期刊文献+
共找到180,882篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Scene Smoke Detection Based on Multi-Feature Extraction Method
1
作者 SHAO Yanli YING Yong +2 位作者 CHEN Xi DONG Siyu WEI Dan 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期866-879,共14页
This study proposes a multi-scene smoke detection algorithm based on a multi-feature extraction method to address the problems of varying smoke shapes in different scenes,difficulty in locating and detecting transluce... This study proposes a multi-scene smoke detection algorithm based on a multi-feature extraction method to address the problems of varying smoke shapes in different scenes,difficulty in locating and detecting translucent smoke,and variable smoke scales.First,the convolution module of feature extraction in YOLOv5s backbone network is replaced with asymmetric convolution block re-parameterization convolution to improve the detection of different shapes of smoke.Then,coordinate attention mechanism is introduced in the deeper layer of the backbone network to further improve the localization of translucent smoke.Finally,the detection of smoke at different scales is further improved by using the feature pyramid convolution module instead of the standard convolution module of the feature pyramid in the model.The experimental results demonstrate the feasibility and superiority of the proposed model for multi-scene smoke detection. 展开更多
关键词 smoke detection YOLOv5s feature extraction attention mechanisms
原文传递
An EnFCM remote sensing image forest land extraction method based on PCA multi-feature fusion
2
作者 ZHU Shengyang WANG Xiaopeng +2 位作者 WEI Tongyi FAN Weiwei SONG Yubo 《Journal of Measurement Science and Instrumentation》 2025年第2期216-223,共8页
The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland im... The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland image segmentation and extraction.An EnFCM remote sensing forest land extraction method based on PCA multi-feature fusion was proposed.Firstly,histogram equalization was applied to improve the image contrast.Secondly,the texture and edge features of the image were extracted,and a multi-feature fused pixel image was generated using the PCA technique.Moreover,the fused feature was used as a feature constraint to measure the difference of pixels instead of a single grey-scale feature.Finally,an improved feature distance metric calculated the similarity between the pixel points and the cluster center to complete the cluster segmentation.The experimental results showed that the error was between 1.5%and 4.0%compared with the forested area counted by experts’hand-drawing,which could obtain a high accuracy segmentation and extraction result. 展开更多
关键词 image segmentation forest land extraction PCA transform multi-feature fusion EnFCM algorithm
在线阅读 下载PDF
Dialogue Relation Extraction Enhanced with Trigger:A Multi-Feature Filtering and Fusion Model
3
作者 Haitao Wang Yuanzhao Guo +1 位作者 Xiaotong Han Yuan Tian 《Computers, Materials & Continua》 2025年第4期137-155,共19页
Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low informatio... Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low information density in dialogues,methods based on trigger enhancement have been proposed,yielding positive results.However,trigger enhancement faces challenges,which cause suboptimal model performance.First,the proportion of annotated triggers is low in DialogRE.Second,feature representations of triggers and arguments often contain conflicting information.In this paper,we propose a novel Multi-Feature Filtering and Fusion trigger enhancement approach to overcome these limitations.We first obtain representations of arguments,and triggers that contain rich semantic information through attention and gate methods.Then,we design a feature filtering mechanism that eliminates conflicting features in the encoding of trigger prototype representations and their corresponding argument pairs.Additionally,we utilize large language models to create prompts based on Chain-of-Thought and In-context Learning for automated trigger extraction.Experiments show that our model increases the average F1 score by 1.3%in the dialogue relation extraction task.Ablation and case studies confirm the effectiveness of our model.Furthermore,the feature filtering method effectively integrates with other trigger enhancement models,enhancing overall performance and demonstrating its ability to resolve feature conflicts. 展开更多
关键词 Dialogue relation extraction feature filtering chain-of-thought
在线阅读 下载PDF
Radar false alarm plots elimination based on multi-feature extraction and classification
4
作者 Cheng Yi Zhao Yan Yin Peiwen 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第1期83-92,共10页
Caused by the environment clutter,the radar false alarm plots are unavoidable.Suppressing false alarm points has always been a key issue in Radar plots procession.In this paper,a radar false alarm plots elimination me... Caused by the environment clutter,the radar false alarm plots are unavoidable.Suppressing false alarm points has always been a key issue in Radar plots procession.In this paper,a radar false alarm plots elimination method based on multi-feature extraction and classification is proposed to effectively eliminate false alarm plots.Firstly,the density based spatial clustering of applications with noise(DBSCAN)algorithm is used to cluster the radar echo data processed by constant false-alarm rate(CFAR).The multi-features including the scale features,time domain features and transform domain features are extracted.Secondly,a feature evaluation method combining pearson correlation coefficient(PCC)and entropy weight method(EWM)is proposed to evaluate interrelation among features,effective feature combination sets are selected as inputs of the classifier.Finally,False alarm plots classified as clutters are eliminated.The experimental results show that proposed method can eliminate about 90%false alarm plots with less target loss rate. 展开更多
关键词 radar plots elimination density based spatial clustering of applications with noise multi-feature extraction CLASSIFIER
原文传递
Classification and Extraction of Urban Land-Use Information from High-Resolution Image Based on Object Multi-features 被引量:7
5
作者 孔春芳 徐凯 吴冲龙 《Journal of China University of Geosciences》 SCIE CSCD 2006年第2期151-157,共7页
Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noti... Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently. 展开更多
关键词 urban land-use multi-features OBJECT-ORIENTED SEGMENTATION CLASSIFICATION extraction.
