期刊文献+
共找到1,878篇文章
< 1 2 94 >
每页显示 20 50 100
CO_(2)-EOR microscopic mechanism under injection-production coupling technology in low-permeability reservoirs
1
作者 Zheng Chen Yu-Liang Su +3 位作者 Lei Li Yong-Mao Hao Wen-Dong Wang Chui-Xian Kong 《Petroleum Science》 2025年第2期739-755,共17页
Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation ... Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation to microscopic mechanisms,remains relatively sparse.This study utilizes microscopic visualization experiments to investigate the mechanisms of residual oil mobilization under various IPC scenarios,complemented by mechanical analysis at different stages.The research quantitatively assesses the degree of microscopic oil recovery and the distribution of residual oil across different injection-production methods.Findings reveal that during the initial phase of continuous gas injection(CGI),the process closely mimics miscible displacement,gradually transitioning to immiscible displacement as CO_(2)extraction progresses.Compared to CGI,the asynchronous injection-production(AIP) method improved the microscopic oil recovery rate by 6.58%.This enhancement is mainly attributed to significant variations in the pressure field in the AIP method,which facilitate the mobilization of columnar and porous re sidual oil.Furthermo re,the synchronous cycle injection(SCI) method increased microscopic oil recovery by 13.77% and 7.19% compared to CGI and AIP,respectively.In the SCI method,membrane oil displays filame ntary and Karman vo rtex street flow patterns.The dissolved and expanded crude oil te nds to accumulate and grow at the oil-solid interface due to adhesive forces,thereby reducing migration resistance.The study findings provide a theoretical foundation for improving oil recovery in lowpermeability reservoirs. 展开更多
关键词 Low-permeability reservoirs Injection-production coupling Microscopic experimental simulation technology CO_(2)-EOR Mechanical analysis
原文传递
Progress on Multi-Field Coupling Simulation Methods in Deep Strata Rock Breaking Analysis
2
作者 Baoping Zou Chenhao Pei +3 位作者 Qizhi Chen Yansheng Deng Yongguo Chen Xu Long 《Computer Modeling in Engineering & Sciences》 2025年第3期2457-2485,共29页
The utilization of multi-field coupling simulation methods has become a pivotal approach for the investigation of intricate fracture behavior and interaction mechanisms of rock masses in deep strata.The high temperatu... The utilization of multi-field coupling simulation methods has become a pivotal approach for the investigation of intricate fracture behavior and interaction mechanisms of rock masses in deep strata.The high temperatures,pressures and complex geological environments of deep strata frequently result in the coupling of multiple physical fields,including mechanical,thermal and hydraulic fields,during the fracturing of rocks.This review initially presents an overview of the coupling mechanisms of these physical fields,thereby elucidating the interaction processes ofmechanical,thermal,and hydraulic fields within rockmasses.Secondly,an in-depth analysis ofmulti-field coupling is conducted from both spatial and temporal perspectives,with the introduction of simulation methods for a range of scales.It emphasizes cross-scale coupling methodologies for the transfer of rock properties and physical field data,including homogenization techniques,nested coupling strategies and data-driven approaches.To address the discontinuous characteristics of the rock fracture process,the review provides a detailed explanation of continuousdiscontinuous couplingmethods,to elucidate the evolution of rock fracturing and deformationmore comprehensively.In conclusion,the review presents a summary of the principal points,challenges and future directions of multi-field coupling simulation research.It also puts forward the potential of integrating intelligent algorithms with multi-scale simulation techniques to enhance the accuracy and efficiency of multi-field coupling simulations.This offers novel insights into multi-field coupling simulation analysis in deep rock masses. 展开更多
关键词 multi-field coupling numerical simulation MULTI-SCALE information transfer DISCONTINUITY
在线阅读 下载PDF
Analysis of multi-field coupling behaviors of sandwich piezoelectric semiconductor beams under thermal loadings
3
作者 Dejuan KONG Zhuangzhuang HE +1 位作者 Chengbin LIU Chunli ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1571-1590,共20页
