期刊文献+
共找到7,106篇文章
< 1 2 250 >
每页显示 20 50 100
Progress on Multi-Field Coupling Simulation Methods in Deep Strata Rock Breaking Analysis
1
作者 Baoping Zou Chenhao Pei +3 位作者 Qizhi Chen Yansheng Deng Yongguo Chen Xu Long 《Computer Modeling in Engineering & Sciences》 2025年第3期2457-2485,共29页
The utilization of multi-field coupling simulation methods has become a pivotal approach for the investigation of intricate fracture behavior and interaction mechanisms of rock masses in deep strata.The high temperatu... The utilization of multi-field coupling simulation methods has become a pivotal approach for the investigation of intricate fracture behavior and interaction mechanisms of rock masses in deep strata.The high temperatures,pressures and complex geological environments of deep strata frequently result in the coupling of multiple physical fields,including mechanical,thermal and hydraulic fields,during the fracturing of rocks.This review initially presents an overview of the coupling mechanisms of these physical fields,thereby elucidating the interaction processes ofmechanical,thermal,and hydraulic fields within rockmasses.Secondly,an in-depth analysis ofmulti-field coupling is conducted from both spatial and temporal perspectives,with the introduction of simulation methods for a range of scales.It emphasizes cross-scale coupling methodologies for the transfer of rock properties and physical field data,including homogenization techniques,nested coupling strategies and data-driven approaches.To address the discontinuous characteristics of the rock fracture process,the review provides a detailed explanation of continuousdiscontinuous couplingmethods,to elucidate the evolution of rock fracturing and deformationmore comprehensively.In conclusion,the review presents a summary of the principal points,challenges and future directions of multi-field coupling simulation research.It also puts forward the potential of integrating intelligent algorithms with multi-scale simulation techniques to enhance the accuracy and efficiency of multi-field coupling simulations.This offers novel insights into multi-field coupling simulation analysis in deep rock masses. 展开更多
关键词 multi-field coupling numerical simulation MULTI-SCALE information transfer DISCONTINUITY
在线阅读 下载PDF
Multi-field Coupling Simulation of Impact of Temperature and Density of Heat Injection Well on Carbon Budget during Hydrate Exploitation in Qilian Mountain Permafrost Region
2
作者 Zhenhua Han Ruirui Li +2 位作者 Luqing Zhang Jian Zhou Song Wang 《Journal of Earth Science》 SCIE CAS CSCD 2024年第6期1934-1943,共10页
Permafrost regions of Qilian Mountains in China are rich in gas hydrate resources.Once greenhouse gases in deep frozen layer are released into the atmosphere during hydrate mining,a series of negative consequences occ... Permafrost regions of Qilian Mountains in China are rich in gas hydrate resources.Once greenhouse gases in deep frozen layer are released into the atmosphere during hydrate mining,a series of negative consequences occur.This study aims to evaluate the impact of hydrate thermal exploitation on regional permafrost and carbon budgets based on a multi-physical field coupling simulation.The results indicate that the permeability of the frozen soil is anisotropic,and the low permeability frozen layer can seal the methane gas in the natural state.Heat injection mining of hydrates causes the continuous melting of permafrost and the escape of methane gas,which transforms the regional permafrost from a carbon sink to a carbon source.A higher injection temperature concentrates the heat and causes uneven melting of the upper frozen layer,which provides a dominant channel for methane gas and results in increased methane emissions.However,dense heat injection wells cause more uniform melting of the lower permafrost layer,and the melting zone does not extend to the upper low permeability formation,which cannot provide advantageous channels for methane gas.Therefore,a reasonable and dense number of heat injection wells can reduce the risk of greenhouse gas emissions during hydrate exploitation. 展开更多
关键词 PERMAFROST gas hydrates carbon budget methane emissions greenhouse gases environmental effects multi-field coupling simulation
原文传递
Numerical Simulation on Thermomechanical Coupling Process in Friction Stir-Assisted Wire Arc Additive Manufacturing
3
作者 Li Long Xiao Yichen +2 位作者 Shi Lei Chen Ji Wu Chuansong 《稀有金属材料与工程》 北大核心 2026年第1期1-8,共8页
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit... Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties. 展开更多
关键词 friction stir processing wire arc additive manufacturing numerical simulation thermomechanical coupling temperature field DEFORMATION
原文传递
Analysis of the failure mechanism of ZnO varistors influenced by high-resistance media based on multi-field coupling simulation
4
作者 Pengfei Meng Yue Yin +5 位作者 Lei Wang Jingke Guo Zerui Li Kai Zhou Guangya Zhu Yefei Xu 《High Voltage》 2025年第3期673-679,共7页
