Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewa...Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.展开更多
This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Associ...This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.展开更多
This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Associat...This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-Zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.展开更多
Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interan...Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interannual differences in water availability are affecting π_(tlp) as a static trait.I monitored the seasonal variation of π_(tlp) during a drought year starting in early spring with juvenile leaves and assessed the interannual variation in π_(tlp) of fully matured leaves among years with diverting water availability for three temperate broad-leaved tree species.The largest seasonal changes in π_(tlp) occurred during leaf unfolding until leaves were fully developed and matured.After leaves matured,no significant changes occurred for the rest of the vegetation period.Interannual variation that could be related to water availability was only present in one of the three tree species.The results suggest that the investigated species have a rapid period of osmotic adjustment early in the growing season followed by a period of relative stability,when π_(tlp) can be considered as a static trait.展开更多
Under submerged conditions, compared with traditional self-excited oscillating pulsed waterjets(SOPWs), annular fluid-enhanced self-excited oscillating pulsed waterjets(AFESOPWs) exhibit a higher surge pressure throug...Under submerged conditions, compared with traditional self-excited oscillating pulsed waterjets(SOPWs), annular fluid-enhanced self-excited oscillating pulsed waterjets(AFESOPWs) exhibit a higher surge pressure through self-priming. However, their pressure frequency and cavitation characteristics remain unclear, resulting in an inability to fully utilize resonance and cavitation erosion to break coal and rock. In this study, high-frequency pressure testing, high-speed photography, and large eddy simulation(LES) are used to investigate the distribution of the pressure frequency band, evolution law of the cavitation cloud, and its regulation mechanism of a continuous waterjet, SOPW, and AFESOPW. The results indicated that the excitation of the plunger pump, shearing layer vortex, and bubble collapse corresponded to the three high-amplitude frequency bands of the waterjet pressure. AFESOPWs have an additional self-priming frequency that can produce a larger amplitude under a synergistic effect with the second high-amplitude frequency band. A better cavitation effect was produced after self-priming the annulus fluid, and the shedding frequency of the cavitation clouds of the three types of waterjets was linearly related to the cavitation number. The peak pressure of the waterjet and cavitation erosion effect can be improved by modulating the waterjet pressure oscillation frequency and cavitation shedding frequency.展开更多
This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for d...This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.展开更多
Objectives: This study aimed to evaluate the prolonged therapeutic effects of a 35 kDa molecular weight hyaluronan fragment (HA35) in alleviating pain associated with myofascial pain syndrome (MPS). Hyaluronan interac...Objectives: This study aimed to evaluate the prolonged therapeutic effects of a 35 kDa molecular weight hyaluronan fragment (HA35) in alleviating pain associated with myofascial pain syndrome (MPS). Hyaluronan interacts with various receptors in the human body, including CD44, LYVE-1, RHAMM, and TLR2, and is well-known for its analgesic effects when used in intra-articular or ultrasound-guided nerve trunk injections. Studies have shown that hyaluronidase cleaves high molecular weight HA to generate HA35, a low molecular weight fragment with enhanced tissue permeability, capable of binding to HA receptors on cell surfaces to produce broad-spectrum analgesic effects. Methods: Ten patients diagnosed with MPS were treated and assessed in this study. HA35 was administered through injection at a dosage of 100 mg daily for 15 days. Patients evaluated their MPS, overall pain levels, and treatment satisfaction using the Numerical Pain Rating Scale (NPRS), the Global Pain Scale (GPS), and the Treatment Satisfaction Questionnaire for Medication (TSQM 1.4). Follow-up evaluations were performed three months post-treatment to assess the duration of therapeutic effects. Results: Significant improvements were observed in NPRS, GPS, and TSQM scores both during and after the treatment period (P Conclusions: HA35 provides effective and sustained relief from pain associated with MPS, demonstrating a prolonged therapeutic benefit.展开更多