Sandwich piezoelectric semiconductor(PS)structures have significant applications in multi-functional semiconductor devices.The analysis of multi-field coupling behaviors of PS structures is of fundamental importance i... Sandwich piezoelectric semiconductor(PS)structures have significant applications in multi-functional semiconductor devices.The analysis of multi-field coupling behaviors of PS structures is of fundamental importance in developing novel PS devices.In this paper,we develop a general temperature-deformation-polarization-carrier(TDPC)coupling model for sandwich-type PS beams involving pyroelectricity under thermal loadings,based on three-dimensional(3D)basic equations of the thermo-piezoelectric semiconductor(TPS).We derive analytical solutions for extensional,bending,and buckling deformations of simply-supported sandwich n-type PS beams subjected to open-circuit and electrically isolated boundary conditions.The accuracy of the proposed model in this paper is verified through finite element simulations implemented in the COMSOL software.Numerical results show that the initial electron concentration and the thickness ratio of the PS layer to the beam's total thickness have a significant effect on thermally induced extensional and bending responses,as well as critical buckling mechanical and thermal loadings.This study provides a theoretical framework and guidance for designing semiconductor devices based on sandwich PS beam structures. 展开更多
关键词 piezoelectric semiconductor(PS) sandwich beam multi-field coupling behavior critical buckling thermal loading analytical solution
在线阅读 下载PDF
Evaluation of Tubing Integrity with Rectangular Corrosion under Thermo-Chemical-Mechanical Coupling
4
作者 Yi Huang Ming Luo +4 位作者 Zhujun Li Donglei Jiang Ping Xiao Mingyuan Yao Jia He 《Fluid Dynamics & Materials Processing》 2025年第8期1839-1860,共22页
This study presents a comprehensive mechanical analysis of P110S oil tubing subjected to thermal and chemical coupling effects,with particular attention to the presence of rectangular corrosion defects.Drawing on the ... This study presents a comprehensive mechanical analysis of P110S oil tubing subjected to thermal and chemical coupling effects,with particular attention to the presence of rectangular corrosion defects.Drawing on the material’s stress–strain constitutive behavior,thermal expansion coefficient,thermal conductivity,and electrochemical test data,the research incorporates geometric nonlinearities arising from large deformations induced by corrosion.A detailed three-dimensional finite element(FE)model of the corroded P110S tubing is developed to simulate its response under complex loading conditions.The proposed model is rigorously validated through full-scale burst experiments and analytical calculations based on theoretical formulations.Building upon this validation,the Extended Finite Element Method(XFEM)and a failure criterion grounded in damage evolution mechanics are applied to investigate the mechanical behavior of the tubing under the coupled influences of temperature,stress,and chemical corrosion.Special emphasis is placed on the role of rectangular corrosion features in determining failure mechanisms.To further elucidate the impact of multiple interacting parameters,a sensitivity analysis is performed by integrating grey correlation theory with simulation outcomes.Based on these findings,the study systematically explores the elastic–plastic deformation process,crack initiation and propagation behavior,and the burst failure response of tubing specimens with varying axial lengths and depths of corrosion.The proposed methodology provides a robust predictive framework for petroleum engineers to evaluate fracture pressure,diagnose failure modes,assess operational risks,and optimize production strategies. 展开更多
关键词 Tubing corrosion XFEM multi-field coupling burst failure service life
在线阅读 下载PDF
Mechanical properties and permeability evolution of sandstone subjected to the coupling effects of chemical-seepage-stress
5
作者 WANG Wei CHEN Chao-wei +3 位作者 CAO Ya-jun JIA Yun LIU Shi-fan SHEN Wan-qing 《Journal of Central South University》 2025年第2期552-565,共14页
In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepa... In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields. 展开更多
关键词 red sandstone chemical corrosion multi-field coupling mechanical characteristics permeability evolution
在线阅读 下载PDF
Investigation on the fracture propagation for horizontal wells in hydrate reservoirs using a fluid-solid coupling discrete element method
6
作者 Jia-wei Zhang Chang-ling Liu +2 位作者 Yong-chao Zhang Le-le Liu Yun-kai Ji 《China Geology》 2025年第4期765-778,共14页
