 7.5%CH+8%SHS at 20 cm inhibited coliform growth,whereas 7.5%CH with 6%SHS inhibited Streptococcus spp.In conclusion,a combination of 7.5%CH with either 6 or 8%SHS at a depth of 15 cm in RMS was particularly effective in controlling environmental mastitis-causing pathogens,specifically E.coli and Klebsiella spp.
基金funding from the National Key R&D Program of China(No.2019YFC1906600)the National Natural Science Foundation of China(No.52200049)+3 种基金the China Postdoctoral Science Foundation(No.2022TQ0089)the Heilongjiang Province Postdoctoral Science Foundation(No.LBH-Z22181)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2023DX06)the Fundamental Research Funds for the Central Universities。
文摘The initial step in the resource utilization of Chinese medicine residues(CMRs)involves dehydration pretreatment,which results in high concentrations of organic wastewater and leads to environmental pollution.Meanwhile,to address the issue of anaerobic systems failing due to acidification under shock loading,a microaerobic expanded granular sludge bed(EGSB)and moving bed sequencing batch reactor(MBSBR)combined process was proposed in this study.Microaeration facilitated hydrolysis,improved the removal of nitrogen and phosphorus pollutants,maintained a low concentration of volatile fatty acids(VFAs),and enhanced system stability.In addition,microaeration promoted microbial richness and diversity,enriching three phyla:Bacteroidota,Synergistota and Firmicutes associated with hydrolytic acidification.Furthermore,aeration intensity in MBSBR was optimized.Elevated levels of dissolved oxygen(DO)impacted biofilm structure,suppressed denitrifying bacteria activity,led to nitrate accumulation,and hindered simultaneous nitrification and denitrification(SND).Maintaining a DO concentration of 2 mg/L enhanced the removal of nitrogen and phosphorus while conserving energy.The combined process achieved removal efficiencies of 98.25%,90.49%,and 98.55%for chemical oxygen demand(COD),total nitrogen(TN),and total phosphorus(TP),respectively.Typical pollutants liquiritin(LQ)and glycyrrhizic acid(GA)were completely degraded.This study presents an innovative approach for the treatment of high-concentration organic wastewater and provides a reliable solution for the pollution control in utilization of CMRs resources.
基金Project(2008AA06Z1071) supported by the National High-Tech Research and Development Program of ChinaProject(20306030) supported by the National Natural Science Foundation of China
文摘In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high content of MgO and CaO as the feedstock.Several experimental parameters such as chlorine flow and reaction temperature were discussed and the morphology and components of reaction product were analyzed.According to the results,the conversion rate of TiO2 is up to 90%.It is found that the combined fluidized bed has good anti-agglomeration ability because the accumulation of MgCl2 and CaCl2 on the surface of unreacted slag was carried out of the reactor.
基金Supported by the National Natural Science Foundation of China (No.20306030) and China Postdoctoral Science Foundation (No.2003033240).
文摘This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by molten CaCl2 and MgCl2. The combined fluidized bed consists of at least a riser tube and a semi-circulating fluidized bed. Two kinds of high titanium slag, in which the total mass content of CaO and MgO is 2.03% and 9.09% respectively, are employed to examine the anti-agglomeration effect and the conversion of the materials when the temperature ranges are between 923.15K and 1073.15K, gas apparent velocity 0.7--1.1m.s-1, and inlet amount of solid materials is 4.6-7.0kg·h^-1. It is found that the anti-agglomeration effect in the combined fluidized bed is satisfactory and the new method can achieve a TiCl4 production capacity of 14.0-75.4t·m^-2·d^-1 in relation to 25.0-- 40.0t·m^-2·d^-1 from the conventional bubble bed. Furthermore, low-temperature chloridization, for example, at 923K or 973K, can also be used to produce TiCl4 and avoid agglomeration.
基金Project(2008AA06Z1071) supported by the High-tech Research and Development Program of ChinaProject(20306030) supported by the National Natural Science Foundation of China
文摘The effects of carbon/slag molar ratio, chloride amount and temperature on equilibrium molar ratio (REq) of CO to CO2 for off-gas produced by carbochlorination of titanium slag were firstly investigated by thermodynamic calculation of equilibrium components of off-gas. The experimental CO/CO2 molar ratio (REx) was then obtained to be 0.2-0.3 by the carbochlorination experiment using a novel combined fluidized bed as chlorination reactor. To further investigate the reaction effect of the novel process mentioned above, REx, REq and corresponding reference data (RRe) were compared. The results indicate that REx is similar to RRe (0.5-1.2) but different from REq (≥4.3), which is consistent with anticipation of REx for the novel combined fluidized bed. The difference between REx and corresponding REq is mainly attributed to short retention time (about 1 s) of materials in combined fluidized bed and carbochlorination of oxide impurities contained in titanium slag, such as CaO, MgO and SiO2.
文摘A new combined desulfurization/denitration (DeSOx/DeNOx,) process was tested in this study. The process uses the so-called powder-particle fluidized bed (PPFB) as the major reactor in which a coarse DeNOx catalyst, several hundred micrometers in size, is fluidized by flue gas as the fluidization medium particles, while a continuously supplied fine DeSOx sorbent, several to tens of micrometers in diameter, is entrained with the flue gas. Ammonia for NOx reduction is fed to the bottom of the bed, thus, SOX and NOX are simultaneously removed in the single reactor. By adopting a model gas, SO2-NO-H2O-N2-air, to simulate actual flue gas in a laboratory-scale PPFB, simultaneous SO2 and NO removals were explored with respect to various gas components of flue gas. It was found that the variations of SO2 removal with concentrations (fractions) of oxygen, water vapor, SO2 and NO in flue gas are little affected by the simultaneous NOx reduction. However, the dependencies of NO removal upon such gas components are closely related to the inter-actions between DeSOx sorbent and DeNOx catalyst.
文摘结合有限元离散元方法(finite-discrete element method,FDEM),对计算流体力学(computational fluid dynamics,CFD)软件FLOW-3D进行二次开发,建立了基于CFD-DEM的流固耦合模型,模拟了多块石入水、沉降以及触底的动力过程,分析了不同块石等效直径、形状和入水速度对触底速度和反力的影响。研究发现,块石入水后速度迅速减小,并逐渐趋于定值,随后做动态平衡沉降运动,直至与底面发生碰撞。块石抛填的触底速度随等效直径的增大而增大,不同等效直径下球形块石触底速度绝对值最大,其次是纺锤形块石,最小为圆盘形块石。最大触底反力也随等效直径的增大而增大,成非线性关系,通过拟合得到了触底反力的经验公式。显著性分析结果表明,块石等效直径对触底反力影响最大,其次是块石形状,最小为入水速度。
文摘This paper presents the thermodynamic performance analysis and comparison of four kinds of advanced pressurized fluidized bed combustion combined cycle (APFBC-CC) system schemes, two based on pressurized fluidized bed (PFB) combustion and the other two based on atmospheric circulating fluidized bed (CFB) combustion. The results show that the first scheme avoids high temperature gas filter, but has the lower cycle efficiency and syngas heating value. The second scheme can gain the highest cycle efficiency, however it is better to now lower the filter operating temperature. The third and fourth schemes, based on CFB, have lower efficiencies than the second one. But the fourth one, with preheating air/steam for gasification, can obtain the highest heating value of syngas and gain higher efficiency than the third one.