期刊文献+
共找到349,996篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-focus image fusion with the all convolutional neural network 被引量:3
1
作者 杜超本 高社生 《Optoelectronics Letters》 EI 2018年第1期71-75,共5页
A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image f... A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image fusion effect, getting a decision map is very necessary and usually difficult to finish. In this letter, we address this problem with convolutional neural network(CNN), aiming to get a state-of-the-art decision map. The main idea is that the max-pooling of CNN is replaced by a convolution layer, the residuals are propagated backwards by gradient descent, and the training parameters of the individual layers of the CNN are updated layer by layer. Based on this, we propose a new all CNN(ACNN)-based multi-focus image fusion method in spatial domain. We demonstrate that the decision map obtained from the ACNN is reliable and can lead to high-quality fusion results. Experimental results clearly validate that the proposed algorithm can obtain state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations. 展开更多
关键词 multi-focus image fusion with the all convolutional neural network
原文传递
Multi-Focus Image Fusion Based on Wavelet Transformation 被引量:4
2
作者 Peng Zhang Ying-Xun Tang +1 位作者 Yan-Hua Liang Xu-Bo Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第2期124-128,共5页
In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, whi... In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application. 展开更多
关键词 variance MEASURE image fusion wavelet transformation multi-resolution analysis
在线阅读 下载PDF
A New Method of Multi-Focus Image Fusion Using Laplacian Operator and Region Optimization 被引量:1
3
作者 Chao Wang Rui Yuan +3 位作者 Yuqiu Sun Yuanxiang Jiang Changsheng Chen Xiangliang Lin 《Journal of Computer and Communications》 2018年第5期106-118,共13页
Considering the continuous advancement in the field of imaging sensor, a host of other new issues have emerged. A major problem is how to find focus areas more accurately for multi-focus image fusion. The multi-focus ... Considering the continuous advancement in the field of imaging sensor, a host of other new issues have emerged. A major problem is how to find focus areas more accurately for multi-focus image fusion. The multi-focus image fusion extracts the focused information from the source images to construct a global in-focus image which includes more information than any of the source images. In this paper, a novel multi-focus image fusion based on Laplacian operator and region optimization is proposed. The evaluation of image saliency based on Laplacian operator can easily distinguish the focus region and out of focus region. And the decision map obtained by Laplacian operator processing has less the residual information than other methods. For getting precise decision map, focus area and edge optimization based on regional connectivity and edge detection have been taken. Finally, the original images are fused through the decision map. Experimental results indicate that the proposed algorithm outperforms the other series of algorithms in terms of both subjective and objective evaluations. 展开更多
关键词 image FUSION LAPLACIAN OPERATOR multi-focus REGION OPTIMIZATION
在线阅读 下载PDF
Multi-focus image fusion based on block matching in 3D transform domain 被引量:6
4
作者 YANG Dongsheng HU Shaohai +2 位作者 LIU Shuaiqi MA Xiaole SUN Yuchao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期415-428,共14页
Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ... Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods. 展开更多
关键词 image fusion block matching 3D transform block-matching and 3D(BM3D) non-subsampled Shearlet transform(NSST)
在线阅读 下载PDF
Efficient Compressive Multi-Focus Image Fusion
5
作者 Chao Yang Bin Yang 《Journal of Computer and Communications》 2014年第9期78-86,共9页
Two key points of pixel-level multi-focus image fusion are the clarity measure and the pixel coeffi- cients fusion rule. Along with different improvements on these two points, various fusion schemes have been proposed... Two key points of pixel-level multi-focus image fusion are the clarity measure and the pixel coeffi- cients fusion rule. Along with different improvements on these two points, various fusion schemes have been proposed in literatures. However, the traditional clarity measures are not designed for compressive imaging measurements which are maps of source sense with random or likely ran- dom measurements matrix. This paper presents a novel efficient multi-focus image fusion frame- work for compressive imaging sensor network. Here the clarity measure of the raw compressive measurements is not obtained from the random sampling data itself but from the selected Hada- mard coefficients which can also be acquired from compressive imaging system efficiently. Then, the compressive measurements with different images are fused by selecting fusion rule. Finally, the block-based CS which coupled with iterative projection-based reconstruction is used to re- cover the fused image. Experimental results on common used testing data demonstrate the effectiveness of the proposed method. 展开更多
