In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The e...In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation.展开更多
This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data a...This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data and historical academic performance)with dynamic behavioral patterns(e.g.,real-time interactions and evolving interests over time).The research employs Term Frequency-Inverse Document Frequency(TF-IDF)for semantic feature extraction,integrates the Analytic Hierarchy Process(AHP)for feature weighting,and introduces a time decay function inspired by Newton’s law of cooling to dynamically model changes in learners’interests.Empirical results demonstrate that this framework effectively captures the dynamic evolution of learners’behaviors and provides context-aware learning resource recommendations.The study introduces a novel paradigm for learner modeling in educational technology,combining methodological innovation with a scalable technical architecture,thereby laying a foundation for the development of adaptive learning systems.展开更多
The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland im...The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland image segmentation and extraction.An EnFCM remote sensing forest land extraction method based on PCA multi-feature fusion was proposed.Firstly,histogram equalization was applied to improve the image contrast.Secondly,the texture and edge features of the image were extracted,and a multi-feature fused pixel image was generated using the PCA technique.Moreover,the fused feature was used as a feature constraint to measure the difference of pixels instead of a single grey-scale feature.Finally,an improved feature distance metric calculated the similarity between the pixel points and the cluster center to complete the cluster segmentation.The experimental results showed that the error was between 1.5%and 4.0%compared with the forested area counted by experts’hand-drawing,which could obtain a high accuracy segmentation and extraction result.展开更多
Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity...Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity of clinical terminology,the complexity of Chinese text semantics,and the uncertainty of Chinese entity boundaries.To address these issues,we propose an improved CNER model,which is based on multi-feature fusion and multi-scale local context enhancement.The model simultaneously fuses multi-feature representations of pinyin,radical,Part of Speech(POS),word boundary with BERT deep contextual representations to enhance the semantic representation of text for more effective entity recognition.Furthermore,to address the model’s limitation of focusing just on global features,we incorporate Convolutional Neural Networks(CNNs)with various kernel sizes to capture multi-scale local features of the text and enhance the model’s comprehension of the text.Finally,we integrate the obtained global and local features,and employ multi-head attention mechanism(MHA)extraction to enhance the model’s focus on characters associated with medical entities,hence boosting the model’s performance.We obtained 92.74%,and 87.80%F1 scores on the two CNER benchmark datasets,CCKS2017 and CCKS2019,respectively.The results demonstrate that our model outperforms the latest models in CNER,showcasing its outstanding overall performance.It can be seen that the CNER model proposed in this study has an important application value in constructing clinical medical knowledge graph and intelligent Q&A system.展开更多
Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend o...Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.展开更多
In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,th...In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers.展开更多
This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chin...This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions.展开更多
This study investigates the impact of welding heat input on weldments of modified 9Cr-1Mo(P91)steel,a high-strength material that requires high-energy welding processes like submerged arc welding.In the as-welded cond...This study investigates the impact of welding heat input on weldments of modified 9Cr-1Mo(P91)steel,a high-strength material that requires high-energy welding processes like submerged arc welding.In the as-welded condition,P91 steel welds primarily consist of untempered martensite,which transforms into tempered martensite during post-weld heat treatment(PWHT).Electron spectro-scopy analysis reveals the presence of M_(23)C_(6) and MX carbonitride precipitates at grain boundaries.Increasing the heat input leads to greater quantities of precipitates in the prior austenite grain boundaries,which can affect material properties.Weldment hardness profiles exhibit modest improvements,while ultimate tensile strength and toughness decrease with higher welding heat input,poten-tially due to the formation of a ferritic phase.Residual stress distributions are noticeably influenced by the welding heat input level.展开更多
