期刊文献+
共找到7,910篇文章
< 1 2 250 >
每页显示 20 50 100
Research on Constructing Personalized Learner Profiles Based on Multi-Feature Fusion
1
作者 Xing Pan Meixiu Lu 《Journal of Electronic Research and Application》 2025年第2期274-284,共11页
This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data a... This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data and historical academic performance)with dynamic behavioral patterns(e.g.,real-time interactions and evolving interests over time).The research employs Term Frequency-Inverse Document Frequency(TF-IDF)for semantic feature extraction,integrates the Analytic Hierarchy Process(AHP)for feature weighting,and introduces a time decay function inspired by Newton’s law of cooling to dynamically model changes in learners’interests.Empirical results demonstrate that this framework effectively captures the dynamic evolution of learners’behaviors and provides context-aware learning resource recommendations.The study introduces a novel paradigm for learner modeling in educational technology,combining methodological innovation with a scalable technical architecture,thereby laying a foundation for the development of adaptive learning systems. 展开更多
关键词 Learner profile multi-feature fusion Dynamic features Personalized recommendation Educational technology
在线阅读 下载PDF
An EnFCM remote sensing image forest land extraction method based on PCA multi-feature fusion
2
作者 ZHU Shengyang WANG Xiaopeng +2 位作者 WEI Tongyi FAN Weiwei SONG Yubo 《Journal of Measurement Science and Instrumentation》 2025年第2期216-223,共8页
The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland im... The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland image segmentation and extraction.An EnFCM remote sensing forest land extraction method based on PCA multi-feature fusion was proposed.Firstly,histogram equalization was applied to improve the image contrast.Secondly,the texture and edge features of the image were extracted,and a multi-feature fused pixel image was generated using the PCA technique.Moreover,the fused feature was used as a feature constraint to measure the difference of pixels instead of a single grey-scale feature.Finally,an improved feature distance metric calculated the similarity between the pixel points and the cluster center to complete the cluster segmentation.The experimental results showed that the error was between 1.5%and 4.0%compared with the forested area counted by experts’hand-drawing,which could obtain a high accuracy segmentation and extraction result. 展开更多
关键词 image segmentation forest land extraction PCA transform multi-feature fusion EnFCM algorithm
在线阅读 下载PDF
Chinese Clinical Named Entity Recognition Using Multi-Feature Fusion and Multi-Scale Local Context Enhancement 被引量:1
3
作者 Meijing Li Runqing Huang Xianxian Qi 《Computers, Materials & Continua》 SCIE EI 2024年第8期2283-2299,共17页
Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity... Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity of clinical terminology,the complexity of Chinese text semantics,and the uncertainty of Chinese entity boundaries.To address these issues,we propose an improved CNER model,which is based on multi-feature fusion and multi-scale local context enhancement.The model simultaneously fuses multi-feature representations of pinyin,radical,Part of Speech(POS),word boundary with BERT deep contextual representations to enhance the semantic representation of text for more effective entity recognition.Furthermore,to address the model’s limitation of focusing just on global features,we incorporate Convolutional Neural Networks(CNNs)with various kernel sizes to capture multi-scale local features of the text and enhance the model’s comprehension of the text.Finally,we integrate the obtained global and local features,and employ multi-head attention mechanism(MHA)extraction to enhance the model’s focus on characters associated with medical entities,hence boosting the model’s performance.We obtained 92.74%,and 87.80%F1 scores on the two CNER benchmark datasets,CCKS2017 and CCKS2019,respectively.The results demonstrate that our model outperforms the latest models in CNER,showcasing its outstanding overall performance.It can be seen that the CNER model proposed in this study has an important application value in constructing clinical medical knowledge graph and intelligent Q&A system. 展开更多
关键词 CNER multi-feature fusion BiLSTM CNN MHA
在线阅读 下载PDF