This study focuses on the distribution of high-resistance media(pores and spinels)within ZnO varistors and explores the mechanical and electrical failure mechanisms of varistors under different pulse actions.Micro-CT ... This study focuses on the distribution of high-resistance media(pores and spinels)within ZnO varistors and explores the mechanical and electrical failure mechanisms of varistors under different pulse actions.Micro-CT technology revealed that the proportion of high-resistance media in the edge area is much higher than in the internal area.Simulation results indicated that a high porosity significantly increased temperature rise and thermal stress concentration,while a high spinel proportion exacerbated current concentration but had a relatively minor impact on the distribution of temperature rise and thermal stress.Under an electric field of 1000-1250 V/mm,pores transition from an insulating state to a conductive state,especially in the edge area,leading to concentrated temperature rise and thermal stress.Once the thermal stress exceeded the critical value of the mechanical strength of the pores,cracking failure occurred.The high spinel proportion in the edge area further intensified current concentration under high electric fields,working together with the conductivity of the pores to produce a significant local temperature rise,melting grain structure,and ultimately leading to puncture failure.This study provides a new perspective for understanding the failure mechanism of ZnO varistors and lays a theoretical foundation for the development of varistor materials with high energy absorption capacity. 展开更多
关键词 zno varistors SPINELS multi field coupling simulation electrical failure pores mechanical electrical failure mechanisms thermal stress mechanical failure
在线阅读 下载PDF
Omnidirectional simulation analysis of thermomechanical coupling mechanism in inertia friction welding of Ni-based superalloy
5
作者 Chang-an LI Guoliang QIN Hao WANG 《Chinese Journal of Aeronautics》 2025年第1期202-216,共15页
The coupling between heat and pressure is the kernel of inertia friction welding(IFW)and is still not fully understood.A novel 3D fully coupled finite element model based on a plastic friction pair was developed to si... The coupling between heat and pressure is the kernel of inertia friction welding(IFW)and is still not fully understood.A novel 3D fully coupled finite element model based on a plastic friction pair was developed to simulate the IFW process of a Ni-based superalloy and reveal the omnidirectional thermo-mechanical coupling mechanism of the friction interface.The numerical model successfully simulated the deceleration,deformation processes,and peak torsional moments in IFW and captured the evolution of temperature,contact pressure,and stress.The simulated results were validated through measured thermal history,optical macrography,and axial shortening.The results indicated that interfacial friction heat was the primary heat source,and plastic deformation energy only accounted for 4%of the total.The increase in initial rotational speed and friction pressure elevated the peak temperature,reaching a maximum of 1525.5K at an initial rotational speed of 2000 r/min and friction pressure of 400 MPa.The interface heat generation could form an axial temperature gradient exceeding 320K/mm.The radial inhomogeneities of heat generation and temperature were manifested in a concentric ring distribution with maximum heat flux and temperature ranging from 2/5 to 2/3 radius.The radial inhomogeneities were caused by increasing linear velocity along the radius and an opposite distribution of contact pressure,which could reach 1.7 times the set pressure at the center.The circumferential inhomogeneity of thermomechanical distribution during rotary friction welding was revealed for the first time,benefiting from the 3D model.The deflection and transformation of distribution in contact pressure and Mises stress were indicators of plastic deformation and transition of quasi-steady state welding.The critical Mises stress was 0.5 times the friction pressure in this study.The presented modeling provides a reliable insight into the thermo-mechanical coupling mechanism of IFW and lays a solid foundation for predicting the microstructures and mechanical properties of inertia friction welded joints. 展开更多
关键词 Inertia friction welding Thermo-mechanical coupling INHOMOGENEITY Numerical simulation Ni-based superalloy
原文传递
Numerical Simulation and Experimental Study of Heat-fluid-solid Coupling of Double Flapper-nozzle Servo Valve 被引量:19
6
作者 ZHAO Jianhua ZHOU Songlin +1 位作者 LU Xianghui GAO Dianrong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期1030-1038,共9页
The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo val... The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve. 展开更多
关键词 double flapper-nozzle servo valve heat-fluid-solid coupling numerical simulation warpage-deformation clamping stagnation zero position leakage