Hydraulic fracturing technology has played an important role in the exploitation of unconventional oil and gas resources,however,its application to gas hydrate reservoirs has been rarely studied.Currently,there is sti... Hydraulic fracturing technology has played an important role in the exploitation of unconventional oil and gas resources,however,its application to gas hydrate reservoirs has been rarely studied.Currently,there is still limited understanding of the propagation and extension of fractures around the wellbore during the fracturing process of horizontal wells in hydrate reservoirs,as well as the stress interference patterns between fractures.This study simulates hydraulic fracturing processes in hydrate reservoirs using a fluidsolid coupling discrete element method(DEM),and analyzes the impacts of hydrate saturation and geological and engineering factors on fracture extension and stress disturbance.The results show that hydraulic fracturing is more effective when hydrate saturation exceeds 30%and that fracture pressure increases with saturation.The increase in horizontal stress differential enhances the directionality of fracture propagation and reduces stress disturbance.The distribution uniformity index(DUI)reveals that injection pressure is directly proportional to the number of main fractures and inversely proportional to fracturing time,with fracturing efficiency depending on the spacing between injection points and the distance between wells.This work may provide reference for the commercial exploitation of natural gas hydrates. 展开更多
关键词 Hydraulic fracturing technology Gas hydrate reservoirs Hydrate-bearing sediment Discrete element method Fluid-solid coupling Hydraulic fracturing Horizontal wells Fracture propagation Oil-gas exploration engineering
在线阅读 下载PDF
Multi-field Coupling Simulation of Impact of Temperature and Density of Heat Injection Well on Carbon Budget during Hydrate Exploitation in Qilian Mountain Permafrost Region
7
作者 Zhenhua Han Ruirui Li +2 位作者 Luqing Zhang Jian Zhou Song Wang 《Journal of Earth Science》 SCIE CAS CSCD 2024年第6期1934-1943,共10页
Permafrost regions of Qilian Mountains in China are rich in gas hydrate resources.Once greenhouse gases in deep frozen layer are released into the atmosphere during hydrate mining,a series of negative consequences occ... Permafrost regions of Qilian Mountains in China are rich in gas hydrate resources.Once greenhouse gases in deep frozen layer are released into the atmosphere during hydrate mining,a series of negative consequences occur.This study aims to evaluate the impact of hydrate thermal exploitation on regional permafrost and carbon budgets based on a multi-physical field coupling simulation.The results indicate that the permeability of the frozen soil is anisotropic,and the low permeability frozen layer can seal the methane gas in the natural state.Heat injection mining of hydrates causes the continuous melting of permafrost and the escape of methane gas,which transforms the regional permafrost from a carbon sink to a carbon source.A higher injection temperature concentrates the heat and causes uneven melting of the upper frozen layer,which provides a dominant channel for methane gas and results in increased methane emissions.However,dense heat injection wells cause more uniform melting of the lower permafrost layer,and the melting zone does not extend to the upper low permeability formation,which cannot provide advantageous channels for methane gas.Therefore,a reasonable and dense number of heat injection wells can reduce the risk of greenhouse gas emissions during hydrate exploitation. 展开更多
关键词 PERMAFROST gas hydrates carbon budget methane emissions greenhouse gases environmental effects multi-field coupling SIMULATION
原文传递
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances 被引量:2
8
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling Radar stealth Thermal insulation Computer simulation technology
在线阅读 下载PDF
Multi-field Coupled Inverse Hall–Petch Relations for Ferroelectric Nanocrystals 被引量:1
9
作者 Xiaodong Zhang Wei Yan +5 位作者 Xuhui Lou Yujun Chen Zhihong Zhou Qingyuan Wang Lianhua Ma Xiaobao Tian 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期139-147,共9页
Tailoring grain size can improve the strength of polycrystals by regulating the proportion of grains to grain boundaries and the interaction area.As the grain size decreases to the nanoscale,the deformation mechanism ... Tailoring grain size can improve the strength of polycrystals by regulating the proportion of grains to grain boundaries and the interaction area.As the grain size decreases to the nanoscale,the deformation mechanism in polycrystals shifts from being primarily mediated by dislocations to deformation occurring within the grains and grain boundaries.However,the mechanism responsible for fine-grain strengthening in ferroelectric materials remains unclear,primarily due to the complex multi-field coupling effect arising from spontaneous polarization.Through molecular dynamics simulations,we investigate the strengthening mechanism of barium titanate(BaTiO3),with extremely fine-grain sizes.This material exhibits an inverse Hall–Petch relationship between grain size and strength,rooting in the inhomogeneous concentration of atomic strain and grain rotation.Furthermore,we present a theoretical model to predict the transition from the inverse Hall–Petch stage to the Hall–Petch stage based on strength variations with size,which aligns well with the simulation results.It has been found that the piezoelectric properties of the BaTiO3 are affected by polarization domain switching at various grain sizes.This study enhances our understanding of the atomic-scale mechanisms that contribute to the performance evolution of fine-grain nano-ferroelectric materials.It also provides valuable insights into the design of extremely small-scale ferroelectric components. 