Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the...Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the approach bridge.For long-span railway bridges,it must also be coordinated with rail expansion joint(REJ),which is necessary to accommodate the expansion and contraction of,and reducing longitudinal stress in,the rails.The main aim of this study is to present analysis of recent developments in the research and application of BEJs in high-speed railway(HSR)long-span bridges in China,and to propose a performance-based integral design method for BEJs used with REJs,from both theoretical and engineering perspectives.Design/methodology/approach–The study first presents a summary on the application and maintenance of BEJs in HSR long-span bridges in China representing an overview of their state of development.Results of a survey of typical BEJ faults were analyzed,and field testing was conducted on a railway cable-stayed bridge in order to obtain information on the major mechanical characteristics of its BEJ under train load.Based on the above,a performance-based integral design method for BEJs with maximum expansion range 1600 mm(±800 mm),was proposed,covering all stages from overall conceptual design to consideration of detailed structural design issues.The performance of the novel BEJ design thus derived was then verified via theoretical analysis under different scenarios,full-scale model testing,and field testing and commissioning.Findings–Two major types of BEJs,deck-type and through-type,are used in HSR long-span bridges in China.Typical BEJ faults were found to mainly include skewness of steel sleepers at the bridge gap,abnormally large longitudinal frictional resistance,and flexural deformation of the scissor mechanisms.These faults influence BEJ functioning,and thus adversely affect track quality and train running performance at the beam end.Due to their simple and integral structure,deck-type BEJs with expansion range 1200 mm(±600 mm)or less have been favored as a solution offering improved operational conditions,and have emerged as a standard design.However,when the expansion range exceeds the above-mentioned value,special design work becomes necessary.Therefore,based on engineering practice,a performance-based integral design method for BEJs used with REJs was proposed,taking into account four major categories of performance requirements,i.e.,mechanical characteristics,train running quality,durability and insulation performance.Overall BEJ design must mainly consider component strength and the overall stiffness of BEJ;the latter factor in particular has a decisive influence on train running performance at the beam end.Detailed BEJ structural design must stress minimization of the frictional resistance of its sliding surface.The static and dynamic performance of the newlydesigned BEJ with expansion range 1600 mm have been confirmed to be satisfactory,via numerical simulation,full-scale model testing,and field testing and commissioning.Originality/value–This research provides a broad overview of the status of BEJs with large expansion range in HSR long-span bridges in China,along with novel insights into their design.展开更多
Due to batteries inconsistencies and potential faults in battery management systems,slight overcharging remains a common yet insufficiently understood safety risk,lacking effective warning methods.To illuminate the de...Due to batteries inconsistencies and potential faults in battery management systems,slight overcharging remains a common yet insufficiently understood safety risk,lacking effective warning methods.To illuminate the degradation behavior and failure mechanism of various overcharged states(100%SOC,105%SOC,110%SOC,and 115%SOC),multiple advanced in-situ characterization techniques(accelerating rate calorimeter,electrochemical impedance spectroscopy,ultrasonic scanning,and expansion instrument)were utilized.Additionally,re-overcharge-induced thermal runaway(TR)tests were conducted,with a specific emphasis on the evolution of the expansion force signal.Results indicated significant degradation at 110%SOC including conductivity loss,loss of lithium inventory,and loss of active material accompanied by internal gas generation.These failure behaviors slow down the expansion force rate during reovercharging,reducing the efficacy of active warnings that depend on rate thresholds of expansion force.Specifically,the warning time for 115%SOC battery is only 144 s,which is 740 s shorter than that for fresh battery,and the time to TR is advanced by 9 min.Moreover,the initial self-heating temperature(T1)is reduced by 62.4℃compared to that of fresh battery,reaching only 70.8℃.To address the low safety of overcharged batteries,a passive overcharge warning method utilizing relaxation expansion force was proposed,based on the continued gas generation after stopping charging,leading to a sustained increase in force.Compared to active methods that rely on thresholds of expansion force rate,the passive method can issue warnings 115 s earlier.By combining the passive and active warning methods,guaranteed effective overcharge warning can be issued 863-884 s before TR.This study introduces a novel perspective for enhancing the safety of batteries.展开更多
For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial...For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.展开更多
As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation ...As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation and fragmentation.This ultimately leads to a decrease in cell capacity.The trends of volume expansion and capacity change of the SiO/graphite(SiO/C)composite electrode during cycling were investigated via in situ expansion monitoring.First,a series of expansion test schemes were designed,and the linear relationship between negative electrode expansion and cell capacity degradation was quantitatively analyzed.Then,the effects of different initial pressures on the long-term cycling performance of the cell were evaluated.Finally,the mechanism of their effects was analyzed by scanning electron microscope.The results show that after 50 cycles,the cell capacity decreases from 2.556 mAh to 1.689 mAh,with a capacity retention ratio(CRR)of only 66.08%.A linear relationship between the capacity retention ratio and thickness expansion was found.Electrochemical measurements and scanning electron microscope images demonstrate that intense stress inhibits the lithiation of the negative electrode and that the electrode is more susceptible to irreversible damage during cycling.Overall,these results reveal the relationship between the cycling performance of SiO and the internal pressure of the electrode from a macroscopic point of view,which provides some reference for the application of SiO/C composite electrodes in lithium-ion batteries.展开更多