Self-FAGCFN:Graph-Convolution Fusion Network Based on Feature Fusion and Self-Supervised Feature Alignment for Pneumonia and Tuberculosis Diagnosis
4
作者 Junding Sun Wenhao Tang +5 位作者 Lei Zhao Chaosheng Tang Xiaosheng Wu Zhaozhao Xu Bin Pu Yudong Zhang 《Journal of Bionic Engineering》 2025年第4期2012-2029,共18页
Feature fusion is an important technique in medical image classification that can improve diagnostic accuracy by integrating complementary information from multiple sources.Recently,Deep Learning(DL)has been widely us... Feature fusion is an important technique in medical image classification that can improve diagnostic accuracy by integrating complementary information from multiple sources.Recently,Deep Learning(DL)has been widely used in pulmonary disease diagnosis,such as pneumonia and tuberculosis.However,traditional feature fusion methods often suffer from feature disparity,information loss,redundancy,and increased complexity,hindering the further extension of DL algorithms.To solve this problem,we propose a Graph-Convolution Fusion Network with Self-Supervised Feature Alignment(Self-FAGCFN)to address the limitations of traditional feature fusion methods in deep learning-based medical image classification for respiratory diseases such as pneumonia and tuberculosis.The network integrates Convolutional Neural Networks(CNNs)for robust feature extraction from two-dimensional grid structures and Graph Convolutional Networks(GCNs)within a Graph Neural Network branch to capture features based on graph structure,focusing on significant node representations.Additionally,an Attention-Embedding Ensemble Block is included to capture critical features from GCN outputs.To ensure effective feature alignment between pre-and post-fusion stages,we introduce a feature alignment loss that minimizes disparities.Moreover,to address the limitations of proposed methods,such as inappropriate centroid discrepancies during feature alignment and class imbalance in the dataset,we develop a Feature-Centroid Fusion(FCF)strategy and a Multi-Level Feature-Centroid Update(MLFCU)algorithm,respectively.Extensive experiments on public datasets LungVision and Chest-Xray demonstrate that the Self-FAGCFN model significantly outperforms existing methods in diagnosing pneumonia and tuberculosis,highlighting its potential for practical medical applications. 展开更多
关键词 Feature fusion Self-supervised feature alignment Convolutional neural networks Graph convolutional networks Class imbalance Feature-centroid fusion
在线阅读 下载PDF
DMF: A Deep Multimodal Fusion-Based Network Traffic Classification Model
5
作者 Xiangbin Wang Qingjun Yuan +3 位作者 Weina Niu Qianwei Meng Yongjuan Wang Chunxiang Gu 《Computers, Materials & Continua》 2025年第5期2267-2285,共19页
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based approaches.Among these,multimodal learning-based classification methods... With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based approaches.Among these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification accuracy.However,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the data.To address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature extraction.Specifically,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective learning.This continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network conditions.Experimental results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods. 展开更多
关键词 Deep fusion intrusion detection multimodal learning network traffic classification
在线阅读 下载PDF
Enhanced Multi-Object Dwarf Mongoose Algorithm for Optimization Stochastic Data Fusion Wireless Sensor Network Deployment
6
作者 Shumin Li Qifang Luo Yongquan Zhou 《Computer Modeling in Engineering & Sciences》 2025年第2期1955-1994,共40页
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ... Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained. 展开更多
关键词 Stochastic data fusion wireless sensor networks network deployment spatiotemporal coverage dwarf mongoose optimization algorithm multi-objective optimization
在线阅读 下载PDF
Predictions of complete fusion cross‑sections of ^(6,7)Li,^(9)Be,and ^(10)B using a Bayesian neural network method
7
作者 Kai‑Xuan Cheng Rong‑Xing He +1 位作者 Chun‑Yuan Qiao Chun‑Wang Ma 《Nuclear Science and Techniques》 2025年第10期169-175,共7页
