For intelligent transportation surveillance, a novel background model based on Mart wavelet kernel and a background subtraction technique based on binary discrete wavelet transforms were introduced. The background mod...For intelligent transportation surveillance, a novel background model based on Mart wavelet kernel and a background subtraction technique based on binary discrete wavelet transforms were introduced. The background model kept a sample of intensity values for each pixel in the image and used this sample to estimate the probability density function of the pixel intensity. The density function was estimated using a new Marr wavelet kernel density estimation technique. Since this approach was quite general, the model could approximate any distribution for the pixel intensity without any assumptions about the underlying distribution shape. The background and current frame were transformed in the binary discrete wavelet domain, and background subtraction was performed in each sub-band. After obtaining the foreground, shadow was eliminated by an edge detection method. Experimental results show that the proposed method produces good results with much lower computational complexity and effectively extracts the moving objects with accuracy ratio higher than 90%, indicating that the proposed method is an effective algorithm for intelligent transportation system.展开更多
A new real-time algorithm is proposed in this paperfor detecting moving object in color image sequencestaken from stationary cameras.This algorithm combines a temporal difference with an adaptive background subtractio...A new real-time algorithm is proposed in this paperfor detecting moving object in color image sequencestaken from stationary cameras.This algorithm combines a temporal difference with an adaptive background subtraction where the combination is novel.Ⅷ1en changes OCCUr.the background is automatically adapted to suit the new conditions.Forthe background model,a new model is proposed with each frame decomposed into regions and the model is based not only upon single pixel but also on the characteristic of a region.The hybrid presentationincludes a model for single pixel information and a model for the pixel’s neighboring area information.This new model of background can both improve the accuracy of segmentation due to that spatialinformation is taken into account and salientl5r speed up the processing procedure because porlion of neighboring pixel call be selected into modeling.The algorithm was successfully used in a video surveillance systern and the experiment result showsit call obtain a clearer foreground than the singleframe difference or background subtraction method.展开更多
To extract and tr ack moving objects is usually one of the most important tasks of intelligent video surveillance systems. This paper presents a fast and adaptive background subtraction alg...To extract and tr ack moving objects is usually one of the most important tasks of intelligent video surveillance systems. This paper presents a fast and adaptive background subtraction algorithm and the motion tracking process using this algorithm. The algorithm uses only luminance components of sampled image sequence pixels and models every pixel in a statistical model. The algorithm is characterized by its ability of real time detecting sudden lighting changes, and extracting and tracking motion objects faster. It is shown that our algorithm can be realized with lower time and space complexity and adjustable object detection error rate with comparison to other background subtraction algorithms. Making use of the algorithm, an indoor monitoring system is also worked out and the motion tracking process is presented in this paper. Experimental results testify the algorithm's good performances when used in an indoor monitoring system.展开更多
Background subtraction is a challenging problem in surveillance scenes. Although the low-rank and sparse decomposition(LRSD) methods offer an appropriate framework for background modeling, they fail to account for ima...Background subtraction is a challenging problem in surveillance scenes. Although the low-rank and sparse decomposition(LRSD) methods offer an appropriate framework for background modeling, they fail to account for image's local structure, which is favorable for this problem. Based on this, we propose a background subtraction method via low-rank and SILTP-based structured sparse decomposition, named LRSSD. In this method, a novel SILTP-inducing sparsity norm is introduced to enhance the structured presentation of the foreground region. As an assistance, saliency detection is employed to render a rough shape and location of foreground. The final refined foreground is decided jointly by sparse component and attention map. Experimental results on different datasets show its superiority over the competing methods, especially under noise and changing illumination scenarios.展开更多
The experimental data of 100 A MeV12C +12C elastic scattering are checked by using two-body kinematic calculation and12 C + p elastic scattering. It is shown that the measured data are true and reliable. In the paper,...The experimental data of 100 A MeV12C +12C elastic scattering are checked by using two-body kinematic calculation and12 C + p elastic scattering. It is shown that the measured data are true and reliable. In the paper,the transformation between the excited energy spectra of the12 C +12C system and the ground state energy spectra of the12 C + p system is introduced. The method of subtraction of the hydrogen background in the natural carbon target used in the experiment is elaborately described and the results are discussed. It is indicated that this method of subtraction of hydrogen background is reasonable and can be used in the data analysis. Based on the elastic scattering cross section of the previous experiment of12C+p at 95.3A MeV, the hydrogen content entered into the reaction is analyzed. The final hydrogen content in the natural carbon target is(2.73 ± 0.12)%.展开更多