在线阅读 下载PDF
Analysis of multi-field coupling behaviors of sandwich piezoelectric semiconductor beams under thermal loadings
7
作者 Dejuan KONG Zhuangzhuang HE +1 位作者 Chengbin LIU Chunli ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1571-1590,共20页
Sandwich piezoelectric semiconductor(PS)structures have significant applications in multi-functional semiconductor devices.The analysis of multi-field coupling behaviors of PS structures is of fundamental importance i... Sandwich piezoelectric semiconductor(PS)structures have significant applications in multi-functional semiconductor devices.The analysis of multi-field coupling behaviors of PS structures is of fundamental importance in developing novel PS devices.In this paper,we develop a general temperature-deformation-polarization-carrier(TDPC)coupling model for sandwich-type PS beams involving pyroelectricity under thermal loadings,based on three-dimensional(3D)basic equations of the thermo-piezoelectric semiconductor(TPS).We derive analytical solutions for extensional,bending,and buckling deformations of simply-supported sandwich n-type PS beams subjected to open-circuit and electrically isolated boundary conditions.The accuracy of the proposed model in this paper is verified through finite element simulations implemented in the COMSOL software.Numerical results show that the initial electron concentration and the thickness ratio of the PS layer to the beam's total thickness have a significant effect on thermally induced extensional and bending responses,as well as critical buckling mechanical and thermal loadings.This study provides a theoretical framework and guidance for designing semiconductor devices based on sandwich PS beam structures. 展开更多
关键词 piezoelectric semiconductor(PS) sandwich beam multi-field coupling behavior critical buckling thermal loading analytical solution
在线阅读 下载PDF
Coupled Hydrodynamics and FEM Simulation of Catamaran Pontoon
8
作者 Ocid Mursid Karno Malau +5 位作者 Hartono Yudo Tuswan Muhammad Luqman Hakim Ahmad Firdhaus Andi Trimulyono Muhammad Iqbal 《China Ocean Engineering》 2025年第1期179-189,共11页
Shallow water infrastructure needs to support increased activity on the shores of Semarang.This study chooses several pontoons because of their good stability,rolling motion,and more expansive space.A coupled simulati... Shallow water infrastructure needs to support increased activity on the shores of Semarang.This study chooses several pontoons because of their good stability,rolling motion,and more expansive space.A coupled simulation method consisting of hydrodynamic and structural calculations has been used to evaluate a catamaran pontoon’s motion and structural integrity.Four different space sizes are set for the pontoon system:5 m,5.5 m,6 m,and 6.5 m.The frequency domain shows that the pontoon space affects the RAO in wave periods ranging from 3 s to 5 s.At wave periods of 3 s,4 s,and 5 s,the pontoon space significantly affects the maximum motion and chain tension parameter values,which are evaluated via time domain simulation.The critical stress of the pontoon is shown at a wave period of 5 s for 5 m and 5.5 m of pontoon space,which shows that the stress can reach 248 MPa. 展开更多
关键词 coupled simulation working pontoon HYDRODYNAMICS finite element method
在线阅读 下载PDF
Effect of Nacelle Motions on Rotor Performance and Drivetrain Dynamics in Floating Offshore Wind Turbines Using Fully Coupled Simulations
9
作者 Shuangyi Xie Yongran Li +2 位作者 Jiao He Yingzhe Kan Yuxin Li 《哈尔滨工程大学学报(英文版)》 2025年第6期1150-1163,共14页
This study investigates the effect of nacelle motions on the rotor performance and drivetrain dynamics of floating offshore wind turbines(FOWTs)through fully coupled aero-hydro-elastic-servo-mooring simulations.Using ... This study investigates the effect of nacelle motions on the rotor performance and drivetrain dynamics of floating offshore wind turbines(FOWTs)through fully coupled aero-hydro-elastic-servo-mooring simulations.Using the National Renewable Energy Laboratory 5 MW monopile-supported offshore wind turbine and the OC4 DeepCwind semisubmersible wind turbine as case studies,the research addresses the complex dynamic responses resulting from the interaction among wind,waves,and turbine structures.Detailed multi-body dynamics models of wind turbines,including drivetrain components,are created within the SIMPACK framework.Meanwhile,the mooring system is modeled using a lumped-mass method.Various operational conditions are simulated through five wind-wave load cases.Results demonstrate that nacelle motions significantly influence rotor speed,thrust,torque,and power output,as well as the dynamic loads on drivetrain components.These findings highlight the need for advanced simulation techniques for the design and optimization of FOWTs to ensure reliable performance and longevity. 展开更多
关键词 Drivetrain coupled simulation Monopile wind turbine Semisubmersible platform Nacelle motion