The expansion of construction land on slopes in mountainous cities like Lanzhou has addressed the shortage of flat land but compromised slope stability,leading to uneven land subsidence and risks to infrastructure.Thi...The expansion of construction land on slopes in mountainous cities like Lanzhou has addressed the shortage of flat land but compromised slope stability,leading to uneven land subsidence and risks to infrastructure.This study assessed the land subsidence before and after urban expansion in five areas of Lanzhou by using slope spectrum construction method and gradient expansion intensity measurement that integrated with SBAS-InSAR technology.The results show that construction land on slopes over 20°increased significantly,accounting for 16%of new construction land.The average slope spectrum index was 4.02,with the upper slope limit rising by 8.2°.The land subsidence rate threshold increased by 10 mm/a,and the proportion of pixels experiencing subsidence greater than 5 mm/year rose from 3.63%to 5.24%.Increased construction intensity on slopes caused higher and faster subsidence,which diminished with greater distance from the expansion areas.Areas with slopes between 10°and 25°saw the greatest acceleration in subsidence.Geological composition,building density,groundwater exploitation,and cut-and-fill thickness collectively influence land subsidence rates.This study provides a scientific basis for mitigating geological disaster risks and promoting safe urban development in mountainous cities.展开更多
The naturally fermented Inner Mongolian cheese’s flavor and nutritional value make it a popular choice among customers.In this work,to create multi-functional peptides that have taste and biological activity,peptidom...The naturally fermented Inner Mongolian cheese’s flavor and nutritional value make it a popular choice among customers.In this work,to create multi-functional peptides that have taste and biological activity,peptidomics and bioinformatics were used to screen flavor peptides from Inner Mongolian cheese and further assess their antioxidant and angiotensin I-converting enzyme(ACE)inhibitory properties.According to sensory data,YH8 and IL7 had detectable bitter tastes with low thresholds of 0.03 and 0.06 mmol/L,respectively.With an umami threshold range of 0.24‒0.81 mmol/L,VQ6,FK13,HP13 and QT14 exhibited a range of flavors dominated by umami,including sweet,bitter,salty,sour and kokumi.Antioxidant activity wise,YH8,VQ6,HP13 and QT14 were well represented.The above-mentioned peptides all had some ACE inhibitory effect.The bitter peptide IL7(IC_(50)=0.08 mmol/L)had the highest level of ACE inhibitory activity,followed by YH8(IC_(50)=0.33 mmol/L).These multi-functional peptides,which have been assessed for bioactive and taste features in Inner Mongolian cheese,may have positive impacts on health and harmonize the cheese’s overall flavor.These results suggest that some flavor peptides produced in fermented foods might be with bioactivities while providing a basis for the exploration and application of multi-functional peptides.展开更多
Figure 6(a)in the paper[Chin.Phys.B 33074203(2024)]was incorrect due to editorial oversight.The correct figure is provided.This modification does not affect the result presented in the paper.
Tissue expansion is a widely utilized technique in plastic and reconstructive surgery;however,the biological mechanisms underlying the skin response remain poorly understood.We propose that tissue fluidity,the transit...Tissue expansion is a widely utilized technique in plastic and reconstructive surgery;however,the biological mechanisms underlying the skin response remain poorly understood.We propose that tissue fluidity,the transition of tissue from a solid-like state to a fluid-like state,plays a pivotal role in enabling the reorganization of the epidermal structure and cellular spatial order,which is essential for effective tissue expansion.Drawing parallels between fluidity in materials science and biological systems,we suggest that the fluid-like behavior in the skin may be critical for mechanical adaptability.Understanding the influence of tissue fluidity may open pathways for modulating this process,potentially enhancing tissue expansion efficiency,reducing procedural duration,and improving clinical outcomes.This perspective highlights the importance of investigating the biological dynamics of tissue fluidity and exploring the potential for targeted manipulation of fluidity-related pathways to optimize tissue expansion.Such advancements could profoundly affect regenerative and reconstructive surgical practices.展开更多
As a critically important transportation infrastructure in China,highways play a significant role in supporting socio-economic development.However,due to the rapid growth of the current socio-economic landscape and th...As a critically important transportation infrastructure in China,highways play a significant role in supporting socio-economic development.However,due to the rapid growth of the current socio-economic landscape and the dramatic increase in the number of cars,many early-built highways have experienced a surge in traffic volume,making it difficult to meet the growing traffic demand.This has led to various issues such as traffic congestion and inefficient operation.Therefore,it is necessary to expand and reconstruct the highway interchanges,effectively optimizing traffic organization design and significantly improving the overall service level of the highway.This article provides a detailed analysis of the principles and key points of traffic organization design for the expansion and reconstruction of highway interchanges.Additionally,it delves into the design scheme for the traffic organization of these interchanges.展开更多
The clinical application of hepatocyte transplantation has been significantly hindered by the scarcity of primary hepatocytes and the functional immaturity of in vitro-pro-duced hepatocytes.By performing serial alloge...The clinical application of hepatocyte transplantation has been significantly hindered by the scarcity of primary hepatocytes and the functional immaturity of in vitro-pro-duced hepatocytes.By performing serial allogeneic hepatocyte transplantation in CRISPR/Cas9-mediated Fah-knockout pigs,we successfully achieved large-scale ex-pansion of hepatocytes while maintaining their authentic biological characteristics.Particularly,the established model enables sustained in vivo liver reconstruction,concurrently ameliorating hepatic fibrosis and demonstrating functional microenvi-ronmental remodeling.Moreover,through comprehensive single-cell transcriptomic profiling of 52418 hepatocytes across transplant generations(F0-F2),we discovered that the cellular composition of these transplanted hepatocytes is similar to that of wild-type hepatocytes.The regenerated liver exhibits all six major hepatic cell types identical to the wild-type counterparts,with the characteristic lobular zonation pat-terns well preserved.Our research provides valuable insights into the large-scale expansion of physiologically functional hepatocytes in vivo without compromising their biological properties.This finding holds great promise for advancing the clinical application of human hepatocyte transplantation,potentially offering more effective treatment options for patients with liver diseases.展开更多