The advancement of imaging resolution has made the impact of multi-frequency composite jitter in satellite platforms on non-collinear time delay and integration(TDI)charge-coupled device(CCD)imaging systems increasing...The advancement of imaging resolution has made the impact of multi-frequency composite jitter in satellite platforms on non-collinear time delay and integration(TDI)charge-coupled device(CCD)imaging systems increasingly critical.Moreover,the accuracy of jitter detection is constrained by the limited inter-chip overlap region inherent to non-collinear TDI CCDs.To address these challenges,a multi-frequency jitter detection method is proposed,achieving sub-pixel level error extraction.Furthermore,a multi-frequency jitter fitting approach utilizing a scale-adjustable sliding window is introduced.For composite multi-frequency jitter,spectral analysis decomposes the relative jitter error curve,while the scale-adjustable sliding window enables frequency-division fitting and modeling.Validation experiments using Gaofen-8(GF-8)remote sensing satellite imagery detected jitter at 0.65,20,and 100 Hz in the cross-track direction and at 0.5,100,and 120 Hz in the along-track direction,demonstrating the method’s precision in detecting platform jitter at sub-pixel accuracy(<0.2 pixels)and its efficacy in fitting and modeling for non-collinear TDI CCD imaging systems subject to multi-frequency jitter.展开更多
The success of robot-assisted pelvic fracture reduction surgery heavily relies on the accuracy of 3D/3D feature-based registration.This process involves extracting anatomical feature points from pre-operative 3D image...The success of robot-assisted pelvic fracture reduction surgery heavily relies on the accuracy of 3D/3D feature-based registration.This process involves extracting anatomical feature points from pre-operative 3D images which can be challenging because of the complex and variable structure of the pelvis.PointMLP_RegNet,a modified PointMLP,was introduced to address this issue.It retains the feature extraction module of PointMLP but replaces the classification layer with a regression layer to predict the coordinates of feature points instead of conducting regular classification.A flowchart for an automatic feature points extraction method was presented,and a series of experiments was conducted on a clinical pelvic dataset to confirm the accuracy and effectiveness of the method.PointMLP_RegNet extracted feature points more accurately,with 8 out of 10 points showing less than 4 mm errors and the remaining two less than 5 mm.Compared to PointNettt and PointNet,it exhibited higher accuracy,robustness and space efficiency.The proposed method will improve the accuracy of anatomical feature points extraction,enhance intra-operative registration precision and facilitate the widespread clinical application of robot-assisted pelvic fracture reduction.展开更多
In this paper, we investigate the effect of exceptional points(EPs) on the violation of Leggett–Garg inequality(LGI) and no-signaling-in-time(NSIT) conditions and compare the different effects between the Hamiltonian...In this paper, we investigate the effect of exceptional points(EPs) on the violation of Leggett–Garg inequality(LGI) and no-signaling-in-time(NSIT) conditions and compare the different effects between the Hamiltonian EP(HEP) and Liouvillian EP(LEP) on those violations. We consider an open system consisting of two coupled qubits and each qubit is contacted with a thermal bath at a different temperature. In the case of omitting quantum jumps, we find that the system exhibits a second-order HEP, which separates the parameter space into an overdamped regime and an underdamped regime. In this situation, the LGI and NSIT conditions can be violated in both regimes and not violated at the HEP. In the case of without omitting quantum jumps, we find that the system exhibits a third-order LEP, which also separates the parameter space into an overdamped regime and an underdamped regime. In this situation, the LGI can only be violated in the underdamped regime with large coupling strength between the qubits.Conversely, the NSIT conditions can be violated in both regimes, as well as at the LEP, except in the overdamped regime with small coupling strength between the qubits. Comparing the violations of the LGI and NSIT conditions with HEP and LEP, we find that the quantum jumps would reduce the generation of coherence, enhance the decoherence, and lead to narrower parameter regimes that the LGI and NSIT conditions can be violated. Furthermore, in both cases,the NSIT conditions can be violated in a wider parameter regime than the LGI.展开更多
In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system ...In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system composed of a substrate and three film layers.The thermal stress distribution inside the structure was calculated by the finite element method,revealing significant thermal stress differences between the layers.This is mainly due to the mismatch of the coefficient of thermal expansion between materials.Different materials respond differently to changes in external temperature,leading to compression between layers.There are obvious thermal stress concentration points at the corners of the base layer and the transition layer,which is due to the sudden change of the shape at the geometric section of the structure,resulting in a sudden increase in local stress.To address this issue,we chamfered the substrate and added an intermediate layer between the substrate and the transition layer to assess whether these modifications could reduce or eliminate the thermal stress concentration points and extend the service life of the multilayer structure.The results indicate that chamfering and adding the intermediate layer effectively reduce stress discontinuities and mitigate thermal stress concentration points,thereby improving interlayer bonding strength.展开更多