A real-time tracking system for the fast moving object on the complex background is proposed.The Markov random filed(MRF)model based background subtraction algorithm is used to detect the changing pixels and track t...A real-time tracking system for the fast moving object on the complex background is proposed.The Markov random filed(MRF)model based background subtraction algorithm is used to detect the changing pixels and track the moving object.The prior probability of the segmentation mask is modeled by using MRF,and the object tracking task is translated into the maximum a-posterior(MAP)problem.Experimental results show that the method is efficient at both offline and online moving objects on simple and complex background.展开更多
A novel diversity-sampling based nonparametric multi-modal background model is proposed. Using the samples having more popular and various intensity values in the training sequence, a nonparametric model is built for ...A novel diversity-sampling based nonparametric multi-modal background model is proposed. Using the samples having more popular and various intensity values in the training sequence, a nonparametric model is built for background subtraction. According to the related intensifies, different weights are given to the distinct samples in kernel density estimation. This avoids repeated computation using all samples, and makes computation more efficient in the evaluation phase. Experimental results show the validity of the diversity- sampling scheme and robustness of the proposed model in moving objects segmentation. The proposed algorithm can be used in outdoor surveillance systems.展开更多
Segmentation of moving objects efficiently from video sequence is very important for many applications. Background subtraction is a common method typically used to segment moving objects in image sequences taken from ...Segmentation of moving objects efficiently from video sequence is very important for many applications. Background subtraction is a common method typically used to segment moving objects in image sequences taken from a statistic camera. Some existing algorithms cannot adapt to changing circumstances and require manual calibration in terms of specification of parameters or some hypotheses for changing background. An adaptive motion segmentation method is developed according to motion variation and chromatic characteristics, which prevents undesired corruption of the background model and does not consider the adaptation coefficient. RGB color space is selected instead of introducing complex color models to segment moving objects and suppress shadows. A color ratio for 4-connected neighbors of a pixel and multi-scale wavelet transformation are combined to suppress shadows. The mentioned approach is scene-independent and high correct segmentation. It has been shown that the approach is robust and efficient to detect moving objects by experiments.展开更多
Target detection is the fundamental work for perceiving the behavior of cows using video analysis automatically.The videos captured in farming scenes often suffer from a complex background,which leads to difficulty in...Target detection is the fundamental work for perceiving the behavior of cows using video analysis automatically.The videos captured in farming scenes often suffer from a complex background,which leads to difficulty in detecting the target and inconvenience in the subsequent images analysis.In this study,a method was proposed to detect the moving target accurately for cows based on background subtraction.Firstly,the bounding rectangle of cows was calculated using the frames difference method to extract the local background in frames,which were averaged and spliced into one image as the entire background image.Secondly,the size and location of a cow’s body were determined by the bounding rectangle of cows,and the body area was tracked through the video by the binary images.Thirdly,the summation coefficients on RGB channels were adjusted to improve the contrast between the target and background images.Finally,taking the body area in every frame as reference area,the performance of target detection was evaluated by the reference area to determine the optimal summation coefficients on RGB channels,and then background subtraction was processed again to finish the detection.A total of 129 videos were used to test the detection algorithm,and the accuracy of the algorithm was 88.34%,which was 24.85%higher than the classical background subtraction method.The study shows that the algorithm proposed in this study is feasible to detect the target accurately and timely when cows are walking straight in the farming environment under natural light,and this method can improve the detection performance and is an extension to the classical background subtraction method.展开更多
Objective:Lanqin oral liquid(LOL),as a traditional Chinese medicine prescription,has obvious clinical efficacy in the treatment of pharyngeal inflammation.Exploring the distribution of LOL prototype components and met...Objective:Lanqin oral liquid(LOL),as a traditional Chinese medicine prescription,has obvious clinical efficacy in the treatment of pharyngeal inflammation.Exploring the distribution of LOL prototype components and metabolites in plasma is of great significance for understanding potentially effective compounds.The aim of this study is to elucidate the metabolites and main metabolic pathways of LQL in vivo.Methods:In this study,a reliable approach integrated background subtraction and mass defect filtering(MDF),based on quadrupole time-of-flight mass spectrometry(QTOF-MS)technology,was performed to systematically scan the metabolites of LOL in rat plasma.In addition,according to the prototype mass spectrometry fragmentation pattern and combined with metabolic pathway analysis,a biotransformation oriented analysis strategy was established and applied to the identification of metabolites in LOL in vivo.Results:As a result,159 compounds(58 prototypes and 101 metabolites)were identified or tentatively characterized in drug-containing plasma,including 74 flavonoids,30 alkaloids,34 terpenoids,five phenylpropanoids,six phenolic acids,five fatty acids,and five other type components.The main metabolic pathways include methylation,demethylation,hydroxylation,hydrogenation,glucuronidation,and sulfation.Conclusions:This study provides an overall characterization of the metabolites of LOL in vivo for the first time,providing a solid material basis for exploring the therapeutic effects and pharmacological mechanisms of LOL.展开更多