A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections of weakly bound nuclei.This method was trained and validated using 475 experimental data points... A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections of weakly bound nuclei.This method was trained and validated using 475 experimental data points from 39 reaction systems induced by ^(6,7)Li,^(9)Be,and ^(10)B.The constructed Bayesian neural network demonstrated a high degree of accuracy in evaluating complete fusion cross-sections.By comparing the predicted cross-sections with those obtained from a single-barrier penetration model,the suppression effect of ^(6,7)Li and ^(9)Be with a stable nucleus was systematically analyzed.In the cases of ^(6)Li and ^(7)Li,less suppression was predicted for relatively light-mass targets than for heavy-mass targets,and a notably distinct dependence relationship was identified,suggesting that the predominant breakup mechanisms might change in different mass target regions.In addition,minimum suppression factors were predicted to occur near target nuclei with neutron-closed shell. 展开更多
关键词 fusion reaction Weakly bound nuclei Machine learning Bayesian neural network
在线阅读 下载PDF
MMIF:Multimodal Medical Image Fusion Network Based on Multi-Scale Hybrid Attention
8
作者 Jianjun Liu Yang Li +2 位作者 Xiaoting Sun Xiaohui Wang Hanjiang Luo 《Computers, Materials & Continua》 2025年第11期3551-3568,共18页
Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused inform... Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused information in a single image.One of the critical clinical applications of medical image fusion is to fuse anatomical and functional modalities for rapid diagnosis of malignant tissues.This paper proposes a multimodal medical image fusion network(MMIF-Net)based on multiscale hybrid attention.The method first decomposes the original image to obtain the low-rank and significant parts.Then,to utilize the features at different scales,we add amultiscalemechanism that uses three filters of different sizes to extract the features in the encoded network.Also,a hybrid attention module is introduced to obtain more image details.Finally,the fused images are reconstructed by decoding the network.We conducted experiments with clinical images from brain computed tomography/magnetic resonance.The experimental results show that the multimodal medical image fusion network method based on multiscale hybrid attention works better than other advanced fusion methods. 展开更多
关键词 Medical image fusion multiscale mechanism hybrid attention module encoded network
在线阅读 下载PDF
Cross-feature fusion speech emotion recognition based on attention mask residual network and Wav2vec 2.0
9
作者 Xiaoke Li Zufan Zhang 《Digital Communications and Networks》 2025年第5期1567-1577,共11页
Speech Emotion Recognition(SER)has received widespread attention as a crucial way for understanding human emotional states.However,the impact of irrelevant information on speech signals and data sparsity limit the dev... Speech Emotion Recognition(SER)has received widespread attention as a crucial way for understanding human emotional states.However,the impact of irrelevant information on speech signals and data sparsity limit the development of SER system.To address these issues,this paper proposes a framework that incorporates the Attentive Mask Residual Network(AM-ResNet)and the self-supervised learning model Wav2vec 2.0 to obtain AM-ResNet features and Wav2vec 2.0 features respectively,together with a cross-attention module to interact and fuse these two features.The AM-ResNet branch mainly consists of maximum amplitude difference detection,mask residual block,and an attention mechanism.Among them,the maximum amplitude difference detection and the mask residual block act on the pre-processing and the network,respectively,to reduce the impact of silent frames,and the attention mechanism assigns different weights to unvoiced and voiced speech to reduce redundant emotional information caused by unvoiced speech.In the Wav2vec 2.0 branch,this model is introduced as a feature extractor to obtain general speech features(Wav2vec 2.0 features)through pre-training with a large amount of unlabeled speech data,which can assist the SER task and cope with data sparsity problems.In the cross-attention module,AM-ResNet features and Wav2vec 2.0 features are interacted with and fused to obtain the cross-fused features,which are used to predict the final emotion.Furthermore,multi-label learning is also used to add ambiguous emotion utterances to deal with data limitations.Finally,experimental results illustrate the usefulness and superiority of our proposed framework over existing state-of-the-art approaches. 展开更多