Due to the substantial and continuous growth of transportation demand in China,the existing highway capacity has become insufficient to meet the increasing traffic volume.The implementation of highway reconstruction a...Due to the substantial and continuous growth of transportation demand in China,the existing highway capacity has become insufficient to meet the increasing traffic volume.The implementation of highway reconstruction and expansion projects has gradually become a key measure to improve the service level of the road network and alleviate traffic congestion.Meanwhile,route design is a core aspect of highway reconstruction and expansion projects,and its scientific nature and quality can directly affect the safety,economy,and future operational efficiency of the highway.Therefore,this article provides a detailed analysis of the principles and requirements of route design for highway reconstruction and expansion projects.Additionally,it delves into the design process and key technologies applied in route design for these projects.展开更多
Increasing the hole expansion ratio is significant for developing high formability parts.Hole expansion tests were carried out on low carbon hot-rolled steel containing 0.11%Ti,0.072%Ti–0.03%Nb and 0.097%Ti–0.059%Nb...Increasing the hole expansion ratio is significant for developing high formability parts.Hole expansion tests were carried out on low carbon hot-rolled steel containing 0.11%Ti,0.072%Ti–0.03%Nb and 0.097%Ti–0.059%Nb,respectively.The effects of microstructure,texture,crack propagation behavior and second phase precipitation behavior on hole expansion ratio were investigated.The precipitation behavior of TiC and(Ti,Nb)C in austenite and ferrite in three groups of steel samples was calculated theoretically.The results showed that the hole expansion ratios of 0.11Ti,0.072Ti–0.03Nb and 0.097Ti–0.059Nb test steels were 51.73%,51.17%and 66.24%following simulated coiling at 600℃,respectively.The microstructure was mainly polygonal ferrite with a small amount of pearlite.The grain refinement of 0.097Ti–0.059Nb test steel and the low texture ratio of{110}//ND improved the hole expansion ratio.The low overall hole expansion ratio was due to the microstructure inhomogeneity.The microstructure uniformity was improved by the quenching and tempering treatment,and the hole expansion ratio of the three test steels was greatly increased.The fastest precipitation temperatures in the austenitic region of 0.11Ti,0.072Ti–0.03Nb and 0.097Ti–0.059Nb test steels were 880,860 and 830℃,while those in the ferrite region were 680,675 and 675℃,respectively.The addition of Nb element increased the volume free energy,so that the critical core size of the nucleation on the dislocation line increased,resulting in the decrease in the fastest precipitation temperature.展开更多
In this paper,we study asymptotic power series of the composition f(x)=h(g(x)),where g(x)=∑_(n=0)^(∞)b_(n)x^(-n),b_(n)∈R,and h is a given elementary function.The asymptotic expansions have been obtained for the com...In this paper,we study asymptotic power series of the composition f(x)=h(g(x)),where g(x)=∑_(n=0)^(∞)b_(n)x^(-n),b_(n)∈R,and h is a given elementary function.The asymptotic expansions have been obtained for the composition with an exponential or logarithmic function.Using the re-cursive method,we present the asymptotic expansions for the composition with seven trigonometric functions,respectively.As an application,the asymptotic expansions of roots of some equations are given.Computational results show that our recursive formula is more efficient than the method of Lagrange's inverse theorem.展开更多
This article focuses on traffic safety management during the reconstruction and expansion of highways,with the research objective of understanding traffic safety management issues and exploring more effective traffic ...This article focuses on traffic safety management during the reconstruction and expansion of highways,with the research objective of understanding traffic safety management issues and exploring more effective traffic safety management measures.The research employs practical observation and logical analysis as research methods.Firstly,it elaborates on the connotation of traffic safety management during the reconstruction and expansion of highways,analyzes its key points,and affirms its management value from different perspectives.It provides a detailed analysis of issues such as the weak foundation of traffic safety management systems and the inadequacy of comprehensive traffic safety management,and interprets the restrictive impact of related issues.Based on the manifestation of relevant issues,strategies such as strengthening the institutional foundation of traffic safety management and constructing a comprehensive traffic safety management system are proposed,aiming to provide traffic safety management references for relevant enterprises.展开更多
We have investigated the magnetic, dielectric, pyroelectric, and thermal expansion properties of a layered perovskite metal–organic framework, [NH_(4)Cl]_(2)[Ni(HCOO)_(2)(NH_(3))_(2)]. The material undergoes three ph...We have investigated the magnetic, dielectric, pyroelectric, and thermal expansion properties of a layered perovskite metal–organic framework, [NH_(4)Cl]_(2)[Ni(HCOO)_(2)(NH_(3))_(2)]. The material undergoes three phase transitions including a canted antiferromagnetic transition at ~36 K, and two successive structural transitions around 100 K and 110 K, respectively. The temperature dependence of dielectric permittivity and pyroelectric current suggests that the structural transitions induce weak ferroelectricity along the c-axis and antiferroelectricity in the ab plane. A negative thermal expansion along the c-axis is observed between two structural phase transitions, which is ascribed to the abnormal shrinkage of interlayer hydrogen bonding length. Moreover, the ferroelectric/antiferroelectric phase transition temperature shifts towards a higher temperature under a magnetic field, suggesting certain magnetoelectric coupling in the paramagnetic phase. Our study suggests that the layered metal–organic frameworks provide a unique playground for exploring exotic physical properties such as multiferroicity and abnormal thermal expansion.展开更多