展开更多
关键词 FERROELECTRICS multi-field coupling Molecular dynamics Fine-grain reinforcement Inverse Hall-Petch effect
原文传递
Analysis of a Water-Inrush Disaster Caused by Coal Seam Subsidence Karst Collapse Column under the Action of Multi-Field Coupling in Taoyuan Coal Mine 被引量:6
10
作者 Zhibin Lin Boyang Zhang Jiaqi Guo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期311-330,共20页
Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aq... Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aquifer occurs widely throughout northern China.A water inrush disaster from SKCC occurred in Taoyuan coal mine on February 3,2013.In order to analyze the effect of the KCC influence zone’s(KCCIZ)width and the entry driving distance of the water inrush through the fractured channels of the SKCC,the stress,seepage,and impact dynamics coupling equations were used tomodel the seepage rule,and a numerical FLAC3D model was created to determine the plastic zones,the vertical displacement development of the rockmass surrounding the entry driving working face(EDWF),and the seepage vector and water inflow development of the seepage field.The hysteretic mechanism of water inrush due to SKCC in Taoyuan coal mine was investigated.The results indicate that a water inrush disaster will occur when the width of the KCCIZ exceeds 16 m under a driving,which leads to the aquifer connecting with the fractured zones of the entry floor.Hysteretic water inrush disasters are related to the stress release rate of the surrounding rocks under the entry driving.When the entry driving exceeds about 10 m from the water inrush point,the stress release rate reaches about 100%,and a water inrush disaster occurs. 展开更多
关键词 Karst collapse column multi-field coupling seepage mutation water-inrush
在线阅读 下载PDF
Numerical analysis of stability for mined-out area in multi-field coupling 被引量:5
11
作者 罗周全 谢承煜 +3 位作者 周吉明 贾楠 刘晓明 徐海 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期669-675,共7页
There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyze... There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area. 展开更多
关键词 mined-out area measured actually multi-field coupling stress-seepage-disturbance stability for mined-out area
在线阅读 下载PDF
A generalized multi-field coupling approach and its application to stability and deformation control of a high slope 被引量:5
12
作者 Chuangbing Zhou Yifeng Chen +1 位作者 Qinghui Jiang Wenbo Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期193-206,共14页
Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engine... Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engineering disturbances are important factors that would alter the natural evolutionary processes or change the multi-field interactions in the rock masses from their initial equilibrium states. The concept of generalized multi-field couplings was proposed by placing particular emphasis on the role of engineering disturbances in traditional multi-field couplings in rock masses. A mathematical model was then developed, in which the effects of engineering disturbances on the coupling-processes were described with changes in boundary conditions and evolutions in thermo-hydro-mechanical (THM) properties of the rocks. A parameter, d, which is similar to damage variables but has a broader physical meaning, was conceptually introduced to represent the degree of engineering disturbances and the couplings among the material properties. The effects of blasting excavation, bolting and grouting in rock engineering were illustrated with various field observations or theoretical results, on which the degree of disturbances and the variations in elastic moduli and permeabilities were particularly focused. The influences of excavation and groundwater drainage on the seepage flow and stability of the slopes were demonstrated with numerical simulations. The proposed approach was further employed to investigate the coupled hydro-mechanical responses of a high rock slope to excavation, bolting and impounding of the reservoir in the dam left abutment of Jinping I hydropower station. The impacts of engineering disturbances on the deformation and stability of the slope during construction and operation were demonstrated. 展开更多