关键词 Speech emotion recognition Residual network MASK ATTENTION Wav2vec 2.0 Cross-feature fusion
在线阅读 下载PDF
xCViT:Improved Vision Transformer Network with Fusion of CNN and Xception for Skin Disease Recognition with Explainable AI
10
作者 Armughan Ali Hooria Shahbaz Robertas Damaševicius 《Computers, Materials & Continua》 2025年第4期1367-1398,共32页
Skin cancer is the most prevalent cancer globally,primarily due to extensive exposure to Ultraviolet(UV)radiation.Early identification of skin cancer enhances the likelihood of effective treatment,as delays may lead t... Skin cancer is the most prevalent cancer globally,primarily due to extensive exposure to Ultraviolet(UV)radiation.Early identification of skin cancer enhances the likelihood of effective treatment,as delays may lead to severe tumor advancement.This study proposes a novel hybrid deep learning strategy to address the complex issue of skin cancer diagnosis,with an architecture that integrates a Vision Transformer,a bespoke convolutional neural network(CNN),and an Xception module.They were evaluated using two benchmark datasets,HAM10000 and Skin Cancer ISIC.On the HAM10000,the model achieves a precision of 95.46%,an accuracy of 96.74%,a recall of 96.27%,specificity of 96.00%and an F1-Score of 95.86%.It obtains an accuracy of 93.19%,a precision of 93.25%,a recall of 92.80%,a specificity of 92.89%and an F1-Score of 93.19%on the Skin Cancer ISIC dataset.The findings demonstrate that the model that was proposed is robust and trustworthy when it comes to the classification of skin lesions.In addition,the utilization of Explainable AI techniques,such as Grad-CAM visualizations,assists in highlighting the most significant lesion areas that have an impact on the decisions that are made by the model. 展开更多
关键词 Skin lesions vision transformer CNN Xception deep learning network fusion explainable AI Grad-CAM skin cancer detection
在线阅读 下载PDF
Stochastic state of health estimation for lithium-ion batteries with automated feature fusion using quantum convolutional neural network
11
作者 Chen Liang Shengyu Tao +3 位作者 Xinghao Huang Yezhen Wang Bizhong Xia Xuan Zhang 《Journal of Energy Chemistry》 2025年第7期205-219,共15页
The accurate state of health(SOH)estimation of lithium-ion batteries is crucial for efficient,healthy,and safe operation of battery systems.Extracting meaningful aging information from highly stochastic and noisy data... The accurate state of health(SOH)estimation of lithium-ion batteries is crucial for efficient,healthy,and safe operation of battery systems.Extracting meaningful aging information from highly stochastic and noisy data segments while designing SOH estimation algorithms that efficiently handle the large-scale computational demands of cloud-based battery management systems presents a substantial challenge.In this work,we propose a quantum convolutional neural network(QCNN)model designed for accurate,robust,and generalizable SOH estimation with minimal data and parameter requirements and is compatible with quantum computing cloud platforms in the Noisy Intermediate-Scale Quantum.First,we utilize data from 4 datasets comprising 272 cells,covering 5 chemical compositions,4 rated parameters,and 73operating conditions.We design 5 voltage windows as small as 0.3 V for each cell from incremental capacity peaks for stochastic SOH estimation scenarios generation.We extract 3 effective health indicators(HIs)sequences and develop an automated feature fusion method using quantum rotation gate encoding,achieving an R2of 96%.Subsequently,we design a QCNN whose convolutional layer,constructed with variational quantum circuits,comprises merely 39 parameters.Additionally,we explore the impact of training set size,using strategies,and battery materials on the model’s accuracy.Finally,the QCNN with quantum convolutional layers reduces root mean squared error by 28% and achieves an R^(2)exceeding 96% compared to other three commonly used algorithms.This work demonstrates the effectiveness of quantum encoding for automated feature fusion of HIs extracted from limited discharge data.It highlights the potential of QCNN in improving the accuracy,robustness,and generalization of SOH estimation while dealing with stochastic and noisy data with few parameters and simple structure.It also suggests a new paradigm for leveraging quantum computational power in SOH estimation. 展开更多
关键词 Lithium-ion battery State of health Feature fusion Quantum convolutional neural network Quantum machine learning
在线阅读 下载PDF