在线阅读 下载PDF
Research on Extraction Method of Surface Information Based on Multi-Feature Combination Such as Fractal Texture 被引量:1
6
作者 Zhen Chen Yiyang Zheng 《Journal of Geoscience and Environment Protection》 2023年第10期50-66,共17页
Because of the developed economy and lush vegetation in southern China, the following obstacles or difficulties exist in remote sensing land surface classification: 1) Diverse surface composition types;2) Undulating t... Because of the developed economy and lush vegetation in southern China, the following obstacles or difficulties exist in remote sensing land surface classification: 1) Diverse surface composition types;2) Undulating terrains;3) Small fragmented land;4) Indistinguishable shadows of surface objects. It is our top priority to clarify how to use the concept of big data (Data mining technology) and various new technologies and methods to make complex surface remote sensing information extraction technology develop in the direction of automation, refinement and intelligence. In order to achieve the above research objectives, the paper takes the Gaofen-2 satellite data produced in China as the data source, and takes the complex surface remote sensing information extraction technology as the research object, and intelligently analyzes the remote sensing information of complex surface on the basis of completing the data collection and preprocessing. The specific extraction methods are as follows: 1) extraction research on fractal texture features of Brownian motion;2) extraction research on color features;3) extraction research on vegetation index;4) research on vectors and corresponding classification. In this paper, fractal texture features, color features, vegetation features and spectral features of remote sensing images are combined to form a combination feature vector, which improves the dimension of features, and the feature vector improves the difference of remote sensing features, and it is more conducive to the classification of remote sensing features, and thus it improves the classification accuracy of remote sensing images. It is suitable for remote sensing information extraction of complex surface in southern China. This method can be extended to complex surface area in the future. 展开更多
关键词 Complex Surface Remote Sensing Information extraction Remote Sensing Land Classification Transfer Learning Brownian Motion Fractal Texture
在线阅读 下载PDF
Feature extraction of search product based on multi-feature fusion-oriented to Chinese online reviews 被引量:1
7
作者 Xunjiang Huang Yaqian Liu +1 位作者 Yang Wang Xue Wang 《Data Science and Management》 2022年第2期57-65,共9页
The increasing Chinese online reviews contain rich product demand information,especially for search products.This study suggests a product feature extraction model from online reviews based on multi-feature fusion nam... The increasing Chinese online reviews contain rich product demand information,especially for search products.This study suggests a product feature extraction model from online reviews based on multi-feature fusion named PFEMF(products features extraction based on multi-feature fusion)model.Combining sentence and word characteristics of Chinese online reviews,the model explores the lexical features,frequency features,span features,and semantic similarity features of words.And then,they are fused to identify the features that customers are concerned about most by sequential relationship analysis.The identified product feature provides direction for product innovation and facilitates the product selection for customers.Finally,the study takes iPad Air as an example to prove this model.The results show that the extraction performance of the PFEMF model is superior to the traditional term frequency-inverse document frequency(tf-idf)algorithm,word span algorithm,and semantic similarity algorithm. 展开更多
关键词 Product feature extraction Chinese online reviews TF-IDF Word span Semantic similarity
在线阅读 下载PDF
MMHCA:Multi-feature representations based on multi-scale hierarchical contextual aggregation for UAV-view geo-localization 被引量:1
8
作者 Nanhua CHEN Tai-shan LOU Liangyu ZHAO 《Chinese Journal of Aeronautics》 2025年第6期517-532,共16页
In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The e... In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation. 展开更多
关键词 Geo-localization Image retrieval UAV Hierarchical contextual aggregation multi-feature representations
原文传递
Construction of a Maritime Knowledge Graph Using GraphRAG for Entity and Relationship Extraction from Maritime Documents 被引量:1
9
作者 Yi Han Tao Yang +2 位作者 Meng Yuan Pinghua Hu Chen Li 《Journal of Computer and Communications》 2025年第2期68-93,共26页
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi... In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making. 展开更多
关键词 Maritime Knowledge Graph GraphRAG Entity and Relationship extraction Document Management
在线阅读 下载PDF
Review on micro-mechanism of forming emulsification during rare earth extraction by acidic extractants 被引量:2
10
作者 Jie Liu Yuxiu Zhao +6 位作者 Zhirong Wang Minghui Jia Wenxiang Xia Guizhi Wu Wenda Guo Ru'an Chi Kun Huang 《Journal of Rare Earths》 2025年第1期9-20,I0001,共13页
Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or... Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction. 展开更多
关键词 extraction Rare earths EMULSIFICATION Mechanism Interface
原文传递
A Two-Stage Feature Extraction Approach for Green Energy Consumers in Retail Electricity Markets Using Clustering and TF–IDF Algorithms 被引量:1
11
作者 Wei Yang Weicong Tan +6 位作者 Zhijian Zeng Ren Li Jie Qin Yuting Xie Yongjun Zhang Runting Cheng Dongliang Xiao 《Energy Engineering》 2025年第5期1697-1713,共17页
The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for th... The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for the market service for green energy consumers.This study proposed a two-stage feature extraction approach for green energy consumers leveraging clustering and termfrequency-inverse document frequency(TF-IDF)algorithms within a knowledge graph framework to provide an information basis that supports the green development of the retail electricity market.First,the multi-source heterogeneous data of green energy consumers under an actual market environment is systematically introduced and the information is categorized into discrete,interval,and relational features.A clustering algorithm was employed to extract features of the trading behavior of green energy consumers in the first stage using the parameter data of green retail electricity contracts.Then,TF-IDF algorithm was applied in the second stage to extract features for green energy consumers in different clusters.Finally,the effectiveness of the proposed approach was validated based on the actual operational data in a southern province of China.It is shown that the most significant discrepancy between the retail trading behaviors of green energy consumers is the power share of green retail packages,whose averaged values are 25.64%,50%,39.66%,and 24.89%in four different clusters,respectively.Additionally,power supply bureaus and electricity retail companies affects the behavior of the green energy consumers most significantly. 展开更多
关键词 Green energy consumer feature extraction knowledge graph retail electricity market
在线阅读 下载PDF
Chinese satellite frequency and orbit entity relation extraction method based on dynamic integrated learning 被引量:1
12
作者 Yuanzhi He Zhiqiang Li Zheng Dou 《Digital Communications and Networks》 2025年第3期787-794,共8页
Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatical... Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatically mine available SFO resources.An essential aspect of constructing SFO-KG is the extraction of Chinese entity relations.Unfortunately,there is currently no publicly available Chinese SFO entity Relation Extraction(RE)dataset.Moreover,publicly available SFO text data contain numerous NA(representing for“No Answer”)relation category sentences that resemble other relation sentences and pose challenges in accurate classification,resulting in low recall and precision for the NA relation category in entity RE.Consequently,this issue adversely affects both the accuracy of constructing the knowledge graph and the efficiency of RE processes.To address these challenges,this paper proposes a method for extracting Chinese SFO text entity relations based on dynamic integrated learning.This method includes the construction of a manually annotated Chinese SFO entity RE dataset and a classifier combining features of SFO resource data.The proposed approach combines integrated learning and pre-training models,specifically utilizing Bidirectional Encoder Representation from Transformers(BERT).In addition,it incorporates one-class classification,attention mechanisms,and dynamic feedback mechanisms to improve the performance of the RE model.Experimental results show that the proposed method outperforms the traditional methods in terms of F1 value when extracting entity relations from both balanced and long-tailed datasets. 展开更多
关键词 Knowledge graph Relation extraction One-class classification Satellite frequency and orbit resources BERT
在线阅读 下载PDF
Exploration of augmented prompting methods for information extraction using large language models
13
作者 Yishuo Fu Benfeng Xu +2 位作者 Mingxuan Du Quan Wang Zhendong Mao 《中国科学技术大学学报》 北大核心 2025年第7期15-24,14,I0001,共12页
Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the con... Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the context of fewshot and zero-shot scenarios remains highly challenging due to the scarcity of training data.Large language models(LLMs),on the other hand,can generalize well to unseen tasks with few-shot demonstrations or even zero-shot instructions and have demonstrated impressive ability for a wide range of natural language understanding or generation tasks.Nevertheless,it is unclear,whether such effectiveness can be replicated in the task of IE,where the target tasks involve specialized schema and quite abstractive entity or relation concepts.In this paper,we first examine the validity of LLMs in executing IE tasks with an established prompting strategy and further propose multiple types of augmented prompting methods,including the structured fundamental prompt(SFP),the structured interactive reasoning prompt(SIRP),and the voting-enabled structured interactive reasoning prompt(VESIRP).The experimental results demonstrate that while directly promotes inferior performance,the proposed augmented prompt methods significantly improve the extraction accuracy,achieving comparable or even better performance(e.g.,zero-shot FewNERD,FewNERD-INTRA)than state-of-theart methods that require large-scale training samples.This study represents a systematic exploration of employing instruction-following LLM for the task of IE.It not only establishes a performance benchmark for this novel paradigm but,more importantly,validates a practical technical pathway through the proposed prompt enhancement method,offering a viable solution for efficient IE in low-resource settings. 展开更多
关键词 prompt learning natural language processing few-shot information extraction zero-shot information extraction
在线阅读 下载PDF
Effects of ultrasonic-assisted extraction on bioactive compounds,volatile flavors and antioxidant activities of vine tea water extracts
14
作者 Xiao-Long Zhou Wei-Jin Jiang +2 位作者 Ji Yu Mao-Jun Yao Yun-Tong Li 《Traditional Medicine Research》 2025年第1期73-81,共9页
Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigat... Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties. 展开更多
关键词 vine tea DIHYDROMYRICETIN ultrasonic-assisted extraction volatile aroma components
暂未订购
Effects of Ultrasound-Assisted Alkaline Extraction on the Structural and Emulsifying Properties of Chickpea Protein Isolate
15
作者 ZHANG Yixue YANG Qing +4 位作者 CHENG Teng ZHENG Ruihan MA Wuchao HE Xiangli LI Ke 《食品科学》 北大核心 2025年第19期236-247,共12页
This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of ... This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of chickpea protein isolate(CPI).Compared with the non-ultrasound group,ultrasound treatment at 400 W resulted in the largest increase in CPI yield,and both the particle size and turbidity decreased with increasing ultrasound power from 0 to 400 W.The scanning electron microscope results showed a uniform structural distribution of CPI.Moreover,itsα-helix content increased,β-sheet content decreased,and total sulfhydryl group content and endogenous fluorescence intensity rose,illustrating that UAE changed the secondary and tertiary structure of CPI.At 400 W,the solubility of the emulsion increased to 63.18%,and the best emulsifying properties were obtained;the emulsifying activity index(EAI)and emulsifying stability index(ESI)increased by 85.42%and 46.78%,respectively.Furthermore,the emulsion droplets formed were smaller and more uniform.In conclusion,proper UAE power conditions increased the extraction yield and protein content of CPI,and effectively improved its structure and emulsifying characteristics. 展开更多
关键词 CHICKPEA ULTRASOUND extraction yield protein structure functional properties
在线阅读 下载PDF
Joint Feature Encoding and Task Alignment Mechanism for Emotion-Cause Pair Extraction
16
作者 Shi Li Didi Sun 《Computers, Materials & Continua》 SCIE EI 2025年第1期1069-1086,共18页
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions... With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings. 展开更多
关键词 Emotion-cause pair extraction interactive information enhancement joint feature encoding label consistency task alignment mechanisms
在线阅读 下载PDF
Optimization of lithium extraction solar pond in Zabuye Salt Lake: Theoretical calculation combined with field experiments 被引量:1
17
作者 Tao Ding Zhen Nie +6 位作者 Qian Wu Jiang-jiang Yu Ling-zhong Bu Yun-sheng Wang En-yuan Xing Mian-ping Zheng Yu-bin Li 《China Geology》 2025年第1期26-38,共13页
This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducte... This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines. 展开更多
关键词 Salt lake Solar pond Lithium extraction Crystallization rate Box-Behnken Computational fluid dynamics Response surface Zabuye salt lake Mineral exploration engineering
在线阅读 下载PDF
Physical Determination and Extraction of Annona muricata Seed Oil
18
作者 Chioma Don-Lawson Reminus Okah Adele Ruth Chituru 《American Journal of Analytical Chemistry》 2025年第2期15-22,共8页
The physical examination of the fruit of soursop fruit (Annona muricata) selected from different parent trees was investigated. Three-stage modified Soxhlet method was used which includes a percolator (boiler and refl... The physical examination of the fruit of soursop fruit (Annona muricata) selected from different parent trees was investigated. Three-stage modified Soxhlet method was used which includes a percolator (boiler and reflux) which circulates the solvent, a thimble (usually made of thick filter paper) which retains the seed to be extracted, and a siphon mechanism, which periodically empties the condensed solvent from the thimble back into the percolator. The extraction of oil from the seed and the percentage yield was examined. The oil samples were characterized for physico-chemical properties. The maximum values of physical parameters found were fruit weight 3.7 ± 7.09, fruit