Combining practical engineering projects, this article analyzes the design strategies for the reconstruction and expansion of insufficient clearance sections in highway interchanges. This includes an overview of the p...Combining practical engineering projects, this article analyzes the design strategies for the reconstruction and expansion of insufficient clearance sections in highway interchanges. This includes an overview of the project, a comparison of design options for insufficient clearance in interchanges, and the main design strategies for reconstruction and expansion. It is hoped that this analysis can provide a reference for the design of such road reconstruction and expansion projects.展开更多
BACKGROUND Hematoma expansion(HE)typically portends a poor prognosis in spontaneous intracerebral hemorrhage(ICH).Several radiographic and laboratory values have been proposed as predictive markers of HE.AIM To perfor...BACKGROUND Hematoma expansion(HE)typically portends a poor prognosis in spontaneous intracerebral hemorrhage(ICH).Several radiographic and laboratory values have been proposed as predictive markers of HE.AIM To perform a systematic review and meta-analysis on the association of neu-trophil-to-lymphocyte ratio(NLR)and HE in ICH.A secondary outcome exa-mined was the association of NLR and perihematomal(PHE)growth.METHODS Three databases were searched(PubMed,EMBASE,and Cochrane)for studies evaluating the effect of NLR on HE and PHE growth.The inverse variance me-thod was applied to estimate an overall effect for each specific outcome by combining weighted averages of the individual studies’estimates of the logarithm odds ratio(OR).Given heterogeneity of the studies,a random effect was applied.Risk of bias was analyzed using the Newcastle-Ottawa Scale.The study was conducted following the Preferred Reporting Items for Systematic Review and Meta-analysis guidelines.The protocol was registered in PROSPERO(No.CRD42024549924).RESULTS Eleven retrospective cohort studies involving 2953 patients were included in the meta-analysis.Among those,HE was investigated in eight studies,whereas PHE growth was evaluated in three.Blood sample was obtained on admission in ten studies,and at 24 hours in one study.There was no consensus on cut-off value among the studies.NLR was found to be significantly associated with higher odds of HE(OR=1.09,95%CI:1.04-1.15,I2=86%,P<0.01),and PHE growth(OR=1.28,95%CI:1.19-1.38,I2=0%,P<0.01).Qualitative analysis of each outcome revealed overall moderate risk of bias mainly due to lack of control for systemic confounders.CONCLUSION The available literature suggests that a possible association may exist between NLR on admission and HE,and PHE growth.Future studies controlled for systemic confounders should be designed to consolidate this finding.If confirmed,NLR could be added as a readily available and inexpensive biomarker to identify a subgroup of patients at higher risk of developing HE.展开更多
Focusing on the ultralow expansion functionality of the crystalized glass containing the cordierite crystal phase with the molar composition 20.7MgO·20.7Al_(2)O_(3)·51.6SiO_(2)·7.0TiO_(2),we systematica...Focusing on the ultralow expansion functionality of the crystalized glass containing the cordierite crystal phase with the molar composition 20.7MgO·20.7Al_(2)O_(3)·51.6SiO_(2)·7.0TiO_(2),we systematically investigated impacts of thermal treatment protocols on T dependence of coefficients of thermal expansion(CTE).Except for the phase compositions,morphology is identified as another important factor to control the T dependence of CTE.By using X-ray diffraction and scanning electron microscope,various modes of T dependence of CTE for crystallized glasses are ascribed to their different phase compositions and microstructure with finely dispersed nanoparticles.These understanding contributes to the further modification of CTE of the crystalized glass by altering their thermal treatment scenarios.展开更多
Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles c...Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles calculations that have enabled researchers to understand the microscopic origins of thermal expansion.In this study,we propose a coefficient of thermal expansion(CTE)calculation scheme based on self-consistent phonon theory,incorporating the fourth-order anharmonicity.We selected four structures(Si,CaZrF_(6),SrTiO_(3),NaBr)to investigate high-order anharmonicity’s impact on their CTEs,based on bonding types.The results indicate that our method goes beyond the second-order quasi-harmonic approximation and the third-order perturbation theory,aligning closely with experimental data.Furthermore,we observed that an increase in the ionicity of the structures leads to a more pronounced influence of high-order anharmonicity on CTE,with this effect primarily manifesting in variations of the Grüneisen parameter.Our research provides a theoretical foundation for accurately predicting and regulating the thermal expansion behavior of materials.展开更多
For the people of Masaka,Kabuga and Muyumbu in Rwanda,the daily commute often takes longer than it should.A stretch of just 10 km along the Prince House-Giporoso-Masaka road can take half an hour during peak hours.The...For the people of Masaka,Kabuga and Muyumbu in Rwanda,the daily commute often takes longer than it should.A stretch of just 10 km along the Prince House-Giporoso-Masaka road can take half an hour during peak hours.The narrow two-lane artery,clogged with long-haul trucks from the Rwanda-Tanzania border and commuter traffic,has long tested the patience of drivers and pedestrians alike.In May,a long-awaited announcement finally arrived.Rwanda’s Ministry of Infrastructure confirmed plans to expand the road from two lanes to four,adding a 1.2-km flyover at Giporoso-Remera and an underpass to keep tra"c flowing smoothly.The$60.5 million(Rwf86 billion)project will be fully funded by China,a testament to the deepening friendship and cooperation between the two nations.For many residents,it signals the end of years of lost time and daily frustration.展开更多
基金National Key R&D Program of China(2022YFB2602900)R&D Fund Project of China Academy of Railway Sciences Corporation Limited(2021YJ084)+2 种基金Project of Science and Technology R&D Program of China Railway(2016G002-K)R&D Fund Project of China Railway Major Bridge Reconnaissance&Design Institute Co.,Ltd.(2021)R&D Fund Project of China Railway Shanghai Group(2021141).