Advancements in animal behavior quantification methods have driven the development of computational ethology,enabling fully automated behavior analysis.Existing multianimal pose estimation workflows rely on tracking-b...Advancements in animal behavior quantification methods have driven the development of computational ethology,enabling fully automated behavior analysis.Existing multianimal pose estimation workflows rely on tracking-bydetection frameworks for either bottom-up or top-down approaches,requiring retraining to accommodate diverse animal appearances.This study introduces InteBOMB,an integrated workflow that enhances top-down approaches by incorporating generic object tracking,eliminating the need for prior knowledge of target animals while maintaining broad generalizability.InteBOMB includes two key strategies for tracking and segmentation in laboratory environments and two techniques for pose estimation in natural settings.The“background enhancement”strategy optimizesforeground-backgroundcontrastiveloss,generating more discriminative correlation maps.The“online proofreading”strategy stores human-in-the-loop long-term memory and dynamic short-term memory,enabling adaptive updates to object visual features.The“automated labeling suggestion”technique reuses the visual features saved during tracking to identify representative frames for training set labeling.Additionally,the“joint behavior analysis”technique integrates these features with multimodal data,expanding the latent space for behavior classification and clustering.To evaluate the framework,six datasets of mice and six datasets of nonhuman primates were compiled,covering laboratory and natural scenes.Benchmarking results demonstrated a24%improvement in zero-shot generic tracking and a 21%enhancement in joint latent space performance across datasets,highlighting the effectiveness of this approach in robust,generalizable behavior analysis.展开更多
Due to the tremendous volume of data generated by urban surveillance systems, big data oriented lowcomplexity automatic background subtraction techniques are in great demand. In this paper, we propose a novel automati...Due to the tremendous volume of data generated by urban surveillance systems, big data oriented lowcomplexity automatic background subtraction techniques are in great demand. In this paper, we propose a novel automatic background subtraction algorithm for urban surveillance systems in which the computer can automatically renew an image as the new background image when no object is detected. This method is both simple and robust with respect to changes in light conditions.展开更多
基金Project(60772080) supported by the National Natural Science Foundation of ChinaProject(3240120) supported by Tianjin Subway Safety System, Honeywell Limited, China
文摘For intelligent transportation surveillance, a novel background model based on Mart wavelet kernel and a background subtraction technique based on binary discrete wavelet transforms were introduced. The background model kept a sample of intensity values for each pixel in the image and used this sample to estimate the probability density function of the pixel intensity. The density function was estimated using a new Marr wavelet kernel density estimation technique. Since this approach was quite general, the model could approximate any distribution for the pixel intensity without any assumptions about the underlying distribution shape. The background and current frame were transformed in the binary discrete wavelet domain, and background subtraction was performed in each sub-band. After obtaining the foreground, shadow was eliminated by an edge detection method. Experimental results show that the proposed method produces good results with much lower computational complexity and effectively extracts the moving objects with accuracy ratio higher than 90%, indicating that the proposed method is an effective algorithm for intelligent transportation system.
基金National Natural Science Foundation Grant No.60072029
文摘A new real-time algorithm is proposed in this paperfor detecting moving object in color image sequencestaken from stationary cameras.This algorithm combines a temporal difference with an adaptive background subtraction where the combination is novel.Ⅷ1en changes OCCUr.the background is automatically adapted to suit the new conditions.Forthe background model,a new model is proposed with each frame decomposed into regions and the model is based not only upon single pixel but also on the characteristic of a region.The hybrid presentationincludes a model for single pixel information and a model for the pixel’s neighboring area information.This new model of background can both improve the accuracy of segmentation due to that spatialinformation is taken into account and salientl5r speed up the processing procedure because porlion of neighboring pixel call be selected into modeling.The algorithm was successfully used in a video surveillance systern and the experiment result showsit call obtain a clearer foreground than the singleframe difference or background subtraction method.