To analyze the correlation between the input energy parameters(V_(E))and typical intensity measures(IMs)of offshore ground motions,based on 273 earthquake events recorded by the K-NET in Japan,892 offshore ground moti...To analyze the correlation between the input energy parameters(V_(E))and typical intensity measures(IMs)of offshore ground motions,based on 273 earthquake events recorded by the K-NET in Japan,892 offshore ground motion records with moment magnitudes from 4.0 to 7.0 were used in this study.Residuals obtained through a ground motion model were calculated and analyzed for the correlation between V_(E) and amplitude,duration,frequency content and cumulative IMs.The results indicate that PGV and PGD have strong correlation with the V_(E)(T>0.2 s and T>0.4 s),the duration IMs have weakly negative correlation with the V_(E),Sd_(1) has a strong correlation with the V_(E) in the periods of T>0.4 s,T_(g) has a weak correlation with V_(E) and the cumulative IMs have strong correlation with the V_(E).The parametric predictive equations between typical IMs and V_(E) was proposed,and the differences between the prediction equations from the onshore ground motion records were compared.The differences in parametric predicted equations between offshore and onshore ground motions were confirmed in this study.Proposed correlation equations can be applied to offshore probabilistic seismic hazard analysis and the selection of ground motion records by generalized conditional intensity measures.展开更多
This paper proposes a novel multivalued recurrent neural network model driven by external inputs,along with two innovative learning algorithms.By incorporating a multivalued activation function,the proposed model can ...This paper proposes a novel multivalued recurrent neural network model driven by external inputs,along with two innovative learning algorithms.By incorporating a multivalued activation function,the proposed model can achieve multivalued many-to-one associative memory,and the newly developed algorithms enable effective storage of many-to-one patterns in the coefficient matrix while maintaining the indispensability of inputs in many-to-one associative memory.The proposed learning algorithm addresses a critical limitation of existing models which fail to ensure completely erroneous outputs when facing partial input missing in many-to-one associative memory tasks.The methodology is rigorously derived through theoretical analysis,incorporating comprehensive verification of both the existence and global exponential stability of equilibrium points.Demonstrative examples are provided in the paper to show the effectiveness of the proposed theory.展开更多
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta...Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.展开更多
This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance ...This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance control scheme is proposed,which enables the lateral position error of the vehicle to be kept within the prescribed performance boundaries all the time.This is achieved by firstly introducing an improved performance function into the controller design such that the stringent initial condition requirements can be relaxed,which further allows the global prescribed performance control result,and then,developing a multivariable adaptive terminal sliding mode based controller such that both input saturation and parameter uncertainties are handled effectively,which further ensures the robust lane-keeping control.Finally,the proposed control strategy is validated through numerical simulations,demonstrating its effectiveness.展开更多
The effects of Ti/N ratio on the number densities of nano particles,the size of the prior austenite grain(PAG)and the toughness of the heat-affected zone(HAZ)of Mg-deoxidized steels were studied after high heat input ...The effects of Ti/N ratio on the number densities of nano particles,the size of the prior austenite grain(PAG)and the toughness of the heat-affected zone(HAZ)of Mg-deoxidized steels were studied after high heat input welding of 400 kJ/cm.With increasing the Ti/N ratio from 2.7 to 5.7,the cuboid nano-sized particles are formed,and their number density increases.The area fractions of ductile intragranular acicular ferrites(IAFs)have the highest value and the area fractions of brittle microstructures of ferrite side plates and upper bainites have the lowest value in TN30 steel.With the Ti/N ratio of about 3.0,the HAZ of steel plate has the best low-temperature toughness.With increasing the Ti/N ratio from 2.7 to 5.7,the PAG sizes after the high-temperature laser scanning confocal microscopy observation decrease linearly with increasing the number densities of nano-sized particles.The PAG size of TN30 steel is between 100 and 150μm,which is conducive to the nucleation of IAFs.展开更多
This paper investigates the secure impulsive consensus of Lipschitz-type nonlinear multi-agent systems(MASs) with input saturation. According to the coupling of input saturation and denial of service(DoS) attacks, imp...This paper investigates the secure impulsive consensus of Lipschitz-type nonlinear multi-agent systems(MASs) with input saturation. According to the coupling of input saturation and denial of service(DoS) attacks, impulsive control for MASs becomes extremely challenging. Considering general DoS attacks,this paper provides the sufficient conditions for the almost sure consensus of the MASs with input saturation, where the error system can achieve almost sure local exponential stability.Through linear matrix inequalities(LMIs), the relation between the trajectory boundary and DoS attacks is characterized, and the trajectory boundary is estimated. Furthermore, an optimization method of the domain of attraction is proposed to maximize the size. And a non-conservative and practical boundary is proposed to characterize the effect of DoS attacks on MASs. Finally, considering a multi-agent system with typical Chua's circuit dynamic model, an example is provided to illustrate the theorems' correctness.展开更多