在线阅读 下载PDF
Oxidative coupling of methane in a fixed bed reactor over perovskite catalyst:A simulation study using experimental kinetic model 被引量:8
10
作者 Nakisa Yaghobi Mir Hamid Reza Ghoreishy 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期8-16,共9页
The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separat... The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio. 展开更多
关键词 oxidative coupling of methane simulation KINETICS fixed bed catalytic reactor ETHYLENE
在线阅读 下载PDF
Finite-difference simulation of elastic waves in fluid-solid coupled media with irregular interface
11
作者 Xu-Hui Zhou Yi-Yuan Wang Shou-Dong Huo 《Petroleum Science》 2025年第10期4083-4101,共19页
The finite-difference method(FDM)is an essential tool in exploration geophysics,particularly for simulating wave propagation in fluid-solid coupled media.Despite its widespread use,FDM faces significant challenges tha... The finite-difference method(FDM)is an essential tool in exploration geophysics,particularly for simulating wave propagation in fluid-solid coupled media.Despite its widespread use,FDM faces significant challenges that affect its accuracy and efficiency.Firstly,the implicit handling of fluid-solid boundary conditions through parameter averaging strategy often results in low simulation accuracy.Secondly,surface topography can introduce staircase diffraction noise when grid spacing is large.To address these issues,this paper presents a novel approach.We derive an implicit expression for fluidsolid boundary conditions based on average medium theory,translating explicit boundary conditions into model parameter modification.This enables implicit handling of fluid-solid boundaries by modifying the parameters near the boundary.Furthermore,to mitigate staircase diffraction noise,we employ multiple interface discretization based on the superposition method.This effectively suppresses staircase diffraction noise without requiring grid refinement.The efficacy of our method in accurately modeling wave propagation phenomena in fluid-solid coupled media is demonstrated by numerical examples.Results align well with those obtained using the spectral element method(SEM),with significant reduction in staircase diffraction noise. 展开更多
关键词 Fluid-solid coupled media Boundary condition Irregular interface Numerical simulation Staircase diffraction noise
原文传递
Dynamic simulation of urbanization and eco-environment coupling:Current knowledge and future prospects 被引量:4
12
作者 CUI Xuegang FANG Chuanglin +2 位作者 LIU Haimeng LIU Xiaofei LI Yonghong 《Journal of Geographical Sciences》 SCIE CSCD 2020年第2期333-352,共20页
Urbanization and eco-environment coupling is a research hotspot.Dynamic simulation of urbanization and eco-environment coupling needs to be improved because the processes of coupling are complex and statistical method... Urbanization and eco-environment coupling is a research hotspot.Dynamic simulation of urbanization and eco-environment coupling needs to be improved because the processes of coupling are complex and statistical methods are limited.Systems science and cross-scale coupling allow us to define the coupled urbanization and eco-environment system as an open complex giant system with multiple feedback loops.We review the current state of dynamic simulation of urbanization and eco-environment coupling and find that:(1)The use of dynamic simulation is an increasing trend,the relevant theory is being developed,and modeling processes are being improved;(2)Dynamic simulation technology has become diversified,refined,intelligent and integrated;(3)Simulation is mainly performed for three aspects of the coupling,multiple regions and multiple elements,local coupling and telecoupling,and regional synergy.However,we also found some shortcomings:(1)Basic theories are inadequately developed and insufficiently integrated;(2)The methods of unifying systems and sharing data are behind the times;(3)Coupling relations and the dynamic characteristics of the main driving elements are not fully understood or completely identified.Additionally,simulation of telecoupling does not quantify parameters and is not systemically unified,and therefore cannot be used to represent spatial synergy.In the future,we must promote communication between research networks,technology integration and data sharing to identify the processes governing change in coupled relations and in the main driving elements in urban agglomerations.Finally,we must build decision support systems to plan and ensure regional sustainable urbanization. 展开更多
关键词 urbanization and eco-environment coupling dynamic simulation THEORY METHODS APPLICATIONS
原文传递
Numerical simulation of compound media coupling mechanism of deep mining overburden strata 被引量:4
13
作者 YANG Fan, CHEN Shuang School of Geometrics, Liaoning Technical University, Fuxin 123000, China 《中国有色金属学会会刊:英文版》 CSCD 2011年第S3期631-636,共6页