Dysphagia caused by true bulbar paralysis after stroke is a common and serious complication that severely affects patients’eating ability and quality of life,and significantly increases the risk of complications such...Dysphagia caused by true bulbar paralysis after stroke is a common and serious complication that severely affects patients’eating ability and quality of life,and significantly increases the risk of complications such as pneumonia and malnutrition.Electroacupuncture at swallowing points stimulates Swallowing 1 and Swallowing 2 acupoints,acting on key areas such as the glossopharyngeal nerve and vagus nerve,stimulating the reconstruction of nerve reflex arcs and the recovery of swallowing function.Therefore,this article analyzes the mechanism and clinical efficacy of electroacupuncture at swallowing points for the treatment of dysphagia caused by true bulbar paralysis after stroke,aiming to provide theoretical support and practical basis for clinical application.展开更多
Integrated continuous stirred-tank reactors and distillation columns with recycle(CSTR-DC-recycle)are essential components in chemical processes.This paper proposes a method to establish a normal operating zone(NOZ)mo...Integrated continuous stirred-tank reactors and distillation columns with recycle(CSTR-DC-recycle)are essential components in chemical processes.This paper proposes a method to establish a normal operating zone(NOZ)model to represent allowable variations of the CSTR-DC-recycle chemical processes.The NOZ is a geometric space containing all safe operating points of the CSTR-DC-recycle chemical processes,so that it is an effective model for process monitoring.The novelty of the proposed method is to establish the NOZ model based on boundary points.The boundary points make it possible to capture the actual geometric space irrespective of the space shape.In contrast,existing methods represent the NOZ of processes by fixed mathematical models such as ellipsoidal and convex-hull models;they are not suitable for the CSTR-DC-recycle chemical processes whose NOZs cannot be exactly defined by fixed mathematical structures.Simulated case studies based on Aspen Hysys software are given to illustrate the proposed method.展开更多
Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Nume...Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Numerical approaches have become necessary and sufficient to be addressed and employed for benefiting from the adaptability of such systems for varied applications.A variety of fractional Layla and Majnun model(LMM)system kinds has been proposed in the current work where some of these systems’key behaviors are addressed.In addition,the necessary and sufficient conditions for the stability and asymptotic stability of the fractional dynamic systems are investigated,as a result of which,the necessary requirements of the LMM to achieve constant and asymptotically steady zero resolutions are provided.As a special case,when Layla and Majnun have equal feelings,we propose an analysis of the system in view of its equilibrium and fixed point sets.Considering that the system has marginal stability if its eigenvalues have both negative and zero real portions,it is demonstrated that the system neither converges nor diverges to a steady trajectory or equilibrium point.It,rather,continues to hover along the line separating stability and instability based on the fractional LMM system.展开更多
Xin'ao Co.,Ltd.(603889),Iocated in Jiaxing City,Zhejiang Province,is a wellestablished enterprise in the wool textile industry.It focuses on the entire wool textile supply chain,integrating wool procurement,wool t...Xin'ao Co.,Ltd.(603889),Iocated in Jiaxing City,Zhejiang Province,is a wellestablished enterprise in the wool textile industry.It focuses on the entire wool textile supply chain,integrating wool procurement,wool top production,wool top modification,dyeing and finishing,and spinning,After more than thirty years of development,it has gradually formed a large-scale,market-oriented textile eco-system with Xin'ao Co.,Ltd. as the core,with its subsidia ries specializing in different production and sales functions.展开更多
