In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (...In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences), Qian] and four LSMs (BATS, VIC, CLM3.0 and CLM3.5), to explore the trends and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over China's Mainland during 1982-2007. The results showed that various simulations of each member and their arithmetic mean (EnsAVlean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more significant spatial and seasonal variation in the ET compared with observation-based ET estimates (Obs_MTE). For the mean annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs_MTE for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the Ens_Mean was closer to Obs_MTE, although the results were underestimated over Southeast China. Furthermore, both the Obs_MTE and Ens_Mean exhibited a significant increasing trend during 1982-98; whereas after 1998, when the last big EI Nifio event occurred, the Ens_Mean tended to decrease significantly between 1999 and 2007, although the change was not significant for Obs_MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas of China.展开更多
Strengthening limonitic nickel laterite sintering and reducing CO_(2) emission were performed by the application of multiforce fields including external thermodynamic and pressure fields.Sinter pot tests of limonitic ...Strengthening limonitic nickel laterite sintering and reducing CO_(2) emission were performed by the application of multiforce fields including external thermodynamic and pressure fields.Sinter pot tests of limonitic nickel laterite were carried out,and the relevant industrial production was briefed.The chemistry and mineralogy of product sinter and the thermodynamic and kinetic conditions during sintering were analyzed to reveal the relevant mechanism.The results indicate that sintering performance of limonitic nickel laterite in the new sintering process with multi-force fields is significantly improved with tumble index and productivity increased by 24.11%and 18.56%,respectively,and solid fuel rate reduced by 23.21%,compared with those in traditional sintering process.In this case,greenhouse and pollutant gas emissions are greatly reduced,and metallurgical performances of product sinter are excellent.The industrial production has been successfully conducted,indicating a bright application prospect.Mechanism analysis shows that the great improvement of thermodynamic and kinetic conditions during sintering and the densification of loose sinter can be achieved via the application of multi-force fields.Sinter microstructure is transformed from large thin-wall pores to small thin-wall pores or medium thick-wall pores with the dramatic reduction of sinter porosity and more formation of silico-ferrite of calcium and alumina(SFCA).Meanwhile,the homogenization of mineral compositions is achieved,and much denser interlocking texture between hercynite and SFCA is formed.The application of multi-force fields contributes to the substantial improvement of sintering performance of limonitic nickel laterite and CO_(2) emission reduction.展开更多
The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model ph...The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.4140508391437220 and 41305066)+1 种基金the Natural Science Foundation of Hunan Province(Grant No.2015JJ3098)the Fund Project for The Education Department of Hunan Province(Grant No.14C0897)
文摘In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences), Qian] and four LSMs (BATS, VIC, CLM3.0 and CLM3.5), to explore the trends and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over China's Mainland during 1982-2007. The results showed that various simulations of each member and their arithmetic mean (EnsAVlean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more significant spatial and seasonal variation in the ET compared with observation-based ET estimates (Obs_MTE). For the mean annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs_MTE for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the Ens_Mean was closer to Obs_MTE, although the results were underestimated over Southeast China. Furthermore, both the Obs_MTE and Ens_Mean exhibited a significant increasing trend during 1982-98; whereas after 1998, when the last big EI Nifio event occurred, the Ens_Mean tended to decrease significantly between 1999 and 2007, although the change was not significant for Obs_MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas of China.
基金supports from the Youth Natural Science Foundation of China(No.51904347)Major Project of Master Alloy Manufacture for Heat Resistant Stainless Steel Production(No.AA18242003)funded by the Provincial Government of Guangxi Zhuang Autonomous District are sincerely acknowledged.
文摘Strengthening limonitic nickel laterite sintering and reducing CO_(2) emission were performed by the application of multiforce fields including external thermodynamic and pressure fields.Sinter pot tests of limonitic nickel laterite were carried out,and the relevant industrial production was briefed.The chemistry and mineralogy of product sinter and the thermodynamic and kinetic conditions during sintering were analyzed to reveal the relevant mechanism.The results indicate that sintering performance of limonitic nickel laterite in the new sintering process with multi-force fields is significantly improved with tumble index and productivity increased by 24.11%and 18.56%,respectively,and solid fuel rate reduced by 23.21%,compared with those in traditional sintering process.In this case,greenhouse and pollutant gas emissions are greatly reduced,and metallurgical performances of product sinter are excellent.The industrial production has been successfully conducted,indicating a bright application prospect.Mechanism analysis shows that the great improvement of thermodynamic and kinetic conditions during sintering and the densification of loose sinter can be achieved via the application of multi-force fields.Sinter microstructure is transformed from large thin-wall pores to small thin-wall pores or medium thick-wall pores with the dramatic reduction of sinter porosity and more formation of silico-ferrite of calcium and alumina(SFCA).Meanwhile,the homogenization of mineral compositions is achieved,and much denser interlocking texture between hercynite and SFCA is formed.The application of multi-force fields contributes to the substantial improvement of sintering performance of limonitic nickel laterite and CO_(2) emission reduction.
基金supported by the National Natural Science Foundation of China(Grant Nos.41405083 and 91437220)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ3098)+1 种基金the Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-DQC012)the Fund Project for The Education Department of Hunan Province(Grant No.16A234)
文摘The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data.