Vehicle re-identification(ReID)aims to retrieve the target vehicle in an extensive image gallery through its appearances from various views in the cross-camera scenario.It has gradually become a core technology of int...Vehicle re-identification(ReID)aims to retrieve the target vehicle in an extensive image gallery through its appearances from various views in the cross-camera scenario.It has gradually become a core technology of intelligent transportation system.Most existing vehicle re-identification models adopt the joint learning of global and local features.However,they directly use the extracted global features,resulting in insufficient feature expression.Moreover,local features are primarily obtained through advanced annotation and complex attention mechanisms,which require additional costs.To solve this issue,a multi-feature learning model with enhanced local attention for vehicle re-identification(MFELA)is proposed in this paper.The model consists of global and local branches.The global branch utilizes both middle and highlevel semantic features of ResNet50 to enhance the global representation capability.In addition,multi-scale pooling operations are used to obtain multiscale information.While the local branch utilizes the proposed Region Batch Dropblock(RBD),which encourages the model to learn discriminative features for different local regions and simultaneously drops corresponding same areas randomly in a batch during training to enhance the attention to local regions.Then features from both branches are combined to provide a more comprehensive and distinctive feature representation.Extensive experiments on VeRi-776 and VehicleID datasets prove that our method has excellent performance.展开更多
Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noti...Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.展开更多
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide...The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.展开更多
Massive open online courses(MOOC)have recently gained worldwide attention in the field of education.The manner of MOOC provides a new option for learning various kinds of knowledge.A mass of data miming algorithms hav...Massive open online courses(MOOC)have recently gained worldwide attention in the field of education.The manner of MOOC provides a new option for learning various kinds of knowledge.A mass of data miming algorithms have been proposed to analyze the learner’s characteristics and classify the learners into different groups.However,most current algorithms mainly focus on the final grade of the learners,which may result in an improper classification.To overcome the shortages of the existing algorithms,a novel multi-feature weighting based K-means(MFWK-means)algorithm is proposed in this paper.Correlations between the widely used feature grade and other features are first investigated,and then the learners are classified based on their grades and weighted features with the proposed MFWK-means algorithm.Experimental results with the Canvas Network Person-Course(CNPC)dataset demonstrate the effectiveness of our method.Moreover,a comparison between the new MFWK-means and the traditional K-means clustering algorithm is implemented to show the superiority of the proposed method.展开更多
As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics ...As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics of a low average rate and concealment.With features extracted from the network traffic,a new detection approach based on multi-feature fusion is proposed to solve the problem in this paper.An attack feature set containing the Acknowledge character(ACK)sequence number,the packet size,and the queue length is used to classify normal and LDoS attack traffics.Each feature is digitalized and preprocessed to fit the input of the K-Nearest Neighbor(KNN)classifier separately,and to obtain the decision contour matrix.Then a posteriori probability in the matrix is fused,and the fusion decision index D is used as the basis of detecting the LDoS attacks.Experiments proved that the detection rate of the multi-feature fusion algorithm is higher than those of the single-based detection method and other algorithms.展开更多
Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection ...Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection and extract false smoke roots.This study developed a new smoke roots search algorithm based on a multi-feature fusion dynamic extraction strategy.This determines smoke origin candidate points and region based on a multi-frame discrete confidence level.The results show that the new method provides a more complete smoke contour with no background interference,compared to the results using existing methods.Unlike video-based methods that rely on continuous frames,an adaptive threshold method was developed to build the judgment image set composed of non-consecutive frames.The smoke roots origin search algorithm increased the detection rate and significantly reduced false detection rate compared to existing methods.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12072027,62103052,61603346 and 62103379)the Henan Key Laboratory of General Aviation Technology,China(No.ZHKF-230201)+3 种基金the Funding for the Open Research Project of the Rotor Aerodynamics Key Laboratory,China(No.RAL20200101)the Key Research and Development Program of Henan Province,China(Nos.241111222000 and 241111222900)the Key Science and Technology Program of Henan Province,China(No.232102220067)the Scholarship Funding from the China Scholarship Council(No.202206030079).
文摘In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation.
基金This work is supported by the Ministry of Education of Humanities and Social Science projects in China(No.20YJCZH124)Guangdong Province Education and Teaching Reform Project No.640:Research on the Teaching Practice and Application of Online Peer Assessment Methods in the Context of Artificial Intelligence.