关键词 generalized multi-field couplings engineering disturbance slope stability deformation control
在线阅读 下载PDF
MULTI-FIELD COUPLING BEHAVIOR OF SIMPLY-SUPPORTED CONDUCTIVE PLATE UNDER THE CONDITION OF A TRANSVERSE STRONG IMPULSIVE MAGNETIC FIELD 被引量:3
13
作者 Zhu Linli Zhang Jianping Zheng Xiaojing 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第3期203-211,共9页
In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynami... In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field. 展开更多
关键词 multi-field coupling conductive thin plate impulsive magnetic field eddy current dynamic buckling magnetic volume forces
在线阅读 下载PDF
Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate 被引量:2
14
作者 Xueqian FANG Qilin HE +1 位作者 Hongwei MA Changsong ZHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1351-1366,共16页
Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechan... Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechanical systems.The multi-field coupling and free vibration of a sandwiched FGPS plate are studied,and the governing equation and natural frequency are derived with the consideration of electron movement.The material properties in the functionally-graded layers are assumed to vary smoothly,and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate.The total strain energy of the plate is obtained,and the governing equations are presented by using Hamilton’s principle.By introducing the boundary conditions,the coupling physical fields are solved.In numerical examples,the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed.It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size.The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail. 展开更多
关键词 sandwiched piezoelectric semiconductor(PS)plate functionally-graded layer multi-field coupling free vibration Hamilton's principle
在线阅读 下载PDF
Coupling Relationship Among Technological Innovation,Industrial Transformation and Environmental Efficiency:A Case Study of the Huaihai Economic Zone,China 被引量:1
15
作者 ZHENG Ziyan ZHU Yingming +1 位作者 QIU Fangdao WANG Litao 《Chinese Geographical Science》 SCIE CSCD 2022年第4期686-706,共21页
The 14th Five-Year Plan period is a critical period for China to achieve high-quality development. Based on super-efficiency slacks-based measure(SBM) model, grey-related analysis(GRA) and other models, this paper stu... The 14th Five-Year Plan period is a critical period for China to achieve high-quality development. Based on super-efficiency slacks-based measure(SBM) model, grey-related analysis(GRA) and other models, this paper studies the heterogeneity of the coupling relationship among technological innovation, industrial transformation and environmental efficiency in the Huaihai Economic Zone during the period of 2005-2019. In addition, it analyzes the coupling mechanism of single and binary systems to the ternary system, which is of great significance for the collaborative symbiosis among systems. The findings are as follows. 1) The technological innovation, industrial transformation and environmental efficiency(TIE) systems of the Huaihai Economic Zone had significant spatial-temporal heterogeneity. Although their evaluation value fluctuated, the development trends are all positive. Ultimately, technological innovation is characterized by being high in the northeast and low in the southwest around Xuzhou, while other systems are relatively staggered in space. 2) The coupling of TIE systems is in transition, lack of orderly integration and benign interaction. However, the developing trend of interaction is also upward, and a spatial pattern driven by Xuzhou and Linyi as the dual cores has gradually formed. Moreover, the coupling is mostly manifested as outdated technological innovation and industrial transformation. Except for the final coordination of regenerative cities, the other resource types are all in transition. Cities in all traffic locations are still in transition. The overall system interaction of cities on Longhai Line(Lanzhou-Lianyungang Railway) is relatively optimal, and cities on Xinshi Line(Xinxiang-Rizhao Railway) are accelerating toward synergy. 3) The coupling status of TIE systems depends on the development of the single system and the interaction of the binary(2E) system. The coupling is closely related to technological innovation and Technology-Industry system,and is hindered by the inefficient interaction of Technology-Environment system. Specifically, the synergy of regenerative cities is attributed to the advantage of a single system and the effective integration of 2E systems. Beneficial from the advantages of environmental efficiency, the cities on Xinshi Line promote the synergy of the 2E and TIE systems. Therefore, while the Huaihai Economic Zone stimulates the development potential of the single and 2E systems, it is necessary to amplify the superimposition effect of systems in accordance on the basis of resource and location. 展开更多