Aiming at the regularity of deep mining strata movement, through the application of plate theory and discrete medium theory in establishing the coupling model of the deep mining strata composite medium, the continuum ... Aiming at the regularity of deep mining strata movement, through the application of plate theory and discrete medium theory in establishing the coupling model of the deep mining strata composite medium, the continuum media and the non-continuum media were coupled into the compound media giant system, and the stress of compound layer and strain coupling relationship were established. The accuracy of forecasting surface subsidence in deep mining conditions was improved. The deep mining was simulated through 3-D numerical value by the FLAC3D finite difference software, and the coupling relationship and coupling layer in the strata composite layer were analyzed. The results show that, under the deep mining condition, the coupling zone is in the position of coal seam roof with the thickness of 15-20 times, on which, the stress-strain has much difference on the coupling zone. Considering interlayer effect of coupling zone can improve the prediction precision of surface subsidence. 展开更多
关键词 deep MINING NUMERICAL simulation coupling mechanism
在线阅读 下载PDF
Fluid-solid coupling numerical simulation of charge process in variable-mass thermodynamic system 被引量:8
14
作者 胡继敏 金家善 严志腾 《Journal of Central South University》 SCIE EI CAS 2012年第4期1063-1072,共10页
Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated... Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase. 展开更多
关键词 steam accumulator variable-mass control valve fluid-solid coupling numerical simulation
在线阅读 下载PDF
Numerical simulation research on dynamical variation of permeability of coal around roadway based on gas-solid coupling model for gassy coal 被引量:2
15
作者 Tao Yang Bo Li Qiusheng Ye 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第6期925-932,共8页
Due to the change of initial stress state caused by roadway excavation, the permeability of the coal body may be changed during the excavation process. In this paper, according to the different stress states, the coal... Due to the change of initial stress state caused by roadway excavation, the permeability of the coal body may be changed during the excavation process. In this paper, according to the different stress states, the coal around the roadway was divided into the seepage open zone, seepage orientation zone, seepage decay zone and original seepage zone along the radial direction of the roadway. The loaded gassy coal was treated as a viscoelastic and plastic softened medium, and the mechanical behaviors of the viscoelastic zone, plastic softened zone and broken zone around the roadway were analyzed with the consideration of the loading creep, softening and expansion effect of the gassy coal. According to the law of conservation of mass and the Darcy law, the flow-solid coupled model for the gas transportation of the coal around the roadway was established considering the dynamic evolution of the adsorption characteristics, porosity and permeability of the coal, and the simulation software COMSOL was utilized to numerically simulate the stress state and gas flow regularity around the coal, which provided meaningful reference for investigating the stability of the coal and rock around the roadway. 展开更多
关键词 coupled model PERMEABILITY ROADWAY Numerical simulation Gassy COAL
在线阅读 下载PDF
Iterative coupling reservoir simulation on high performance computers 被引量:2
16
作者 Lu Bo Wheeler Mary F. 《Petroleum Science》 SCIE CAS CSCD 2009年第1期43-50,共8页
In this paper, the iterative coupling approach is proposed for applications to solving multiphase flow equation systems in reservoir simulation, as it provides a more flexible time-stepping strategy than existing appr... In this paper, the iterative coupling approach is proposed for applications to solving multiphase flow equation systems in reservoir simulation, as it provides a more flexible time-stepping strategy than existing approaches. The iterative method decouples the whole equation systems into pressure and saturation/concentration equations, and then solves them in sequence, implicitly and semi-implicitly. At each time step, a series of iterations are computed, which involve solving linearized equations using specific tolerances that are iteration dependent. Following convergence of subproblems, material balance is checked. Convergence of time steps is based on material balance errors. Key components of the iterative method include phase scaling for deriving a pressure equation and use of several advanced numerical techniques. The iterative model is implemented for parallel computing platforms and shows high parallel efficiency and scalability. 展开更多
关键词 Iterative coupling reservoir simulation multiphase flow phase scaling parallel scalability
原文传递
Force Feedback Coupling with Dynamics for Physical Simulation of Product Assembly and Operation Performance 被引量:2
17