文摘This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data and historical academic performance)with dynamic behavioral patterns(e.g.,real-time interactions and evolving interests over time).The research employs Term Frequency-Inverse Document Frequency(TF-IDF)for semantic feature extraction,integrates the Analytic Hierarchy Process(AHP)for feature weighting,and introduces a time decay function inspired by Newton’s law of cooling to dynamically model changes in learners’interests.Empirical results demonstrate that this framework effectively captures the dynamic evolution of learners’behaviors and provides context-aware learning resource recommendations.The study introduces a novel paradigm for learner modeling in educational technology,combining methodological innovation with a scalable technical architecture,thereby laying a foundation for the development of adaptive learning systems.
基金supported by National Natural Science Foundation of China(No.61761027)Gansu Young Doctor’s Fund for Higher Education Institutions(No.2021QB-053)。
文摘The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland image segmentation and extraction.An EnFCM remote sensing forest land extraction method based on PCA multi-feature fusion was proposed.Firstly,histogram equalization was applied to improve the image contrast.Secondly,the texture and edge features of the image were extracted,and a multi-feature fused pixel image was generated using the PCA technique.Moreover,the fused feature was used as a feature constraint to measure the difference of pixels instead of a single grey-scale feature.Finally,an improved feature distance metric calculated the similarity between the pixel points and the cluster center to complete the cluster segmentation.The experimental results showed that the error was between 1.5%and 4.0%compared with the forested area counted by experts’hand-drawing,which could obtain a high accuracy segmentation and extraction result.
基金This study was supported by the National Natural Science Foundation of China(61911540482 and 61702324).
文摘Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity of clinical terminology,the complexity of Chinese text semantics,and the uncertainty of Chinese entity boundaries.To address these issues,we propose an improved CNER model,which is based on multi-feature fusion and multi-scale local context enhancement.The model simultaneously fuses multi-feature representations of pinyin,radical,Part of Speech(POS),word boundary with BERT deep contextual representations to enhance the semantic representation of text for more effective entity recognition.Furthermore,to address the model’s limitation of focusing just on global features,we incorporate Convolutional Neural Networks(CNNs)with various kernel sizes to capture multi-scale local features of the text and enhance the model’s comprehension of the text.Finally,we integrate the obtained global and local features,and employ multi-head attention mechanism(MHA)extraction to enhance the model’s focus on characters associated with medical entities,hence boosting the model’s performance.We obtained 92.74%,and 87.80%F1 scores on the two CNER benchmark datasets,CCKS2017 and CCKS2019,respectively.The results demonstrate that our model outperforms the latest models in CNER,showcasing its outstanding overall performance.It can be seen that the CNER model proposed in this study has an important application value in constructing clinical medical knowledge graph and intelligent Q&A system.
基金funded by the Science and Technology Project of China Southern Power Grid(YNKJXM20210175)the National Natural Science Foundation of China(52177070).
文摘Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.
基金supported by the National Natural Science Foundation of China(62073036,62076031)Beijing Natural Science Foundation(4242049).
文摘In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers.
文摘This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions.
文摘This study investigates the impact of welding heat input on weldments of modified 9Cr-1Mo(P91)steel,a high-strength material that requires high-energy welding processes like submerged arc welding.In the as-welded condition,P91 steel welds primarily consist of untempered martensite,which transforms into tempered martensite during post-weld heat treatment(PWHT).Electron spectro-scopy analysis reveals the presence of M_(23)C_(6) and MX carbonitride precipitates at grain boundaries.Increasing the heat input leads to greater quantities of precipitates in the prior austenite grain boundaries,which can affect material properties.Weldment hardness profiles exhibit modest improvements,while ultimate tensile strength and toughness decrease with higher welding heat input,poten-tially due to the formation of a ferritic phase.Residual stress distributions are noticeably influenced by the welding heat input level.
基金National Natural Science Foundation of China under Grant No.52478568National Key R&D Program of China under Grant Nos.2021YFC3100701 and 2022YFC3003503the Nature Science Foundation of Hubei Province under Grant No.2023AFA030。
文摘To analyze the correlation between the input energy parameters(V_(E))and typical intensity measures(IMs)of offshore ground motions,based on 273 earthquake events recorded by the K-NET in Japan,892 offshore ground motion records with moment magnitudes from 4.0 to 7.0 were used in this study.Residuals obtained through a ground motion model were calculated and analyzed for the correlation between V_(E) and amplitude,duration,frequency content and cumulative IMs.The results indicate that PGV and PGD have strong correlation with the V_(E)(T>0.2 s and T>0.4 s),the duration IMs have weakly negative correlation with the V_(E),Sd_(1) has a strong correlation with the V_(E) in the periods of T>0.4 s,T_(g) has a weak correlation with V_(E) and the cumulative IMs have strong correlation with the V_(E).The parametric predictive equations between typical IMs and V_(E) was proposed,and the differences between the prediction equations from the onshore ground motion records were compared.The differences in parametric predicted equations between offshore and onshore ground motions were confirmed in this study.Proposed correlation equations can be applied to offshore probabilistic seismic hazard analysis and the selection of ground motion records by generalized conditional intensity measures.