In 2004 and 2014,two monographs on hypobaric storage(LP)were published by Stanley P.Burg.Based on his theoretical framework and technological advancements,as well as the research and development of equipment conducted...In 2004 and 2014,two monographs on hypobaric storage(LP)were published by Stanley P.Burg.Based on his theoretical framework and technological advancements,as well as the research and development of equipment conducted under his guidance,alongside customer practices and reflections on various scientific literature both domestically and internationally,it is posited that,as articulated in the monograph,misconceptions regarding his theory and technology in Western scientific literature prior to 1985 continue to persist.This ongoing dissemination of misunderstandings has resulted in a near stagnation of research and has adversely impacted the Chinese academic community as well.Consequently,it is essential to delineate the characteristics and main points of its theory and technology,with the aim of offering guidance to individuals seeking to comprehend its foundational purpose.LP technology is a dynamic physical technology that continuously and uninterruptedly extracts air from a closed container and simultaneously introduces fresh,low-pressure moist air from the external environment,while maintaining specific levels of humidity and/or temperature within the container and upholding a predetermined pressure value.Preservation technology is the collective term for the set of various technical parameters associated with preservation,including pressure,relative humidity,and other relevant factors,to which LP equipment is specifically designed.The theory of LP is characterized by the enhanced diffusion of gases and vapors that enter and exit the commodity in a dynamic manner under low pressure conditions.The theoretical points involve equipment performance,low pressure,the impact of trace concentrations of gases such as O_(2),CO_(2) and C_(2)H_(4) that naturally occur at low pressure,diffusive mass transfer,heat transfer,and impacts on the activity of enzymes associated with maturation and senescence.The technology is characterized by dynamic low pressure,and the range of commodities preserved is comparable to that of refrigeration.However,certain commodities exiting the hypobaric environment possess subsequent preservation advantages that are not available through refrigeration.The main points of the technology encompass an extended sotrage life,a postponement of quality degradation,minimized water loss,the suppression of pathogen growth,and the killing of both internal and external insects of the commodity under dynamic low pressure conditions.The core advantage of LP technology lies in its ability to significantly reduce water loss,inhibit respiration and C_(2)H_(4) action,and pathogen growth,killing insects and modulate the activity of enzymes associated with maturation and senescence in post-harvest fresh horticultural products.Consequently,this technology plays a crucial role in prolonging the post-harvest lifespan of these commodities and mitigating quality degradation.Over the past decade,researchers in China have developed a hypobaric short period treatment technology,grounded in LP theory and technical practice,which is commonly referred to as hypobaric treatment.This method has garnered significant attention,leading to an increase in both domestic and international research.A growing body of literature categorizes LP as hypobaric treatment,while some studies also consider vacuum packaging and modified atmosphere packaging(MAP)as LP or hypobaric treatment.Misunderstandings are exacerbated by confusion surrounding nomenclature,which,in conjunction with pre-existing misconceptions,represents a significant barrier to both the research and practical application of the technology.The successful commercial implementation of a vacuum cold fresh chain,centered on LP or hypobaric treatment technology,may be the sole solution to the prevailing misunderstandings associated with LP.展开更多
To improve the accuracy of indoor localization methods with channel state information(CSI)images,a localization method that used CSI images from selected multiple access points(APs)was proposed.The method had an off-l...To improve the accuracy of indoor localization methods with channel state information(CSI)images,a localization method that used CSI images from selected multiple access points(APs)was proposed.The method had an off-line phase and an on-line phase.In the off-line phase,three APs were selected from the four APs in the localization area based on the received signal strength indication(RSSI).Next,CSI data was collected from the three selected APs using a commercial Intel 5300 network interface card.A single-channel subimage was constructed for each selected AP by combining the amplitude information from different antennas and the phase difference information between neighboring antennas.These sub-images were then merged to form a three-channel RGB image,which was subsequently fed into the convolutional neural network(CNN)for training.The CNN model was saved upon completion of training.In the on-line phase,the CSI data from the target device was collected,converted into images using the same process as in the off-line phase,and fed into the well-trained CNN model.Finally,the real position of the target device was estimated using a weighted centroid algorithm based on the model’s output probabilities.The proposed method was validated in indoor environments using two datasets,achieving good localization accuracy.展开更多
基金supported by the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021A04013)the National Natural Science Foundation of China(82204610)+1 种基金the Qihang Talent Program(L2022046)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-041 and L2021029).
文摘Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.
文摘This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 3:Mouse.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.