作者 LIU Zhenyu TAN Jianrong +1 位作者 DUAN Guifang FU Yun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期164-172,共9页
Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that t... Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that the controlled objects are completely flee and the target object is only completely fixed or flee, thus, the dynamics of the kinematic chain where the controlled objects are located are neglected during the physical simulation of the product manipulation with force feedback interaction. This paper proposes a physical simulation method of product assembly and operation manipulation based on statistically learned contact force prediction model and the coupling of force feedback and dynamics. In the proposed method, based on hidden Markov model (HMM) and local weighting learning (LWL), contact force prediction model is constructed, which can estimate the contact force in real time during interaction. Based on computational load balance model, the computing resources are dynamically assigned and the dynamics integral step is optimized. In addition, smoothing process is performed to the force feedback on the synchronization points. Consequently, we can solve the coupling and synchronization problems of high-frequency feedback force servo. low-frequency dynamics solver servo and scene rendering servo, and realize highly stable and accurate force feedback in the physical simulation of product assembly and operation manipulation. This research proposes a physical simulation method of product assembly and operation manipulation. 展开更多
关键词 contact force prediction force feedback multi-rate coupling physical simulation of manipulation virtual assembly
在线阅读 下载PDF
A simulation analysis on pelagic-benthic coupling ecosystem of the northern Jiaozhou Bay, Qingdao, China 被引量:2
18
作者 Wu Zengmao, Zhai Xuemei, Zhang Zhinan, Yu Guangyao, Zhang Xinling, Gao Shanhong 1. College of Physical and Environmental Oceanography, Ocean University of Qingdao, Qingdao 266003, China 2. College of Marine Biology Science, Ocean University of Qi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2001年第3期443-453,共11页
关键词 Ecosystem model the Jiaozhou Hay pelagic-benthic coupling ecosystem seasonal variation simulation
在线阅读 下载PDF
Safety modeling and simulation of multi-factor coupling heavy-equipment airdrop 被引量:8
19
作者 Zhang Jiuxing Xu Haojun +1 位作者 Zhang Dengcheng Liu Dongliang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1062-1069,共8页
Heavy-equipment airdrop is a highly risky procedure that has a complicated system due to the secluded and complex nature of factors' coupling. As a result, it is difficult to study the modeling and safety simulation ... Heavy-equipment airdrop is a highly risky procedure that has a complicated system due to the secluded and complex nature of factors' coupling. As a result, it is difficult to study the modeling and safety simulation of this system. The dynamic model of the heavy-equipment airdrop is based on the Lagrange analytical mechanics, which has all the degrees of freedom and can accurately pinpoint the real-time coordinates and attitude of the carrier with its cargo. Unfavorable conditions accounted in the factors' models, including aircraft malfunctions and adverse environments, are established from a man-machine-environment perspective. Subsequently, a virtual simulation system for the safety research of the multi-factor coupling heavy-equipment airdrop is developed through MATLAB/Simulink, C language and Flightgear software. To verify the veracity of the theory, the verification model is built based on dynamic software ADAMS. Finally, the emulation is put to the test with the input of realistic accident variables to ascertain its feasibility and validity of this method. 展开更多
关键词 Heavy-equipment airdrop Modeling and simulation Multi-body system Multi-factor coupling Safety
原文传递
Non-Linear Numerical Simulation of Coal and Gas Outburst as a Coupling Instability Problem of Solid-Fluid Biphase Media 被引量:1
20
作者 赵国景 丁继辉 《International Journal of Mining Science and Technology》 SCIE EI 1998年第2期103-107,共5页
Based on the theory of continuum mechanics of multi-pbase media, a mathematical model and non-linear FEM equation of the coupling instability problem of solid-fluid biphase media for coal-methane outburst under finite... Based on the theory of continuum mechanics of multi-pbase media, a mathematical model and non-linear FEM equation of the coupling instability problem of solid-fluid biphase media for coal-methane outburst under finite deformation are established. The critical conditions of the surface instability are presented as the singularity of the total stiffness matrices of the coal body for coal-methaue outburst. That means the deformtion or the coal body emerges bifurcatiou phenomena. The numerical simulation of a typical outburst is made. 展开更多
关键词 coal-methane OUTBURST biphase MEDIA coupling INSTABILITY NON-LINEAR FEM numerical simulation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部