基金supported by the National Natural Science Foundation of China(Grant Nos.62376105,12101208,and 61906072)the Fundamental Research Funds for the Central Universities(Grant No.2662022XXQD001).
文摘This paper proposes a novel multivalued recurrent neural network model driven by external inputs,along with two innovative learning algorithms.By incorporating a multivalued activation function,the proposed model can achieve multivalued many-to-one associative memory,and the newly developed algorithms enable effective storage of many-to-one patterns in the coefficient matrix while maintaining the indispensability of inputs in many-to-one associative memory.The proposed learning algorithm addresses a critical limitation of existing models which fail to ensure completely erroneous outputs when facing partial input missing in many-to-one associative memory tasks.The methodology is rigorously derived through theoretical analysis,incorporating comprehensive verification of both the existence and global exponential stability of equilibrium points.Demonstrative examples are provided in the paper to show the effectiveness of the proposed theory.
基金National Natural Science Foundation of China(62373102)Jiangsu Natural Science Foundation(BK20221455)Anhui Provincial Key Research and Development Project(2022i01020013)。
文摘Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.
基金supported in part by the National Key Research and Development Program of China under Grant 2023YFA1011803in part by Natural Science Foundation of Chongqing,China under Grant CSTB2023NSCQ-MSX0588+2 种基金in part by the Fundamental Research Funds for the Central Universities,China under Grant 2023CDJKYJH047in part by the National Natural Science Foundation of China under Grant 62273064,Grant 61991400,Grant 61991403,Grant 61933012,Grant 62250710167,Grant 62203078in part by Innovation Support Program for International Students Returning to China under Grant cx2022016.
文摘This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance control scheme is proposed,which enables the lateral position error of the vehicle to be kept within the prescribed performance boundaries all the time.This is achieved by firstly introducing an improved performance function into the controller design such that the stringent initial condition requirements can be relaxed,which further allows the global prescribed performance control result,and then,developing a multivariable adaptive terminal sliding mode based controller such that both input saturation and parameter uncertainties are handled effectively,which further ensures the robust lane-keeping control.Finally,the proposed control strategy is validated through numerical simulations,demonstrating its effectiveness.
基金financially supported by the National Natural Science Foundation of China(52474361).
文摘The effects of Ti/N ratio on the number densities of nano particles,the size of the prior austenite grain(PAG)and the toughness of the heat-affected zone(HAZ)of Mg-deoxidized steels were studied after high heat input welding of 400 kJ/cm.With increasing the Ti/N ratio from 2.7 to 5.7,the cuboid nano-sized particles are formed,and their number density increases.The area fractions of ductile intragranular acicular ferrites(IAFs)have the highest value and the area fractions of brittle microstructures of ferrite side plates and upper bainites have the lowest value in TN30 steel.With the Ti/N ratio of about 3.0,the HAZ of steel plate has the best low-temperature toughness.With increasing the Ti/N ratio from 2.7 to 5.7,the PAG sizes after the high-temperature laser scanning confocal microscopy observation decrease linearly with increasing the number densities of nano-sized particles.The PAG size of TN30 steel is between 100 and 150μm,which is conducive to the nucleation of IAFs.
基金supported by the National Natural Science Foundation of China(62373302,62333009)
文摘This paper investigates the secure impulsive consensus of Lipschitz-type nonlinear multi-agent systems(MASs) with input saturation. According to the coupling of input saturation and denial of service(DoS) attacks, impulsive control for MASs becomes extremely challenging. Considering general DoS attacks,this paper provides the sufficient conditions for the almost sure consensus of the MASs with input saturation, where the error system can achieve almost sure local exponential stability.Through linear matrix inequalities(LMIs), the relation between the trajectory boundary and DoS attacks is characterized, and the trajectory boundary is estimated. Furthermore, an optimization method of the domain of attraction is proposed to maximize the size. And a non-conservative and practical boundary is proposed to characterize the effect of DoS attacks on MASs. Finally, considering a multi-agent system with typical Chua's circuit dynamic model, an example is provided to illustrate the theorems' correctness.