关键词 CLARITY Measures COMPRESSIVE imagING multi-focus image FUSION
在线阅读 下载PDF
Three-Dimensional Model Reconstruction of Nonwovens from Multi-Focus Images 被引量:2
6
作者 DONG Gaige WANG Rongwu +1 位作者 LI Chengzu YOU Xiangyin 《Journal of Donghua University(English Edition)》 CAS 2022年第3期185-192,共8页
The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based... The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently. 展开更多
关键词 three-dimensional(3D)model reconstruction deep learning MICROSCOPY NONWOVEN image processing
在线阅读 下载PDF
Multi-focus Image Fusion Combined with CNN and Algebraic Multi-grid Method
7
作者 Ying Huang Gaofeng Mao +1 位作者 Min Liu Yafei Ou 《国际计算机前沿大会会议论文集》 2019年第2期127-129,共3页
The aim of the paper is to solve the problem of over-segmentation problem generated by Watershed segmentation algorithm or unstable clarity judgment by small areas in image fusion. A multi-focus image fusion algorithm... The aim of the paper is to solve the problem of over-segmentation problem generated by Watershed segmentation algorithm or unstable clarity judgment by small areas in image fusion. A multi-focus image fusion algorithm is proposed based on CNN segmentation and algebraic multi-grid method (CNN-AMG). Firstly, the CNN segmentation result was utilized to instruct the merging process of the regions generated by the Watershed segmentation method. Then the clear regions were selected into the temporary fusion image and the final fusion process was performed according to the clarity evaluation index, which was computed with the algebraic multi-grid method (AMG). The experimental results show that the fused image quality obtained by the CNNAMG algorithm outperforms the traditional fusion methods such as DSIFT fusion method, CNN fusion method, ASR fusion method, GFF fusion method and so on with some evaluation indexes. 展开更多
关键词 image SEGMENTATION image FUSION ALGEBRAIC multi-grid CLARITY Evaluation INDEX
在线阅读 下载PDF
Multi-focus image fusion based on fully convolutional networks 被引量:3
8
作者 Rui GUO Xuan-jing SHEN +1 位作者 Xiao-yu DONG Xiao-li ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第7期1019-1033,共15页
We propose a multi-focus image fusion method,in which a fully convolutional network for focus detection(FD-FCN)is constructed.To obtain more precise focus detection maps,we propose to add skip layers in the network to... We propose a multi-focus image fusion method,in which a fully convolutional network for focus detection(FD-FCN)is constructed.To obtain more precise focus detection maps,we propose to add skip layers in the network to make both detailed and abstract visual information available when using FD-FCN to generate maps.A new training dataset for the proposed network is constructed based on dataset CIFAR-10.The image fusion algorithm using FD-FCN contains three steps:focus maps are obtained using FD-FCN,decision map generation occurs by applying a morphological process on the focus maps,and image fusion occurs using a decision map.We carry out several sets of experiments,and both subjective and objective assessments demonstrate the superiority of the proposed fusion method to state-of-the-art algorithms. 展开更多
关键词 multi-focus image fusion Fully convolutional networks Skip layer Performance evaluation
原文传递
Multi-focus image fusion based on fractional-orderderivative and intuitionistic fuzzy sets 被引量:2
9
作者 Xue-feng ZHANG Hui YAN Hao HE 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第6期834-843,共10页
Multi-focus image fusion is an increasingly important component in image fusion,and it plays a key role in imaging.In this paper,we put forward a novel multi-focus image fusion method which employs fractional-order de... Multi-focus image fusion is an increasingly important component in image fusion,and it plays a key role in imaging.In this paper,we put forward a novel multi-focus image fusion method which employs fractional-order derivative and intuitionistic fuzzy sets.The original image is decomposed into a base layer and a detail layer.Furthermore,a new fractional-order spatial frequency is built to reflect the clarity of the image.The fractional-order spatial frequency is used as a rule for detail layers fusion,and intuitionistic fuzzy sets are introduced to fuse base layers.Experimental results demonstrate that the proposed fusion method outperforms the state-of-the-art methods for multi-focus image fusion. 展开更多
关键词 image fusion Fractional-order derivative Intuitionistic fuzzy sets multi-focus images