文摘Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the approach bridge.For long-span railway bridges,it must also be coordinated with rail expansion joint(REJ),which is necessary to accommodate the expansion and contraction of,and reducing longitudinal stress in,the rails.The main aim of this study is to present analysis of recent developments in the research and application of BEJs in high-speed railway(HSR)long-span bridges in China,and to propose a performance-based integral design method for BEJs used with REJs,from both theoretical and engineering perspectives.Design/methodology/approach–The study first presents a summary on the application and maintenance of BEJs in HSR long-span bridges in China representing an overview of their state of development.Results of a survey of typical BEJ faults were analyzed,and field testing was conducted on a railway cable-stayed bridge in order to obtain information on the major mechanical characteristics of its BEJ under train load.Based on the above,a performance-based integral design method for BEJs with maximum expansion range 1600 mm(±800 mm),was proposed,covering all stages from overall conceptual design to consideration of detailed structural design issues.The performance of the novel BEJ design thus derived was then verified via theoretical analysis under different scenarios,full-scale model testing,and field testing and commissioning.Findings–Two major types of BEJs,deck-type and through-type,are used in HSR long-span bridges in China.Typical BEJ faults were found to mainly include skewness of steel sleepers at the bridge gap,abnormally large longitudinal frictional resistance,and flexural deformation of the scissor mechanisms.These faults influence BEJ functioning,and thus adversely affect track quality and train running performance at the beam end.Due to their simple and integral structure,deck-type BEJs with expansion range 1200 mm(±600 mm)or less have been favored as a solution offering improved operational conditions,and have emerged as a standard design.However,when the expansion range exceeds the above-mentioned value,special design work becomes necessary.Therefore,based on engineering practice,a performance-based integral design method for BEJs used with REJs was proposed,taking into account four major categories of performance requirements,i.e.,mechanical characteristics,train running quality,durability and insulation performance.Overall BEJ design must mainly consider component strength and the overall stiffness of BEJ;the latter factor in particular has a decisive influence on train running performance at the beam end.Detailed BEJ structural design must stress minimization of the frictional resistance of its sliding surface.The static and dynamic performance of the newlydesigned BEJ with expansion range 1600 mm have been confirmed to be satisfactory,via numerical simulation,full-scale model testing,and field testing and commissioning.Originality/value–This research provides a broad overview of the status of BEJs with large expansion range in HSR long-span bridges in China,along with novel insights into their design.
基金supported by the National Natural Science Foundation of China(52476200,52106244)the Guangdong Basic and Applied Basic Research Foundation(2024A1515030124)+1 种基金the Science and Technology Project of China Southern Power Grid under Grant GDKJXM20230246(030100KC23020017)the Fundamental Research Funds for the Central Universities。
文摘Due to batteries inconsistencies and potential faults in battery management systems,slight overcharging remains a common yet insufficiently understood safety risk,lacking effective warning methods.To illuminate the degradation behavior and failure mechanism of various overcharged states(100%SOC,105%SOC,110%SOC,and 115%SOC),multiple advanced in-situ characterization techniques(accelerating rate calorimeter,electrochemical impedance spectroscopy,ultrasonic scanning,and expansion instrument)were utilized.Additionally,re-overcharge-induced thermal runaway(TR)tests were conducted,with a specific emphasis on the evolution of the expansion force signal.Results indicated significant degradation at 110%SOC including conductivity loss,loss of lithium inventory,and loss of active material accompanied by internal gas generation.These failure behaviors slow down the expansion force rate during reovercharging,reducing the efficacy of active warnings that depend on rate thresholds of expansion force.Specifically,the warning time for 115%SOC battery is only 144 s,which is 740 s shorter than that for fresh battery,and the time to TR is advanced by 9 min.Moreover,the initial self-heating temperature(T1)is reduced by 62.4℃compared to that of fresh battery,reaching only 70.8℃.To address the low safety of overcharged batteries,a passive overcharge warning method utilizing relaxation expansion force was proposed,based on the continued gas generation after stopping charging,leading to a sustained increase in force.Compared to active methods that rely on thresholds of expansion force rate,the passive method can issue warnings 115 s earlier.By combining the passive and active warning methods,guaranteed effective overcharge warning can be issued 863-884 s before TR.This study introduces a novel perspective for enhancing the safety of batteries.
基金Supported by Projects from Chongqing Municipal Science and Technology Commission(CSTB2022NSCQ-MSX0445)。
文摘For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.
基金supported by the Fundamental Research Funds for the Central Universities(WK2090000055)Anhui Provincial Natural Science Foundation of China(2308085QG231).
