期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Improved multi-scale inverse bottleneck residual network based on triplet parallel attention for apple leaf disease identification 被引量:2
1
作者 Lei Tang Jizheng Yi Xiaoyao Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期901-922,共22页
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima... Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods. 展开更多
关键词 multi-scale module inverse bottleneck structure triplet parallel attention apple leaf disease
在线阅读 下载PDF
Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis 被引量:1
2
作者 Yin Liang Gaoxu Xu Sadaqat ur Rehman 《Computers, Materials & Continua》 SCIE EI 2022年第9期4645-4661,共17页
Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD)... Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks. 展开更多
关键词 Autism spectrum disorder diagnosis resting-state fMRI deep neural network functional connectivity multi-scale attention module
在线阅读 下载PDF
Real-time detection network for tiny traffic sign using multi-scale attention module 被引量:16
3
作者 YANG TingTing TONG Chao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第2期396-406,共11页
As one of the key technologies of intelligent vehicles, traffic sign detection is still a challenging task because of the tiny size of its target object. To address the challenge, we present a novel detection network ... As one of the key technologies of intelligent vehicles, traffic sign detection is still a challenging task because of the tiny size of its target object. To address the challenge, we present a novel detection network improved from yolo-v3 for the tiny traffic sign with high precision in real-time. First, a visual multi-scale attention module(MSAM), a light-weight yet effective module, is devised to fuse the multi-scale feature maps with channel weights and spatial masks. It increases the representation power of the network by emphasizing useful features and suppressing unnecessary ones. Second, we exploit effectively fine-grained features about tiny objects from the shallower layers through modifying backbone Darknet-53 and adding one prediction head to yolo-v3. Finally, a receptive field block is added into the neck of the network to broaden the receptive field. Experiments prove the effectiveness of our network in both quantitative and qualitative aspects. The m AP@0.5 of our network reaches 0.965 and its detection speed is55.56 FPS for 512 × 512 images on the challenging Tsinghua-Tencent 100 k(TT100 k) dataset. 展开更多
关键词 tiny object detection traffic sign detection multi-scale attention module REAL-TIME
原文传递
Disease Recognition of Apple Leaf Using Lightweight Multi-Scale Network with ECANet 被引量:4
4
作者 Helong Yu Xianhe Cheng +2 位作者 Ziqing Li Qi Cai Chunguang Bi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期711-738,共28页
To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease rec... To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices. 展开更多
关键词 Apple disease recognition deep residual network multi-scale feature efficient channel attention module lightweight network
在线阅读 下载PDF
An improved multiscale fusion dense network with efficient multiscale attention mechanism for apple leaf disease identification 被引量:1
5
作者 Dandan DAI Hui LIU 《Frontiers of Agricultural Science and Engineering》 2025年第2期173-189,共17页
With the development of smart agriculture,accurately identifying crop diseases through visual recognition techniques instead of by eye has been a significant challenge.This study focused on apple leaf disease,which is... With the development of smart agriculture,accurately identifying crop diseases through visual recognition techniques instead of by eye has been a significant challenge.This study focused on apple leaf disease,which is closely related to the final yield of apples.A multiscale fusion dense network combined with an efficient multiscale attention(EMA)mechanism called Incept_EMA_DenseNet was developed to better identify eight complex apple leaf disease images.Incept_EMA_DenseNet consists of three crucial parts:the inception module,which substituted the convolution layer with multiscale fusion methods in the shallow feature extraction layer;the EMA mechanism,which is used for obtaining appropriate weights of different dense blocks;and the improved DenseNet based on DenseNet_121.Specifically,to find appropriate multiscale fusion methods,the residual module and inception module were compared to determine the performance of each technique,and Incept_EMA_DenseNet achieved an accuracy of 95.38%.Second,this work used three attention mechanisms,and the efficient multiscale attention mechanism obtained the best performance.Third,the convolution layers and bottlenecks were modified without performance degradation,reducing half of the computational load compared with the original models.Incept_EMA_DenseNet,as proposed in this paper,has an accuracy of 96.76%,being 2.93%,3.44%,and 4.16%better than Resnet50,DenseNet_121 and GoogLeNet,respectively,proved to be reliable and beneficial,and can effectively and conveniently assist apple growers with leaf disease identification in the field. 展开更多
关键词 Incept_EMA_DenseNet multi-scale fusion module efficient multiscale attention mechanism apple leaf disease identification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部