文摘This paper introduces part of the content in the association standard,T/CAAM0002–2020 Nomenclature and Location of Acupuncture Points for Laboratory Animals Part 2:Rat.This standard was released by the China Association of Acupuncture and Moxibustion on May 15,2020,implemented on October 31,2020,and published by Standards Press of China.The standard was drafted by the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences,and the Nanjing University of Chinese Medicine.Principal draftsmen:Xiang-hong JING and Xing-bang HUA.Participating draftsmen:Wan-Zhu BAI,Bin XU,Dong-sheng XU,Yi GUO,Tie-ming MA,Xin-jun WANG,and Sheng-feng LU.
基金supported by the European Union as a mobility grant
文摘Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interannual differences in water availability are affecting π_(tlp) as a static trait.I monitored the seasonal variation of π_(tlp) during a drought year starting in early spring with juvenile leaves and assessed the interannual variation in π_(tlp) of fully matured leaves among years with diverting water availability for three temperate broad-leaved tree species.The largest seasonal changes in π_(tlp) occurred during leaf unfolding until leaves were fully developed and matured.After leaves matured,no significant changes occurred for the rest of the vegetation period.Interannual variation that could be related to water availability was only present in one of the three tree species.The results suggest that the investigated species have a rapid period of osmotic adjustment early in the growing season followed by a period of relative stability,when π_(tlp) can be considered as a static trait.
基金supported by the program for National Natural Science Foundation of China (Nos. 52174173, 52274188, and 52104190)the Joint Funds of the National Natural Science Foundation of China (No. U24A2091)+1 种基金The Natural Science Foundation of Henan Polytechnic University (No. B2021-2)Double FirstClass Initiative of Safety and Energy Engineering (Henan Polytechnic University) (Nos. AQ20240703 and AQ20230304)。
文摘Under submerged conditions, compared with traditional self-excited oscillating pulsed waterjets(SOPWs), annular fluid-enhanced self-excited oscillating pulsed waterjets(AFESOPWs) exhibit a higher surge pressure through self-priming. However, their pressure frequency and cavitation characteristics remain unclear, resulting in an inability to fully utilize resonance and cavitation erosion to break coal and rock. In this study, high-frequency pressure testing, high-speed photography, and large eddy simulation(LES) are used to investigate the distribution of the pressure frequency band, evolution law of the cavitation cloud, and its regulation mechanism of a continuous waterjet, SOPW, and AFESOPW. The results indicated that the excitation of the plunger pump, shearing layer vortex, and bubble collapse corresponded to the three high-amplitude frequency bands of the waterjet pressure. AFESOPWs have an additional self-priming frequency that can produce a larger amplitude under a synergistic effect with the second high-amplitude frequency band. A better cavitation effect was produced after self-priming the annulus fluid, and the shedding frequency of the cavitation clouds of the three types of waterjets was linearly related to the cavitation number. The peak pressure of the waterjet and cavitation erosion effect can be improved by modulating the waterjet pressure oscillation frequency and cavitation shedding frequency.
基金supported in part by the National Natural Science Foundation of China(Grant No.12432001)Natural Science Foundation of Hunan Province(Grant Nos.2023JJ60527,2023JJ30152,and 2023JJ30259)the Natural Science Foundation of Changsha(KQ2202133).
文摘This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.
文摘Objectives: This study aimed to evaluate the prolonged therapeutic effects of a 35 kDa molecular weight hyaluronan fragment (HA35) in alleviating pain associated with myofascial pain syndrome (MPS). Hyaluronan interacts with various receptors in the human body, including CD44, LYVE-1, RHAMM, and TLR2, and is well-known for its analgesic effects when used in intra-articular or ultrasound-guided nerve trunk injections. Studies have shown that hyaluronidase cleaves high molecular weight HA to generate HA35, a low molecular weight fragment with enhanced tissue permeability, capable of binding to HA receptors on cell surfaces to produce broad-spectrum analgesic effects. Methods: Ten patients diagnosed with MPS were treated and assessed in this study. HA35 was administered through injection at a dosage of 100 mg daily for 15 days. Patients evaluated their MPS, overall pain levels, and treatment satisfaction using the Numerical Pain Rating Scale (NPRS), the Global Pain Scale (GPS), and the Treatment Satisfaction Questionnaire for Medication (TSQM 1.4). Follow-up evaluations were performed three months post-treatment to assess the duration of therapeutic effects. Results: Significant improvements were observed in NPRS, GPS, and TSQM scores both during and after the treatment period (P Conclusions: HA35 provides effective and sustained relief from pain associated with MPS, demonstrating a prolonged therapeutic benefit.