文摘As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation and fragmentation.This ultimately leads to a decrease in cell capacity.The trends of volume expansion and capacity change of the SiO/graphite(SiO/C)composite electrode during cycling were investigated via in situ expansion monitoring.First,a series of expansion test schemes were designed,and the linear relationship between negative electrode expansion and cell capacity degradation was quantitatively analyzed.Then,the effects of different initial pressures on the long-term cycling performance of the cell were evaluated.Finally,the mechanism of their effects was analyzed by scanning electron microscope.The results show that after 50 cycles,the cell capacity decreases from 2.556 mAh to 1.689 mAh,with a capacity retention ratio(CRR)of only 66.08%.A linear relationship between the capacity retention ratio and thickness expansion was found.Electrochemical measurements and scanning electron microscope images demonstrate that intense stress inhibits the lithiation of the negative electrode and that the electrode is more susceptible to irreversible damage during cycling.Overall,these results reveal the relationship between the cycling performance of SiO and the internal pressure of the electrode from a macroscopic point of view,which provides some reference for the application of SiO/C composite electrodes in lithium-ion batteries.
基金National Natural Science Foundation of China(Grant No.42271214)National Key R&D Program of China(Grant No.2022YFC3800700)+1 种基金Key Research Program of Gansu Province(Grant No.23ZDKA0004)Natural Science Foundation of Gansu Province(Grant No.21JR7RA281).
文摘The expansion of construction land on slopes in mountainous cities like Lanzhou has addressed the shortage of flat land but compromised slope stability,leading to uneven land subsidence and risks to infrastructure.This study assessed the land subsidence before and after urban expansion in five areas of Lanzhou by using slope spectrum construction method and gradient expansion intensity measurement that integrated with SBAS-InSAR technology.The results show that construction land on slopes over 20°increased significantly,accounting for 16%of new construction land.The average slope spectrum index was 4.02,with the upper slope limit rising by 8.2°.The land subsidence rate threshold increased by 10 mm/a,and the proportion of pixels experiencing subsidence greater than 5 mm/year rose from 3.63%to 5.24%.Increased construction intensity on slopes caused higher and faster subsidence,which diminished with greater distance from the expansion areas.Areas with slopes between 10°and 25°saw the greatest acceleration in subsidence.Geological composition,building density,groundwater exploitation,and cut-and-fill thickness collectively influence land subsidence rates.This study provides a scientific basis for mitigating geological disaster risks and promoting safe urban development in mountainous cities.
基金supported by the central government and guides local funds for science and technology development(2022ZY0109).
文摘The naturally fermented Inner Mongolian cheese’s flavor and nutritional value make it a popular choice among customers.In this work,to create multi-functional peptides that have taste and biological activity,peptidomics and bioinformatics were used to screen flavor peptides from Inner Mongolian cheese and further assess their antioxidant and angiotensin I-converting enzyme(ACE)inhibitory properties.According to sensory data,YH8 and IL7 had detectable bitter tastes with low thresholds of 0.03 and 0.06 mmol/L,respectively.With an umami threshold range of 0.24‒0.81 mmol/L,VQ6,FK13,HP13 and QT14 exhibited a range of flavors dominated by umami,including sweet,bitter,salty,sour and kokumi.Antioxidant activity wise,YH8,VQ6,HP13 and QT14 were well represented.The above-mentioned peptides all had some ACE inhibitory effect.The bitter peptide IL7(IC_(50)=0.08 mmol/L)had the highest level of ACE inhibitory activity,followed by YH8(IC_(50)=0.33 mmol/L).These multi-functional peptides,which have been assessed for bioactive and taste features in Inner Mongolian cheese,may have positive impacts on health and harmonize the cheese’s overall flavor.These results suggest that some flavor peptides produced in fermented foods might be with bioactivities while providing a basis for the exploration and application of multi-functional peptides.
文摘Figure 6(a)in the paper[Chin.Phys.B 33074203(2024)]was incorrect due to editorial oversight.The correct figure is provided.This modification does not affect the result presented in the paper.
基金supported by the National Natural Science Foundation of China(grant nos.82102343 and 82372536)the Shanghai Municipal Health Commission Health Industry Clinical Research Special Program(grant no.20244Y0031)the Shanghai“Rising Stars of Medical Talents”Youth Development Program(Youth Medical Talents-Specialist Program).
文摘Tissue expansion is a widely utilized technique in plastic and reconstructive surgery;however,the biological mechanisms underlying the skin response remain poorly understood.We propose that tissue fluidity,the transition of tissue from a solid-like state to a fluid-like state,plays a pivotal role in enabling the reorganization of the epidermal structure and cellular spatial order,which is essential for effective tissue expansion.Drawing parallels between fluidity in materials science and biological systems,we suggest that the fluid-like behavior in the skin may be critical for mechanical adaptability.Understanding the influence of tissue fluidity may open pathways for modulating this process,potentially enhancing tissue expansion efficiency,reducing procedural duration,and improving clinical outcomes.This perspective highlights the importance of investigating the biological dynamics of tissue fluidity and exploring the potential for targeted manipulation of fluidity-related pathways to optimize tissue expansion.Such advancements could profoundly affect regenerative and reconstructive surgical practices.