Adaptive Fusion Neural Networks for Sparse-Angle X-Ray 3D Reconstruction
12
作者 Shaoyong Hong Bo Yang +4 位作者 Yan Chen Hao Quan Shan Liu Minyi Tang Jiawei Tian 《Computer Modeling in Engineering & Sciences》 2025年第7期1091-1112,共22页
3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safe... 3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safer and faster,poses challenges for accurate volumetric reconstruction due to limited spatial information.This study proposes a 3D reconstruction neural network based on adaptive weight fusion(AdapFusionNet)to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images.To address the issue of spatial inconsistency in multi-angle image reconstruction,an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and perform weighted fusion,thereby improving the final reconstruction quality.The reconstruction network is built on an autoencoder(AE)framework and uses orthogonal-angle X-ray images(frontal and lateral projections)as inputs.The encoder extracts 2D features,which the decoder maps into 3D space.This study utilizes a lung CT dataset to obtain complete three-dimensional volumetric data,from which digitally reconstructed radiographs(DRR)are generated at various angles to simulate X-ray images.Since real-world clinical X-ray images rarely come with perfectly corresponding 3D“ground truth,”using CT scans as the three-dimensional reference effectively supports the training and evaluation of deep networks for sparse-angle X-ray 3D reconstruction.Experiments conducted on the LIDC-IDRI dataset with simulated X-ray images(DRR images)as training data demonstrate the superior performance of AdapFusionNet compared to other fusion methods.Quantitative results show that AdapFusionNet achieves SSIM,PSNR,and MAE values of 0.332,13.404,and 0.163,respectively,outperforming other methods(SingleViewNet:0.289,12.363,0.182;AvgFusionNet:0.306,13.384,0.159).Qualitative analysis further confirms that AdapFusionNet significantly enhances the reconstruction of lung and chest contours while effectively reducing noise during the reconstruction process.The findings demonstrate that AdapFusionNet offers significant advantages in 3D reconstruction of sparse-angle X-ray images. 展开更多
关键词 3D reconstruction adaptive fusion X-ray imaging medical imaging deep learning neural networks sparse angles autoencoder
暂未订购
Rolling Bearing Fault Detection Based on Self-Adaptive Wasserstein Dual Generative Adversarial Networks and Feature Fusion under Small Sample Conditions
13
作者 Qiang Ma Zhuopei Wei +2 位作者 Kai Yang Long Tian Zepeng Li 《Structural Durability & Health Monitoring》 2025年第4期1011-1035,共25页
An intelligent diagnosis method based on self-adaptiveWasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extra... An intelligent diagnosis method based on self-adaptiveWasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extraction,which are commonly faced by rolling bearings and lead to low diagnostic accuracy.Initially,dual models of the Wasserstein deep convolutional generative adversarial network incorporating gradient penalty(1D-2DWDCGAN)are constructed to augment the original dataset.A self-adaptive loss threshold control training strategy is introduced,and establishing a self-adaptive balancing mechanism for stable model training.Subsequently,a diagnostic model based on multidimensional feature fusion is designed,wherein complex features from various dimensions are extracted,merging the original signal waveform features,structured features,and time-frequency features into a deep composite feature representation that encompasses multiple dimensions and scales;thus,efficient and accurate small sample fault diagnosis is facilitated.Finally,an experiment between the bearing fault dataset of CaseWestern ReserveUniversity and the fault simulation experimental platformdataset of this research group shows that this method effectively supplements the dataset and remarkably improves the diagnostic accuracy.The diagnostic accuracy after data augmentation reached 99.94%and 99.87%in two different experimental environments,respectively.In addition,robustness analysis is conducted on the diagnostic accuracy of the proposed method under different noise backgrounds,verifying its good generalization performance. 展开更多
关键词 Deep learning Wasserstein deep convolutional generative adversarial network small sample learning feature fusion multidimensional data enhancement small sample fault diagnosis
在线阅读 下载PDF