关键词 technological innovation industrial transformation environmental efficiency coupling relationship HETEROGENEITY
在线阅读 下载PDF
A 3D multi-field element for simulating the electromechanical coupling behavior of dielectric elastomers 被引量:2
16
作者 Jun Liu Choon Chiang Foo Zhi-Qian Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第4期374-389,共16页
We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement an... We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement and electric potential for the electromechanical coupling analysis, and additional independent fields to address the incompressible constraint of the hyperelastic material. Linearization of the variational form and finite element discretization are adopted for the numerical implementation. A general FEM program framework is devel- oped using C++ based on the open-source finite element library deal.II to implement this proposed algorithm. Numerical examples demonstrate the accuracy, convergence properties, mesh-independence properties, and scalability of this method. We also use the method for eigenvalue analysis of a dielectric elastomer actuator subject to electromechanical loadings. Our finite element implementation is available as an online supplementary material. 展开更多
关键词 Dielectric elastomer Electromechanical coupling Implicit multi-field finite element method Eigenvalue problem
原文传递
Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
17
作者 许之磊 高国强 +6 位作者 钱鹏宇 肖嵩 魏文赋 杨泽锋 董克亮 马亚光 吴广宁 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期493-503,共11页
The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal ... The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal pressure,as it is easy to develop the rigid busbar,which may lead to the flashover occurring around the support insulators.We establish a pantograph-catenary arc experiment and diagnosis platform to simulate low pressure and strong airflow environment.Meanwhile,the variation law of arc drift height with time under different air pressures and airflow velocities is analyzed.Moreover,arc drift characteristics and influencing factors are explored.The physical process of the arc column drifting to the rigid busbar with the jumping mechanism of the arc root on the rigid busbar is summarized.In order to further explore the mechanism of the above physical process,a multi-field stress coupling model is built,as the multi-stress variation law of arc is quantitatively evaluated.The dynamic action mechanism of multi-field stress on arc drifting characteristics is explored,as the physical mechanism of arc drifting under low pressure is theoretically explained.The research results provide theoretical support for arc suppression in high-altitude areas. 展开更多
关键词 pantograph-catenary arc low pressure multi-field stress coupling model arc column drift
原文传递
An Evaluation of the Coupling Coordination of Technological Innovation System in China’s Marine Biopharmaceutical Industry
18
作者 FU Xiumei ZHENG Yangming +2 位作者 LIN Chunyu WANG Ping WANG Changyun 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期271-284,共14页
The marine biopharmaceutical industry(MBI)has been considered as an important part of the blue economy.The high-quality development of this industry depends on the high-level coordinated development of technological i... The marine biopharmaceutical industry(MBI)has been considered as an important part of the blue economy.The high-quality development of this industry depends on the high-level coordinated development of technological innovation system(TIS).In the present study,the coupling mechanism of industrial innovation input subsystem and innovation output subsystem was analyzed for the first time.On this basis,the development level and coupling coordination level of TIS in China’s MBI during 2008-2018 were empirically evaluated with the capacity coupling coordination model.Then,the obstacle factors were diagnosed and recognized with the obstacle model.The results showed that the innovation input index fluctuated at a low level in China’s MBI.The innovation output index has basically maintained a growth trend,whereas the quality of development was not high.Although the coupling coordination level of TIS showed a positive change as mild disordered→primary coordinated→well-coordinated,the development type of innovation system has changed from the lagging output of innovation into the lagging input of innovation.Insufficient input of innovation factors remained the main obstacle to the improvement of coordination level.Based on the above analysis,suggestions were put forward from the perspectives of policy and fund guarantees to improve the coupling coordination level in China’s MBI. 展开更多