文摘The advancement of imaging resolution has made the impact of multi-frequency composite jitter in satellite platforms on non-collinear time delay and integration(TDI)charge-coupled device(CCD)imaging systems increasingly critical.Moreover,the accuracy of jitter detection is constrained by the limited inter-chip overlap region inherent to non-collinear TDI CCDs.To address these challenges,a multi-frequency jitter detection method is proposed,achieving sub-pixel level error extraction.Furthermore,a multi-frequency jitter fitting approach utilizing a scale-adjustable sliding window is introduced.For composite multi-frequency jitter,spectral analysis decomposes the relative jitter error curve,while the scale-adjustable sliding window enables frequency-division fitting and modeling.Validation experiments using Gaofen-8(GF-8)remote sensing satellite imagery detected jitter at 0.65,20,and 100 Hz in the cross-track direction and at 0.5,100,and 120 Hz in the along-track direction,demonstrating the method’s precision in detecting platform jitter at sub-pixel accuracy(<0.2 pixels)and its efficacy in fitting and modeling for non-collinear TDI CCD imaging systems subject to multi-frequency jitter.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFB1313800)the National Science Foundation of China(Grant No.NSFC62373259)+1 种基金the Natural Science Foundation of Top Talent of SZTU(Grant No.GDRC202303)the Education Promotion Foundation of Guangdong Province(Grant No.2022ZDJS115).
文摘The success of robot-assisted pelvic fracture reduction surgery heavily relies on the accuracy of 3D/3D feature-based registration.This process involves extracting anatomical feature points from pre-operative 3D images which can be challenging because of the complex and variable structure of the pelvis.PointMLP_RegNet,a modified PointMLP,was introduced to address this issue.It retains the feature extraction module of PointMLP but replaces the classification layer with a regression layer to predict the coordinates of feature points instead of conducting regular classification.A flowchart for an automatic feature points extraction method was presented,and a series of experiments was conducted on a clinical pelvic dataset to confirm the accuracy and effectiveness of the method.PointMLP_RegNet extracted feature points more accurately,with 8 out of 10 points showing less than 4 mm errors and the remaining two less than 5 mm.Compared to PointNettt and PointNet,it exhibited higher accuracy,robustness and space efficiency.The proposed method will improve the accuracy of anatomical feature points extraction,enhance intra-operative registration precision and facilitate the widespread clinical application of robot-assisted pelvic fracture reduction.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 11775019 and 11875086)。
文摘In this paper, we investigate the effect of exceptional points(EPs) on the violation of Leggett–Garg inequality(LGI) and no-signaling-in-time(NSIT) conditions and compare the different effects between the Hamiltonian EP(HEP) and Liouvillian EP(LEP) on those violations. We consider an open system consisting of two coupled qubits and each qubit is contacted with a thermal bath at a different temperature. In the case of omitting quantum jumps, we find that the system exhibits a second-order HEP, which separates the parameter space into an overdamped regime and an underdamped regime. In this situation, the LGI and NSIT conditions can be violated in both regimes and not violated at the HEP. In the case of without omitting quantum jumps, we find that the system exhibits a third-order LEP, which also separates the parameter space into an overdamped regime and an underdamped regime. In this situation, the LGI can only be violated in the underdamped regime with large coupling strength between the qubits.Conversely, the NSIT conditions can be violated in both regimes, as well as at the LEP, except in the overdamped regime with small coupling strength between the qubits. Comparing the violations of the LGI and NSIT conditions with HEP and LEP, we find that the quantum jumps would reduce the generation of coherence, enhance the decoherence, and lead to narrower parameter regimes that the LGI and NSIT conditions can be violated. Furthermore, in both cases,the NSIT conditions can be violated in a wider parameter regime than the LGI.