文摘To extract and tr ack moving objects is usually one of the most important tasks of intelligent video surveillance systems. This paper presents a fast and adaptive background subtraction algorithm and the motion tracking process using this algorithm. The algorithm uses only luminance components of sampled image sequence pixels and models every pixel in a statistical model. The algorithm is characterized by its ability of real time detecting sudden lighting changes, and extracting and tracking motion objects faster. It is shown that our algorithm can be realized with lower time and space complexity and adjustable object detection error rate with comparison to other background subtraction algorithms. Making use of the algorithm, an indoor monitoring system is also worked out and the motion tracking process is presented in this paper. Experimental results testify the algorithm's good performances when used in an indoor monitoring system.
基金supported in part by the EU FP7 QUICK project under Grant Agreement No.PIRSES-GA-2013-612652*National Nature Science Foundation of China(No.61671336,61502348,61231015,61671332,U1736206)+3 种基金Hubei Province Technological Innovation Major Project(No.2016AAA015,No.2017AAA123)the Fundamental Research Funds for the Central Universities(413000048)National High Technology Research and Development Program of China(863 Program)No.2015AA016306Applied Basic Research Program of Wuhan City(2016010101010025)
文摘Background subtraction is a challenging problem in surveillance scenes. Although the low-rank and sparse decomposition(LRSD) methods offer an appropriate framework for background modeling, they fail to account for image's local structure, which is favorable for this problem. Based on this, we propose a background subtraction method via low-rank and SILTP-based structured sparse decomposition, named LRSSD. In this method, a novel SILTP-inducing sparsity norm is introduced to enhance the structured presentation of the foreground region. As an assistance, saliency detection is employed to render a rough shape and location of foreground. The final refined foreground is decided jointly by sparse component and attention map. Experimental results on different datasets show its superiority over the competing methods, especially under noise and changing illumination scenarios.
基金Supported by the Innovation Foundation of BUAA for PhD Graduates and National Natural Science Foundation of China(Nos.11035007,11235002 and 11175011)
文摘The experimental data of 100 A MeV12C +12C elastic scattering are checked by using two-body kinematic calculation and12 C + p elastic scattering. It is shown that the measured data are true and reliable. In the paper,the transformation between the excited energy spectra of the12 C +12C system and the ground state energy spectra of the12 C + p system is introduced. The method of subtraction of the hydrogen background in the natural carbon target used in the experiment is elaborately described and the results are discussed. It is indicated that this method of subtraction of hydrogen background is reasonable and can be used in the data analysis. Based on the elastic scattering cross section of the previous experiment of12C+p at 95.3A MeV, the hydrogen content entered into the reaction is analyzed. The final hydrogen content in the natural carbon target is(2.73 ± 0.12)%.
文摘A real-time tracking system for the fast moving object on the complex background is proposed.The Markov random filed(MRF)model based background subtraction algorithm is used to detect the changing pixels and track the moving object.The prior probability of the segmentation mask is modeled by using MRF,and the object tracking task is translated into the maximum a-posterior(MAP)problem.Experimental results show that the method is efficient at both offline and online moving objects on simple and complex background.
基金Project supported by National Basic Research Program of Chinaon Urban Traffic Monitoring and Management System(Grant No .TG1998030408)
文摘A novel diversity-sampling based nonparametric multi-modal background model is proposed. Using the samples having more popular and various intensity values in the training sequence, a nonparametric model is built for background subtraction. According to the related intensifies, different weights are given to the distinct samples in kernel density estimation. This avoids repeated computation using all samples, and makes computation more efficient in the evaluation phase. Experimental results show the validity of the diversity- sampling scheme and robustness of the proposed model in moving objects segmentation. The proposed algorithm can be used in outdoor surveillance systems.
文摘Segmentation of moving objects efficiently from video sequence is very important for many applications. Background subtraction is a common method typically used to segment moving objects in image sequences taken from a statistic camera. Some existing algorithms cannot adapt to changing circumstances and require manual calibration in terms of specification of parameters or some hypotheses for changing background. An adaptive motion segmentation method is developed according to motion variation and chromatic characteristics, which prevents undesired corruption of the background model and does not consider the adaptation coefficient. RGB color space is selected instead of introducing complex color models to segment moving objects and suppress shadows. A color ratio for 4-connected neighbors of a pixel and multi-scale wavelet transformation are combined to suppress shadows. The mentioned approach is scene-independent and high correct segmentation. It has been shown that the approach is robust and efficient to detect moving objects by experiments.
基金financially support ed by the general program from the National Natural Science Foundation of China under grant 61473235.