关键词 marine biopharmaceutical industry technological innovation system subsystem coupling coordinated development obstacle factor
在线阅读 下载PDF
Orthogonal Frequency Division Multiplexing Adaptive Technology for Multinode Users of Seawater Channel Based on Inductively Coupled Mooring Chain
19
作者 ZHENG Yu LIU Yingjie +3 位作者 REN Yuanhong FEI Chen ZHANG Shijiang LI Hongzhi 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1243-1252,共10页
As an important part of buoy-type ocean monitoring systems,the inductively coupled mooring chain solves the problem of data cotransmission through the multinode sensors that it carries,which is significant for the rap... As an important part of buoy-type ocean monitoring systems,the inductively coupled mooring chain solves the problem of data cotransmission through the multinode sensors that it carries,which is significant for the rapid acquisition of fish,hydrology,and other information.This paper is based on a seawater channel transmission model with a depth of 300 m and a bandwidth of 2 MHz.An orthogonal frequency division multiplexing(OFDM)technology is used to overcome the multipath effect of signal transmission on a seawater medium.The adaptive technology is integrated into the OFDM,and an improved joint subcarrier and bit power allocation algorithm is proposed.This algorithm solves the problem of dynamic subcarrier allocation during the cotransmission of underwater multinode user data in seawater channels.The results show that the algorithm complexity can be reduced by 0.18126×10^(-2)s during one complete OFDM system data transmission by the improved greedy algorithm,and a total of 216 bits are transmitted by the OFDM.The normalized channel capacity can be improved by 0.012 bit s^(-1)Hz^(-1).At the bit error ratio(BER)of 10^(-3),the BER performance can be improved by approximately 6 d B.When the numbers of users are 4 and 8,the improved algorithm increases the channel capacity,and the higher the number of users,the more evident the channel capacity improvement effect is.The results of this paper have an important reference value for enhancing the transmission performance of inductively coupled mooring chain underwater multinode data. 展开更多
关键词 inductively coupled mooring chain seawater channel multinode users OFDM adaptive technology
在线阅读 下载PDF
Live birth rates of assisted reproductive technology treatment and spontaneous conception among subfertile couples in Singapore: A follow-up study
20
作者 Ho Lee Mee de Souza Nurun Nisa +1 位作者 Lee Shaw Ni Yu Su Ling 《Asian pacific Journal of Reproduction》 2018年第5期206-213,共8页
Objective: To explore the potential predictors of a live birth (LB) outcome among subfertile couples of Asian ethnicity undergoing the first fertility treatment cycle;to assess the cumulative live birth rates after su... Objective: To explore the potential predictors of a live birth (LB) outcome among subfertile couples of Asian ethnicity undergoing the first fertility treatment cycle;to assess the cumulative live birth rates after successive cycles;and to determine the incidence rate of spontaneous conception (SC).Methods:Subfertile couples were grouped according to treatment modalities at the first fertility treatment cycle: intrauterine insemination (IUI),in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) and no treatment, and were followed-up for duration up to seven years. Multivariable logistic regression analysis was used for statistical analyses. Results: Age of female subjects [35-38 years, odds ratio (OR): 0.39;≥39 years, OR: 0.14], uterine factor subfertility (OR: 5.24), and treatment modalities (ORs: IUI 0.25, IVF 2.33 and ICSI 1.91) significantly predicted a LB outcome (P<0.05). The cumulative live birth rates were 11.7% IUI, 41.5% IVF, 27.5% ICSI and 22.6% from frozen embryo transfer cycles. The cumulative SC rate was 24.6% in the non-treated group and 10.7% in the treated group. All LBs from IVF cycles were delivered by the second cycle and within four years, compared to SC delivery of within five years in the non-treated group and six years in the treated group. Conclusions:Age of female subject, uterine factor and modalities of treatment are significant predictors for LB outcome at the first cycle. Higher delivery rates could be achieved following fewer successive IVF cycles and within a shorter duration compared to SC. 展开更多
关键词 Assisted REPRODUCTIVE technology SEMEN parameters SPERM hyaluronan-binding assay SPONTANEOUS CONCEPTION Subfertile Asian couples
暂未订购
上一页 1 2 94 下一页 到第
使用帮助 返回顶部