原文传递
Future directions of image-guided thermal ablation in colorectal cancer lung oligometastases
10
作者 Yu-Yin Wang Cui-Ping Zhang +3 位作者 Qing-Biao Zhang Xing-Yan Le Jun-Bang Feng Chuan-Ming Li 《World Journal of Gastroenterology》 2026年第2期162-166,共5页
Colorectal cancer(CRC)with lung oligometastases,particularly in the presence of extrapulmonary disease,poses considerable therapeutic challenges in clinical practice.We have carefully studied the multicenter study by ... Colorectal cancer(CRC)with lung oligometastases,particularly in the presence of extrapulmonary disease,poses considerable therapeutic challenges in clinical practice.We have carefully studied the multicenter study by Hu et al,which evaluated the survival outcomes of patients with metastatic CRC who received image-guided thermal ablation(IGTA).These findings provide valuable clinical evidence supporting IGTA as a feasible,minimally invasive approach and underscore the prognostic significance of metastatic distribution.However,the study by Hu et al has several limitations,including that not all pulmonary lesions were pathologically confirmed,postoperative follow-up mainly relied on dynamic contrast-enhanced computed tomography,no comparative analysis was performed with other local treatments,and the impact of other imaging features on efficacy and prognosis was not evaluated.Future studies should include complete pathological confirmation,integrate functional imaging and radiomics,and use prospective multicenter collaboration to optimize patient selection standards for IGTA treatment,strengthen its clinical evidence base,and ultimately promote individualized decision-making for patients with metastatic CRC. 展开更多
关键词 Colorectal cancer Lung oligometastases Extrapulmonary metastases imageguided thermal ablation Dynamic contrast-enhanced computed tomography Functional imaging
暂未订购
An Improved Pigeon-Inspired Optimization for Multi-focus Noisy Image Fusion
11
作者 Yingda Lyu Yunqi Zhang Haipeng Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1452-1462,共11页
Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-f... Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-focus noisy image fusion by combining with the boundary handling of the convolutional sparse representation.By two-scale image decomposition,the input image is decomposed into base layer and detail layer.For the base layer,IPIO algorithm is used to obtain the optimized weights for fusion,whose value range is gained by fusing the edge information.Besides,the global information entropy is used as the fitness index of the IPIO,which has high efficiency especially for discrete optimization problems.For the detail layer,the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse representation in the frequency domain.The sum of the above base and detail layers is as the final fused image.Experimental results show that the proposed algorithm has a better fusion effect compared with the recent algorithms. 展开更多
关键词 Improved pigeon-inspired optimization Convolutional sparse representation Noisy image fusion Bionic algorithm
在线阅读 下载PDF
基于手机拍照结合Image J软件对干辣椒外观品质的分级研究 被引量:1
12
作者 胡晋伟 赵志峰 +4 位作者 张欣莹 祝贺 李波 孙海清 徐炜桢 《食品与发酵工业》 CAS 北大核心 2025年第1期273-279,共7页
干辣椒外观形状和色泽是其品质分类的重要指标。目前GB 10465—1989《辣椒干》中对干辣椒外观形状和色泽的检测方式还停留在人工检测阶段,通常受到主观感知、误差、视觉生理等多种因素影响,未形成科学标准化的检测方法。该研究利用手机... 干辣椒外观形状和色泽是其品质分类的重要指标。目前GB 10465—1989《辣椒干》中对干辣椒外观形状和色泽的检测方式还停留在人工检测阶段,通常受到主观感知、误差、视觉生理等多种因素影响,未形成科学标准化的检测方法。该研究利用手机拍照对干辣椒获取图像,通过Image J软件进行图像处理,提出了一种便捷、快速、准确的干辣椒外观形状相关特征量的测定方法。与游标卡尺法、剪纸法等人工测量相比,该方法更方便快速,可用于干辣椒的长度、宽度、面积等表型指标的测量。同时,通过构建红绿蓝(RGB)色彩模型获得干辣椒的外观颜色特征参数,色泽分选采用R/(G+B)比率为分级依据,结合干辣椒宽长比和面积可以将干辣椒分为优质、合格、不合格3个等级。 展开更多
关键词 干辣椒 手机拍照 image J软件 RGB色彩模型 分级
在线阅读 下载PDF
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:2
13
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) image analysis image data augmentation Convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
BiCLIP-nnFormer:A Virtual Multimodal Instrument for Efficient and Accurate Medical Image Segmentation 被引量:1
14
作者 Wang Bo Yue Yan +5 位作者 Mengyuan Xu Yuqun Yang Xu Tang Kechen Shu Jingyang Ai Zheng You 《Instrumentation》 2025年第2期1-13,共13页