文摘As a critically important transportation infrastructure in China,highways play a significant role in supporting socio-economic development.However,due to the rapid growth of the current socio-economic landscape and the dramatic increase in the number of cars,many early-built highways have experienced a surge in traffic volume,making it difficult to meet the growing traffic demand.This has led to various issues such as traffic congestion and inefficient operation.Therefore,it is necessary to expand and reconstruct the highway interchanges,effectively optimizing traffic organization design and significantly improving the overall service level of the highway.This article provides a detailed analysis of the principles and key points of traffic organization design for the expansion and reconstruction of highway interchanges.Additionally,it delves into the design scheme for the traffic organization of these interchanges.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFA0805905,2023YFC3404305 and 2024YFA1107900the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDB1150000+1 种基金the CAS Project for Young Scientists in Basic Research,Grant/Award Number:YSBR-012Bingtuan Science and Technology Project,Grant/Award Number:NYHXGG2023AA01。
文摘The clinical application of hepatocyte transplantation has been significantly hindered by the scarcity of primary hepatocytes and the functional immaturity of in vitro-pro-duced hepatocytes.By performing serial allogeneic hepatocyte transplantation in CRISPR/Cas9-mediated Fah-knockout pigs,we successfully achieved large-scale ex-pansion of hepatocytes while maintaining their authentic biological characteristics.Particularly,the established model enables sustained in vivo liver reconstruction,concurrently ameliorating hepatic fibrosis and demonstrating functional microenvi-ronmental remodeling.Moreover,through comprehensive single-cell transcriptomic profiling of 52418 hepatocytes across transplant generations(F0-F2),we discovered that the cellular composition of these transplanted hepatocytes is similar to that of wild-type hepatocytes.The regenerated liver exhibits all six major hepatic cell types identical to the wild-type counterparts,with the characteristic lobular zonation pat-terns well preserved.Our research provides valuable insights into the large-scale expansion of physiologically functional hepatocytes in vivo without compromising their biological properties.This finding holds great promise for advancing the clinical application of human hepatocyte transplantation,potentially offering more effective treatment options for patients with liver diseases.
文摘Due to the substantial and continuous growth of transportation demand in China,the existing highway capacity has become insufficient to meet the increasing traffic volume.The implementation of highway reconstruction and expansion projects has gradually become a key measure to improve the service level of the road network and alleviate traffic congestion.Meanwhile,route design is a core aspect of highway reconstruction and expansion projects,and its scientific nature and quality can directly affect the safety,economy,and future operational efficiency of the highway.Therefore,this article provides a detailed analysis of the principles and requirements of route design for highway reconstruction and expansion projects.Additionally,it delves into the design process and key technologies applied in route design for these projects.
基金financially supported by the CITIC niobium steel development award Fund(M1656-2021)Central Iron and Steel Research Institute for its independent research and development fund(No.21G62460ZD).
文摘Increasing the hole expansion ratio is significant for developing high formability parts.Hole expansion tests were carried out on low carbon hot-rolled steel containing 0.11%Ti,0.072%Ti–0.03%Nb and 0.097%Ti–0.059%Nb,respectively.The effects of microstructure,texture,crack propagation behavior and second phase precipitation behavior on hole expansion ratio were investigated.The precipitation behavior of TiC and(Ti,Nb)C in austenite and ferrite in three groups of steel samples was calculated theoretically.The results showed that the hole expansion ratios of 0.11Ti,0.072Ti–0.03Nb and 0.097Ti–0.059Nb test steels were 51.73%,51.17%and 66.24%following simulated coiling at 600℃,respectively.The microstructure was mainly polygonal ferrite with a small amount of pearlite.The grain refinement of 0.097Ti–0.059Nb test steel and the low texture ratio of{110}//ND improved the hole expansion ratio.The low overall hole expansion ratio was due to the microstructure inhomogeneity.The microstructure uniformity was improved by the quenching and tempering treatment,and the hole expansion ratio of the three test steels was greatly increased.The fastest precipitation temperatures in the austenitic region of 0.11Ti,0.072Ti–0.03Nb and 0.097Ti–0.059Nb test steels were 880,860 and 830℃,while those in the ferrite region were 680,675 and 675℃,respectively.The addition of Nb element increased the volume free energy,so that the critical core size of the nucleation on the dislocation line increased,resulting in the decrease in the fastest precipitation temperature.
基金Supported by The Innovation Fund of Postgraduate,Sichuan University of Science&Engineering(Y2024336)NSF of Sichuan Province(2023NSFSC0065).
文摘In this paper,we study asymptotic power series of the composition f(x)=h(g(x)),where g(x)=∑_(n=0)^(∞)b_(n)x^(-n),b_(n)∈R,and h is a given elementary function.The asymptotic expansions have been obtained for the composition with an exponential or logarithmic function.Using the re-cursive method,we present the asymptotic expansions for the composition with seven trigonometric functions,respectively.As an application,the asymptotic expansions of roots of some equations are given.Computational results show that our recursive formula is more efficient than the method of Lagrange's inverse theorem.
文摘This article focuses on traffic safety management during the reconstruction and expansion of highways,with the research objective of understanding traffic safety management issues and exploring more effective traffic safety management measures.The research employs practical observation and logical analysis as research methods.Firstly,it elaborates on the connotation of traffic safety management during the reconstruction and expansion of highways,analyzes its key points,and affirms its management value from different perspectives.It provides a detailed analysis of issues such as the weak foundation of traffic safety management systems and the inadequacy of comprehensive traffic safety management,and interprets the restrictive impact of related issues.Based on the manifestation of relevant issues,strategies such as strengthening the institutional foundation of traffic safety management and constructing a comprehensive traffic safety management system are proposed,aiming to provide traffic safety management references for relevant enterprises.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400303)the National Natural Science Foundation of China (Grant No. 12227806)。
文摘We have investigated the magnetic, dielectric, pyroelectric, and thermal expansion properties of a layered perovskite metal–organic framework, [NH_(4)Cl]_(2)[Ni(HCOO)_(2)(NH_(3))_(2)]. The material undergoes three phase transitions including a canted antiferromagnetic transition at ~36 K, and two successive structural transitions around 100 K and 110 K, respectively. The temperature dependence of dielectric permittivity and pyroelectric current suggests that the structural transitions induce weak ferroelectricity along the c-axis and antiferroelectricity in the ab plane. A negative thermal expansion along the c-axis is observed between two structural phase transitions, which is ascribed to the abnormal shrinkage of interlayer hydrogen bonding length. Moreover, the ferroelectric/antiferroelectric phase transition temperature shifts towards a higher temperature under a magnetic field, suggesting certain magnetoelectric coupling in the paramagnetic phase. Our study suggests that the layered metal–organic frameworks provide a unique playground for exploring exotic physical properties such as multiferroicity and abnormal thermal expansion.