A content-aware correlation filter with multi-feature fusion for RGB-T tracking
14
作者 FENG Zihang YAN Liping +2 位作者 BAI Jinglan XIA Yuanqing XIAO Bo 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1357-1371,共15页
In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,th... In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers. 展开更多
关键词 visual tracking RED green blue(RGB)and thermal infrared(TIR)tracking correlation filter content perception multi-feature fusion
在线阅读 下载PDF
A Review of Research on Handwritten Chinese Character Recognition with Multi-Feature Fusion
15
作者 Peng Deng Guiying Yang 《Journal of Electronic Research and Application》 2024年第5期109-117,共9页
This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chin... This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions. 展开更多
关键词 Chinese character recognition multi-feature fusion Machine learning
在线阅读 下载PDF
Multi-Feature Fusion-Guided Multiscale Bidirectional Attention Networks for Logistics Pallet Segmentation 被引量:1
16
作者 Weiwei Cai Yaping Song +2 位作者 Huan Duan Zhenwei Xia Zhanguo Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1539-1555,共17页
In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by... In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared. 展开更多
关键词 Logistics pallet segmentation image segmentation multi-feature fusion multiscale network bidirectional attention mechanism HSV neural networks deep learning
在线阅读 下载PDF
A Credit Card Fraud Detection Model Based on Multi-Feature Fusion and Generative Adversarial Network 被引量:2
17
作者 Yalong Xie Aiping Li +2 位作者 Biyin Hu Liqun Gao Hongkui Tu 《Computers, Materials & Continua》 SCIE EI 2023年第9期2707-2726,共20页
Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to cr... Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses. 展开更多
关键词 Credit card fraud detection imbalanced classification feature fusion generative adversarial networks anti-fraud systems
在线阅读 下载PDF
Medical image fusion based on pulse coupled neural networks and multi-feature fuzzy clustering 被引量:1
18
作者 Xiaoqing Luo Xiaojun Wu 《Journal of Biomedical Science and Engineering》 2012年第12期878-883,共6页
Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and g... Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and get more reliable results, a novel medical image fusion algorithm based on pulse coupled neural networks (PCNN) and multi-feature fuzzy clustering is proposed, which makes use of the multi-feature of image and combines the advantages of the local entropy and variance of local entropy based PCNN. The results of experiments indicate that the proposed image fusion method can better preserve the image details and robustness and significantly improve the image visual effect than the other fusion methods with less information distortion. 展开更多
关键词 PCNN multi-feature MEDICAL IMAGE IMAGE fusion LOCAL ENTROPY
在线阅读 下载PDF
Multi-Feature Fusion Book Recommendation Model Based on Deep Neural Network
19
作者 Zhaomin Liang Tingting Liang 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期205-219,共15页
The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use ... The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation. 展开更多
关键词 Book recommendation deep learning neural network multi-feature fusion personalized prediction
在线阅读 下载PDF
Fusion network for small target detection based on YOLO and attention mechanism 被引量:5
20
作者 XU Caie DONG Zhe +3 位作者 ZHONG Shengyun CHEN Yijiang PAN Sishun WU Mingyang 《Optoelectronics Letters》 EI 2024年第6期372-378,共7页
Target detection is an important task in computer vision research, and such an anomaly detection and the topic of small target detection task is more concerned. However, there are still some problems in this kind of r... Target detection is an important task in computer vision research, and such an anomaly detection and the topic of small target detection task is more concerned. However, there are still some problems in this kind of researches, such as small target detection in complex environments is susceptible to background interference and poor detection results. To solve these issues, this study proposes a method which introduces the attention mechanism into the you only look once(YOLO) network. In addition, the amateur-produced mask dataset was created and experiments were conducted. The results showed that the detection effect of the proposed mothed is much better. 展开更多
关键词 fusion network for small target detection based on YOLO and attention mechanism
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部