基金the support of the National Natural Science Foundation of China(Grant Nos.51606158,11604311 and 12074151)the Guangxi Science and Technology Base and Talent Special Project(Grant No.AD21075009)+2 种基金the Sichuan Science and Technology Program(Grant No.2021JDRC0022)the Open Fund of the Key Laboratory for Metallurgical Equipment and Control Technology of Ministry of Education in Wuhan University of Science and Technology,People's Republic of China(Grant Nos.MECOF2022B01 and MECOF2023B04)the Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(Grant No.DH202321)。
文摘In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system composed of a substrate and three film layers.The thermal stress distribution inside the structure was calculated by the finite element method,revealing significant thermal stress differences between the layers.This is mainly due to the mismatch of the coefficient of thermal expansion between materials.Different materials respond differently to changes in external temperature,leading to compression between layers.There are obvious thermal stress concentration points at the corners of the base layer and the transition layer,which is due to the sudden change of the shape at the geometric section of the structure,resulting in a sudden increase in local stress.To address this issue,we chamfered the substrate and added an intermediate layer between the substrate and the transition layer to assess whether these modifications could reduce or eliminate the thermal stress concentration points and extend the service life of the multilayer structure.The results indicate that chamfering and adding the intermediate layer effectively reduce stress discontinuities and mitigate thermal stress concentration points,thereby improving interlayer bonding strength.
文摘Dysphagia caused by true bulbar paralysis after stroke is a common and serious complication that severely affects patients’eating ability and quality of life,and significantly increases the risk of complications such as pneumonia and malnutrition.Electroacupuncture at swallowing points stimulates Swallowing 1 and Swallowing 2 acupoints,acting on key areas such as the glossopharyngeal nerve and vagus nerve,stimulating the reconstruction of nerve reflex arcs and the recovery of swallowing function.Therefore,this article analyzes the mechanism and clinical efficacy of electroacupuncture at swallowing points for the treatment of dysphagia caused by true bulbar paralysis after stroke,aiming to provide theoretical support and practical basis for clinical application.
基金partially funded by the National Natural Science Foundation of China(62273215)。
文摘Integrated continuous stirred-tank reactors and distillation columns with recycle(CSTR-DC-recycle)are essential components in chemical processes.This paper proposes a method to establish a normal operating zone(NOZ)model to represent allowable variations of the CSTR-DC-recycle chemical processes.The NOZ is a geometric space containing all safe operating points of the CSTR-DC-recycle chemical processes,so that it is an effective model for process monitoring.The novelty of the proposed method is to establish the NOZ model based on boundary points.The boundary points make it possible to capture the actual geometric space irrespective of the space shape.In contrast,existing methods represent the NOZ of processes by fixed mathematical models such as ellipsoidal and convex-hull models;they are not suitable for the CSTR-DC-recycle chemical processes whose NOZs cannot be exactly defined by fixed mathematical structures.Simulated case studies based on Aspen Hysys software are given to illustrate the proposed method.
基金supported by Ajman University Internal Research Grant No.(DRGS Ref.2024-IRGHBS-3).
文摘Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Numerical approaches have become necessary and sufficient to be addressed and employed for benefiting from the adaptability of such systems for varied applications.A variety of fractional Layla and Majnun model(LMM)system kinds has been proposed in the current work where some of these systems’key behaviors are addressed.In addition,the necessary and sufficient conditions for the stability and asymptotic stability of the fractional dynamic systems are investigated,as a result of which,the necessary requirements of the LMM to achieve constant and asymptotically steady zero resolutions are provided.As a special case,when Layla and Majnun have equal feelings,we propose an analysis of the system in view of its equilibrium and fixed point sets.Considering that the system has marginal stability if its eigenvalues have both negative and zero real portions,it is demonstrated that the system neither converges nor diverges to a steady trajectory or equilibrium point.It,rather,continues to hover along the line separating stability and instability based on the fractional LMM system.
文摘Xin'ao Co.,Ltd.(603889),Iocated in Jiaxing City,Zhejiang Province,is a wellestablished enterprise in the wool textile industry.It focuses on the entire wool textile supply chain,integrating wool procurement,wool top production,wool top modification,dyeing and finishing,and spinning,After more than thirty years of development,it has gradually formed a large-scale,market-oriented textile eco-system with Xin'ao Co.,Ltd. as the core,with its subsidia ries specializing in different production and sales functions.