length 12.2 ± 28.3 cm, with 15.2 ± 20.81 cm and 0.12 ± 18.91 g for pulp weight. The percentage oil yield of 48.5% was obtained due to the environmental factors such as the soil type, planting season and optimal temperature of the region of seed cultivation. The result of chemical properties showed maximum acid value 0.46 mg KOH, FFA of 0.33 mg, saponification of 189.4 mg KOH mg and peroxide value of 4.33 mg/g. The oil physical properties as discovered have a melting point of 32˚C, smoke point of 198˚C and flash point of 280˚C. The results obtained in this study further reveal the potential of oil from seed of soursop as a substitute for conventional vegetable oil due to its high flash point which is an indication of its low flammability and can be used as a good source of food, industrially can be used as an anti-microbial agent and for pest control. 展开更多
关键词 Soursop extraction Annona muricata Melting Point
在线阅读 下载PDF
Chinese relation extraction for constructing satellite frequency and orbit knowledge graph:A survey
19
作者 Yuanzhi He Zhiqiang Li Zheng Dou 《Digital Communications and Networks》 2025年第5期1305-1317,共13页
As Satellite Frequency and Orbit(SFO)constitute scarce natural resources,constructing a Satellite Frequency and Orbit Knowledge Graph(SFO-KG)becomes crucial for optimizing their utilization.In the process of building ... As Satellite Frequency and Orbit(SFO)constitute scarce natural resources,constructing a Satellite Frequency and Orbit Knowledge Graph(SFO-KG)becomes crucial for optimizing their utilization.In the process of building the SFO-KG from Chinese unstructured data,extracting Chinese entity relations is the fundamental step.Although Relation Extraction(RE)methods in the English field have been extensively studied and developed earlier than their Chinese counterparts,their direct application to Chinese texts faces significant challenges due to linguistic distinctions such as unique grammar,pictographic characters,and prevalent polysemy.The absence of comprehensive reviews on Chinese RE research progress necessitates a systematic investigation.A thorough review of Chinese RE has been conducted from four methodological approaches:pipeline RE,joint entityrelation extraction,open domain RE,and multimodal RE techniques.In addition,we further analyze the essential research infrastructure,including specialized datasets,evaluation benchmarks,and competitions within Chinese RE research.Finally,the current research challenges and development trends in the field of Chinese RE were summarized and analyzed from the perspectives of ecological construction methods for datasets,open domain RE,N-ary RE,and RE based on large language models.This comprehensive review aims to facilitate SFO-KG construction and its practical applications in SFO resource management. 展开更多
关键词 Relation extraction Information extraction Distant supervision Parsing tree Joint entity-relation extraction
在线阅读 下载PDF
A Review of Joint Extraction Techniques for Relational Triples Based on NYT and WebNLG Datasets
20
作者 Chenglong Mi Huaibin Qin +1 位作者 Quan Qi Pengxiang Zuo 《Computers, Materials & Continua》 2025年第3期3773-3796,共24页
In recent years,with the rapid development of deep learning technology,relational triplet extraction techniques have also achieved groundbreaking progress.Traditional pipeline models have certain limitations due to er... In recent years,with the rapid development of deep learning technology,relational triplet extraction techniques have also achieved groundbreaking progress.Traditional pipeline models have certain limitations due to error propagation.To overcome the limitations of traditional pipeline models,recent research has focused on jointly modeling the two key subtasks-named entity recognition and relation extraction-within a unified framework.To support future research,this paper provides a comprehensive review of recently published studies in the field of relational triplet extraction.The review examines commonly used public datasets for relational triplet extraction techniques and systematically reviews current mainstream joint extraction methods,including joint decoding methods and parameter sharing methods,with joint decoding methods further divided into table filling,tagging,and sequence-to-sequence approaches.In addition,this paper also conducts small-scale replication experiments on models that have performed well in recent years for each method to verify the reproducibility of the code and to compare the performance of different models under uniform conditions.Each method has its own advantages in terms of model design,task handling,and application scenarios,but also faces challenges such as processing complex sentence structures,cross-sentence relation extraction,and adaptability in low-resource environments.Finally,this paper systematically summarizes each method and discusses the future development prospects of joint extraction of relational triples. 展开更多
关键词 Relation triplet extraction joint extraction methods named entity recognition relation extraction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部