基金This work was supported,in part,by the National Nature Science Foundation of China under Grant Numbers 61502240,61502096,61304205,61773219in part,by the Natural Science Foundation of Jiangsu Province under grant numbers BK20201136,BK20191401+1 种基金in part,by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant Numbers SJCX21_0363in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘Vehicle re-identification(ReID)aims to retrieve the target vehicle in an extensive image gallery through its appearances from various views in the cross-camera scenario.It has gradually become a core technology of intelligent transportation system.Most existing vehicle re-identification models adopt the joint learning of global and local features.However,they directly use the extracted global features,resulting in insufficient feature expression.Moreover,local features are primarily obtained through advanced annotation and complex attention mechanisms,which require additional costs.To solve this issue,a multi-feature learning model with enhanced local attention for vehicle re-identification(MFELA)is proposed in this paper.The model consists of global and local branches.The global branch utilizes both middle and highlevel semantic features of ResNet50 to enhance the global representation capability.In addition,multi-scale pooling operations are used to obtain multiscale information.While the local branch utilizes the proposed Region Batch Dropblock(RBD),which encourages the model to learn discriminative features for different local regions and simultaneously drops corresponding same areas randomly in a batch during training to enhance the attention to local regions.Then features from both branches are combined to provide a more comprehensive and distinctive feature representation.Extensive experiments on VeRi-776 and VehicleID datasets prove that our method has excellent performance.
基金The paper is supported by the Research Foundation for OutstandingYoung Teachers , China University of Geosciences ( Wuhan) ( No .CUGQNL0616) Research Foundationfor State Key Laboratory of Geo-logical Processes and Mineral Resources ( No . MGMR2002-02)Hubei Provincial Depart ment of Education (B) .
文摘Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.
基金Supported by the National Natural Science Foundation of China (50706006) and the Science and Technology Development Program of Jilin Province (20040513).
文摘The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.
文摘Massive open online courses(MOOC)have recently gained worldwide attention in the field of education.The manner of MOOC provides a new option for learning various kinds of knowledge.A mass of data miming algorithms have been proposed to analyze the learner’s characteristics and classify the learners into different groups.However,most current algorithms mainly focus on the final grade of the learners,which may result in an improper classification.To overcome the shortages of the existing algorithms,a novel multi-feature weighting based K-means(MFWK-means)algorithm is proposed in this paper.Correlations between the widely used feature grade and other features are first investigated,and then the learners are classified based on their grades and weighted features with the proposed MFWK-means algorithm.Experimental results with the Canvas Network Person-Course(CNPC)dataset demonstrate the effectiveness of our method.Moreover,a comparison between the new MFWK-means and the traditional K-means clustering algorithm is implemented to show the superiority of the proposed method.
基金the National Natural Science Foundation of China-Civil Aviation joint fund(U1933108)the Fundamental Research Funds for the Central Universities of China(3122019051).
文摘As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics of a low average rate and concealment.With features extracted from the network traffic,a new detection approach based on multi-feature fusion is proposed to solve the problem in this paper.An attack feature set containing the Acknowledge character(ACK)sequence number,the packet size,and the queue length is used to classify normal and LDoS attack traffics.Each feature is digitalized and preprocessed to fit the input of the K-Nearest Neighbor(KNN)classifier separately,and to obtain the decision contour matrix.Then a posteriori probability in the matrix is fused,and the fusion decision index D is used as the basis of detecting the LDoS attacks.Experiments proved that the detection rate of the multi-feature fusion algorithm is higher than those of the single-based detection method and other algorithms.
基金supported by the National Natural Science Foundation of China(grants no.32171797 and 31800549)。
文摘Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection and extract false smoke roots.This study developed a new smoke roots search algorithm based on a multi-feature fusion dynamic extraction strategy.This determines smoke origin candidate points and region based on a multi-frame discrete confidence level.The results show that the new method provides a more complete smoke contour with no background interference,compared to the results using existing methods.Unlike video-based methods that rely on continuous frames,an adaptive threshold method was developed to build the judgment image set composed of non-consecutive frames.The smoke roots origin search algorithm increased the detection rate and significantly reduced false detection rate compared to existing methods.