文摘In 2004 and 2014,two monographs on hypobaric storage(LP)were published by Stanley P.Burg.Based on his theoretical framework and technological advancements,as well as the research and development of equipment conducted under his guidance,alongside customer practices and reflections on various scientific literature both domestically and internationally,it is posited that,as articulated in the monograph,misconceptions regarding his theory and technology in Western scientific literature prior to 1985 continue to persist.This ongoing dissemination of misunderstandings has resulted in a near stagnation of research and has adversely impacted the Chinese academic community as well.Consequently,it is essential to delineate the characteristics and main points of its theory and technology,with the aim of offering guidance to individuals seeking to comprehend its foundational purpose.LP technology is a dynamic physical technology that continuously and uninterruptedly extracts air from a closed container and simultaneously introduces fresh,low-pressure moist air from the external environment,while maintaining specific levels of humidity and/or temperature within the container and upholding a predetermined pressure value.Preservation technology is the collective term for the set of various technical parameters associated with preservation,including pressure,relative humidity,and other relevant factors,to which LP equipment is specifically designed.The theory of LP is characterized by the enhanced diffusion of gases and vapors that enter and exit the commodity in a dynamic manner under low pressure conditions.The theoretical points involve equipment performance,low pressure,the impact of trace concentrations of gases such as O_(2),CO_(2) and C_(2)H_(4) that naturally occur at low pressure,diffusive mass transfer,heat transfer,and impacts on the activity of enzymes associated with maturation and senescence.The technology is characterized by dynamic low pressure,and the range of commodities preserved is comparable to that of refrigeration.However,certain commodities exiting the hypobaric environment possess subsequent preservation advantages that are not available through refrigeration.The main points of the technology encompass an extended sotrage life,a postponement of quality degradation,minimized water loss,the suppression of pathogen growth,and the killing of both internal and external insects of the commodity under dynamic low pressure conditions.The core advantage of LP technology lies in its ability to significantly reduce water loss,inhibit respiration and C_(2)H_(4) action,and pathogen growth,killing insects and modulate the activity of enzymes associated with maturation and senescence in post-harvest fresh horticultural products.Consequently,this technology plays a crucial role in prolonging the post-harvest lifespan of these commodities and mitigating quality degradation.Over the past decade,researchers in China have developed a hypobaric short period treatment technology,grounded in LP theory and technical practice,which is commonly referred to as hypobaric treatment.This method has garnered significant attention,leading to an increase in both domestic and international research.A growing body of literature categorizes LP as hypobaric treatment,while some studies also consider vacuum packaging and modified atmosphere packaging(MAP)as LP or hypobaric treatment.Misunderstandings are exacerbated by confusion surrounding nomenclature,which,in conjunction with pre-existing misconceptions,represents a significant barrier to both the research and practical application of the technology.The successful commercial implementation of a vacuum cold fresh chain,centered on LP or hypobaric treatment technology,may be the sole solution to the prevailing misunderstandings associated with LP.
基金supported by Lanzhou Science and Technology Plan Project(No.2023-3-104)Gansu Province Higher Education Industry Support Plan Project(No.2023CYZC-40)Gansu Province Excellent Graduate“Innovation Star”Program(No.2023CXZX-546)。
文摘To improve the accuracy of indoor localization methods with channel state information(CSI)images,a localization method that used CSI images from selected multiple access points(APs)was proposed.The method had an off-line phase and an on-line phase.In the off-line phase,three APs were selected from the four APs in the localization area based on the received signal strength indication(RSSI).Next,CSI data was collected from the three selected APs using a commercial Intel 5300 network interface card.A single-channel subimage was constructed for each selected AP by combining the amplitude information from different antennas and the phase difference information between neighboring antennas.These sub-images were then merged to form a three-channel RGB image,which was subsequently fed into the convolutional neural network(CNN)for training.The CNN model was saved upon completion of training.In the on-line phase,the CSI data from the target device was collected,converted into images using the same process as in the off-line phase,and fed into the well-trained CNN model.Finally,the real position of the target device was estimated using a weighted centroid algorithm based on the model’s output probabilities.The proposed method was validated in indoor environments using two datasets,achieving good localization accuracy.