Image segmentation is attracting increasing attention in the field of medical image analysis.Since widespread utilization across various medical applications,ensuring and improving segmentation accuracy has become a c... Image segmentation is attracting increasing attention in the field of medical image analysis.Since widespread utilization across various medical applications,ensuring and improving segmentation accuracy has become a crucial topic of research.With advances in deep learning,researchers have developed numerous methods that combine Transformers and convolutional neural networks(CNNs)to create highly accurate models for medical image segmentation.However,efforts to further enhance accuracy by developing larger and more complex models or training with more extensive datasets,significantly increase computational resource consumption.To address this problem,we propose BiCLIP-nnFormer(the prefix"Bi"refers to the use of two distinct CLIP models),a virtual multimodal instrument that leverages CLIP models to enhance the segmentation performance of a medical segmentation model nnFormer.Since two CLIP models(PMC-CLIP and CoCa-CLIP)are pre-trained on large datasets,they do not require additional training,thus conserving computation resources.These models are used offline to extract image and text embeddings from medical images.These embeddings are then processed by the proposed 3D CLIP adapter,which adapts the CLIP knowledge for segmentation tasks by fine-tuning.Finally,the adapted embeddings are fused with feature maps extracted from the nnFormer encoder for generating predicted masks.This process enriches the representation capabilities of the feature maps by integrating global multimodal information,leading to more precise segmentation predictions.We demonstrate the superiority of BiCLIP-nnFormer and the effectiveness of using CLIP models to enhance nnFormer through experiments on two public datasets,namely the Synapse multi-organ segmentation dataset(Synapse)and the Automatic Cardiac Diagnosis Challenge dataset(ACDC),as well as a self-annotated lung multi-category segmentation dataset(LMCS). 展开更多
关键词 medical image analysis image segmentation CLIP feature fusion deep learning
原文传递
Anomaly monitoring and early warning of electric moped charging device with infrared image 被引量:1
15
作者 LI Jiamin HAN Bo JIANG Mingshun 《Optoelectronics Letters》 2025年第3期136-141,共6页
Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time perfor... Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image. 展开更多
关键词 detection methods divide image anomaly monitoring temperature detection median filtering algorithm infrared image processing image segmentation algorithm electric moped charging devicessuch
原文传递
EILnet: An intelligent model for the segmentation of multiple fracture types in karst carbonate reservoirs using electrical image logs 被引量:1
16
作者 Zhuolin Li Guoyin Zhang +4 位作者 Xiangbo Zhang Xin Zhang Yuchen Long Yanan Sun Chengyan Lin 《Natural Gas Industry B》 2025年第2期158-173,共16页
Karst fractures serve as crucial seepage channels and storage spaces for carbonate natural gas reservoirs,and electrical image logs are vital data for visualizing and characterizing such fractures.However,the conventi... Karst fractures serve as crucial seepage channels and storage spaces for carbonate natural gas reservoirs,and electrical image logs are vital data for visualizing and characterizing such fractures.However,the conventional approach of identifying fractures using electrical image logs predominantly relies on manual processes that are not only time-consuming but also highly subjective.In addition,the heterogeneity and strong dissolution tendency of karst carbonate reservoirs lead to complexity and variety in fracture geometry,which makes it difficult to accurately identify fractures.In this paper,the electrical image logs network(EILnet)da deep-learning-based intelligent semantic segmentation model with a selective attention mechanism and selective feature fusion moduledwas created to enable the intelligent identification and segmentation of different types of fractures through electrical logging images.Data from electrical image logs representing structural and induced fractures were first selected using the sliding window technique before image inpainting and data augmentation were implemented for these images to improve the generalizability of the model.Various image-processing tools,including the bilateral filter,Laplace operator,and Gaussian low-pass filter,were also applied to the electrical logging images to generate a multi-attribute dataset to help the model learn the semantic features of the fractures.The results demonstrated that the EILnet model outperforms mainstream deep-learning semantic segmentation models,such as Fully Convolutional Networks(FCN-8s),U-Net,and SegNet,for both the single-channel dataset and the multi-attribute dataset.The EILnet provided significant advantages for the single-channel dataset,and its mean intersection over union(MIoU)and pixel accuracy(PA)were 81.32%and 89.37%,respectively.In the case of the multi-attribute dataset,the identification capability of all models improved to varying degrees,with the EILnet achieving the highest MIoU and PA of 83.43%and 91.11%,respectively.Further,applying the EILnet model to various blind wells demonstrated its ability to provide reliable fracture identification,thereby indicating its promising potential applications. 展开更多