文摘Combining practical engineering projects, this article analyzes the design strategies for the reconstruction and expansion of insufficient clearance sections in highway interchanges. This includes an overview of the project, a comparison of design options for insufficient clearance in interchanges, and the main design strategies for reconstruction and expansion. It is hoped that this analysis can provide a reference for the design of such road reconstruction and expansion projects.
文摘BACKGROUND Hematoma expansion(HE)typically portends a poor prognosis in spontaneous intracerebral hemorrhage(ICH).Several radiographic and laboratory values have been proposed as predictive markers of HE.AIM To perform a systematic review and meta-analysis on the association of neu-trophil-to-lymphocyte ratio(NLR)and HE in ICH.A secondary outcome exa-mined was the association of NLR and perihematomal(PHE)growth.METHODS Three databases were searched(PubMed,EMBASE,and Cochrane)for studies evaluating the effect of NLR on HE and PHE growth.The inverse variance me-thod was applied to estimate an overall effect for each specific outcome by combining weighted averages of the individual studies’estimates of the logarithm odds ratio(OR).Given heterogeneity of the studies,a random effect was applied.Risk of bias was analyzed using the Newcastle-Ottawa Scale.The study was conducted following the Preferred Reporting Items for Systematic Review and Meta-analysis guidelines.The protocol was registered in PROSPERO(No.CRD42024549924).RESULTS Eleven retrospective cohort studies involving 2953 patients were included in the meta-analysis.Among those,HE was investigated in eight studies,whereas PHE growth was evaluated in three.Blood sample was obtained on admission in ten studies,and at 24 hours in one study.There was no consensus on cut-off value among the studies.NLR was found to be significantly associated with higher odds of HE(OR=1.09,95%CI:1.04-1.15,I2=86%,P<0.01),and PHE growth(OR=1.28,95%CI:1.19-1.38,I2=0%,P<0.01).Qualitative analysis of each outcome revealed overall moderate risk of bias mainly due to lack of control for systemic confounders.CONCLUSION The available literature suggests that a possible association may exist between NLR on admission and HE,and PHE growth.Future studies controlled for systemic confounders should be designed to consolidate this finding.If confirmed,NLR could be added as a readily available and inexpensive biomarker to identify a subgroup of patients at higher risk of developing HE.
基金Funded by National Natural Science Foundation of China(No.52172007)Jiangsu Science and Technology Innovation Project for Carbon Peaking and Carbon Neutrality(No.BE2022035)。
文摘Focusing on the ultralow expansion functionality of the crystalized glass containing the cordierite crystal phase with the molar composition 20.7MgO·20.7Al_(2)O_(3)·51.6SiO_(2)·7.0TiO_(2),we systematically investigated impacts of thermal treatment protocols on T dependence of coefficients of thermal expansion(CTE).Except for the phase compositions,morphology is identified as another important factor to control the T dependence of CTE.By using X-ray diffraction and scanning electron microscope,various modes of T dependence of CTE for crystallized glasses are ascribed to their different phase compositions and microstructure with finely dispersed nanoparticles.These understanding contributes to the further modification of CTE of the crystalized glass by altering their thermal treatment scenarios.
基金Project supported by the National Natural Science Foundation of China(Grant No.62125402).
文摘Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles calculations that have enabled researchers to understand the microscopic origins of thermal expansion.In this study,we propose a coefficient of thermal expansion(CTE)calculation scheme based on self-consistent phonon theory,incorporating the fourth-order anharmonicity.We selected four structures(Si,CaZrF_(6),SrTiO_(3),NaBr)to investigate high-order anharmonicity’s impact on their CTEs,based on bonding types.The results indicate that our method goes beyond the second-order quasi-harmonic approximation and the third-order perturbation theory,aligning closely with experimental data.Furthermore,we observed that an increase in the ionicity of the structures leads to a more pronounced influence of high-order anharmonicity on CTE,with this effect primarily manifesting in variations of the Grüneisen parameter.Our research provides a theoretical foundation for accurately predicting and regulating the thermal expansion behavior of materials.
文摘For the people of Masaka,Kabuga and Muyumbu in Rwanda,the daily commute often takes longer than it should.A stretch of just 10 km along the Prince House-Giporoso-Masaka road can take half an hour during peak hours.The narrow two-lane artery,clogged with long-haul trucks from the Rwanda-Tanzania border and commuter traffic,has long tested the patience of drivers and pedestrians alike.In May,a long-awaited announcement finally arrived.Rwanda’s Ministry of Infrastructure confirmed plans to expand the road from two lanes to four,adding a 1.2-km flyover at Giporoso-Remera and an underpass to keep tra"c flowing smoothly.The$60.5 million(Rwf86 billion)project will be fully funded by China,a testament to the deepening friendship and cooperation between the two nations.For many residents,it signals the end of years of lost time and daily frustration.