文摘Target detection is the fundamental work for perceiving the behavior of cows using video analysis automatically.The videos captured in farming scenes often suffer from a complex background,which leads to difficulty in detecting the target and inconvenience in the subsequent images analysis.In this study,a method was proposed to detect the moving target accurately for cows based on background subtraction.Firstly,the bounding rectangle of cows was calculated using the frames difference method to extract the local background in frames,which were averaged and spliced into one image as the entire background image.Secondly,the size and location of a cow’s body were determined by the bounding rectangle of cows,and the body area was tracked through the video by the binary images.Thirdly,the summation coefficients on RGB channels were adjusted to improve the contrast between the target and background images.Finally,taking the body area in every frame as reference area,the performance of target detection was evaluated by the reference area to determine the optimal summation coefficients on RGB channels,and then background subtraction was processed again to finish the detection.A total of 129 videos were used to test the detection algorithm,and the accuracy of the algorithm was 88.34%,which was 24.85%higher than the classical background subtraction method.The study shows that the algorithm proposed in this study is feasible to detect the target accurately and timely when cows are walking straight in the farming environment under natural light,and this method can improve the detection performance and is an extension to the classical background subtraction method.
文摘Objective:Lanqin oral liquid(LOL),as a traditional Chinese medicine prescription,has obvious clinical efficacy in the treatment of pharyngeal inflammation.Exploring the distribution of LOL prototype components and metabolites in plasma is of great significance for understanding potentially effective compounds.The aim of this study is to elucidate the metabolites and main metabolic pathways of LQL in vivo.Methods:In this study,a reliable approach integrated background subtraction and mass defect filtering(MDF),based on quadrupole time-of-flight mass spectrometry(QTOF-MS)technology,was performed to systematically scan the metabolites of LOL in rat plasma.In addition,according to the prototype mass spectrometry fragmentation pattern and combined with metabolic pathway analysis,a biotransformation oriented analysis strategy was established and applied to the identification of metabolites in LOL in vivo.Results:As a result,159 compounds(58 prototypes and 101 metabolites)were identified or tentatively characterized in drug-containing plasma,including 74 flavonoids,30 alkaloids,34 terpenoids,five phenylpropanoids,six phenolic acids,five fatty acids,and five other type components.The main metabolic pathways include methylation,demethylation,hydroxylation,hydrogenation,glucuronidation,and sulfation.Conclusions:This study provides an overall characterization of the metabolites of LOL in vivo for the first time,providing a solid material basis for exploring the therapeutic effects and pharmacological mechanisms of LOL.
基金supported by the STI 2030-Major Projects(2022ZD0211900,2022ZD0211902)STI 2030-Major Projects(2021ZD0204500,2021ZD0204503)+1 种基金National Natural Science Foundation of China(32171461)National Key Research and Development Program of China(2023YFC3208303)。
文摘Advancements in animal behavior quantification methods have driven the development of computational ethology,enabling fully automated behavior analysis.Existing multianimal pose estimation workflows rely on tracking-bydetection frameworks for either bottom-up or top-down approaches,requiring retraining to accommodate diverse animal appearances.This study introduces InteBOMB,an integrated workflow that enhances top-down approaches by incorporating generic object tracking,eliminating the need for prior knowledge of target animals while maintaining broad generalizability.InteBOMB includes two key strategies for tracking and segmentation in laboratory environments and two techniques for pose estimation in natural settings.The“background enhancement”strategy optimizesforeground-backgroundcontrastiveloss,generating more discriminative correlation maps.The“online proofreading”strategy stores human-in-the-loop long-term memory and dynamic short-term memory,enabling adaptive updates to object visual features.The“automated labeling suggestion”technique reuses the visual features saved during tracking to identify representative frames for training set labeling.Additionally,the“joint behavior analysis”technique integrates these features with multimodal data,expanding the latent space for behavior classification and clustering.To evaluate the framework,six datasets of mice and six datasets of nonhuman primates were compiled,covering laboratory and natural scenes.Benchmarking results demonstrated a24%improvement in zero-shot generic tracking and a 21%enhancement in joint latent space performance across datasets,highlighting the effectiveness of this approach in robust,generalizable behavior analysis.
基金supported by the projects under the grants Nos. 2016B050502001 and 2015A050502003
文摘Due to the tremendous volume of data generated by urban surveillance systems, big data oriented lowcomplexity automatic background subtraction techniques are in great demand. In this paper, we propose a novel automatic background subtraction algorithm for urban surveillance systems in which the computer can automatically renew an image as the new background image when no object is detected. This method is both simple and robust with respect to changes in light conditions.