关键词 Karst fracture identification Deep learning Semantic segmentation Electrical image logs image processing
在线阅读 下载PDF
GenAI synthesis of histopathological images from Raman imaging for intraoperative tongue squamous cell carcinoma assessment 被引量:2
17
作者 Bing Yan Zhining Wen +5 位作者 Lili Xue Tianyi Wang Zhichao Liu Wulin Long Yi Li Runyu Jing 《International Journal of Oral Science》 2025年第2期244-254,共11页
The presence of a positive deep surgical margin in tongue squamous cell carcinoma(TSCC)significantly elevates the risk of local recurrence.Therefore,a prompt and precise intraoperative assessment of margin status is i... The presence of a positive deep surgical margin in tongue squamous cell carcinoma(TSCC)significantly elevates the risk of local recurrence.Therefore,a prompt and precise intraoperative assessment of margin status is imperative to ensure thorough tumor resection.In this study,we integrate Raman imaging technology with an artificial intelligence(AI)generative model,proposing an innovative approach for intraoperative margin status diagnosis.This method utilizes Raman imaging to swiftly and non-invasively capture tissue Raman images,which are then transformed into hematoxylin-eosin(H&E)-stained histopathological images using an AI generative model for histopathological diagnosis.The generated H&E-stained images clearly illustrate the tissue’s pathological conditions.Independently reviewed by three pathologists,the overall diagnostic accuracy for distinguishing between tumor tissue and normal muscle tissue reaches 86.7%.Notably,it outperforms current clinical practices,especially in TSCC with positive lymph node metastasis or moderately differentiated grades.This advancement highlights the potential of AI-enhanced Raman imaging to significantly improve intraoperative assessments and surgical margin evaluations,promising a versatile diagnostic tool beyond TSCC. 展开更多
关键词 Surgical margin Intraoperative assessment Local recurrence Tongue squamous cell carcinoma raman imaging tongue squamous cell carcinoma tscc significantly Raman imaging Histopathological diagnosis
暂未订购
Rendered image denoising method with filtering guided by lighting information 被引量:1
18
作者 MA Minghui HU Xiaojuan +2 位作者 ZHANG Ripei CHEN Chunyi YU Haiyang 《Optoelectronics Letters》 2025年第4期242-248,共7页
The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions a... The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality. 展开更多
关键词 establish paramet rendered image denoising Monte Carlo method filtering guided lighting information denoising algorithms image segmentation algorithm rendered image denoising method monte carlo methodhoweverthe
原文传递
YOLO-S3DT:A Small Target Detection Model for UAV Images Based on YOLOv8 被引量:2
19
作者 Pengcheng Gao Zhenjiang Li 《Computers, Materials & Continua》 2025年第3期4555-4572,共18页
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp... The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks. 展开更多
关键词 Target detection UAV images detection small target detection YOLO
在线阅读 下载PDF
Tests of Solar X-Ray Image Reconstruction:A New Index for Assessing Image Quality 被引量:1
20
作者 Zhen-Tong Li Wen-Hui Yu +2 位作者 Yang Su Wei Chen Wei-Qun Gan 《Research in Astronomy and Astrophysics》 2025年第3期76-89,共14页
Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image qual... Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image quality of the reconstruction is still difficult,which is particularly useful for scheme design of X-ray imaging systems,testing and improvement of imaging algorithms,and scientific research of X-ray sources.Currently,there is no specified method to quantitatively evaluate the quality of X-ray image reconstruction and the point-spread function(PSF)of an X-ray imager.In this paper,we propose percentage proximity degree(PPD)by considering the imaging characteristics of X-ray image reconstruction and in particular,sidelobes and their effects on imaging quality.After testing a variety of imaging quality assessments in six aspects,we utilized the technique for order preference by similarity to ideal solution to the indices that meet the requirements.Then we develop the final quality index for X-ray image reconstruction,QuIX,which consists of the selected indices and the new PPD.QuIX performs well in a series of tests,including assessment of instrument PSF and simulation tests under different grid configurations,as well as imaging tests with RHESSI data.It is also a useful tool for testing of imaging algorithms,and determination of imaging parameters for both RHESSI and ASO-S/Hard X-ray Imager,such as field of view,beam width factor,and detector selection. 展开更多
关键词 SUN flares-Sun X-rays gamma-rays-techniques image processing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部