This study proposes a multi-scene smoke detection algorithm based on a multi-feature extraction method to address the problems of varying smoke shapes in different scenes,difficulty in locating and detecting transluce...This study proposes a multi-scene smoke detection algorithm based on a multi-feature extraction method to address the problems of varying smoke shapes in different scenes,difficulty in locating and detecting translucent smoke,and variable smoke scales.First,the convolution module of feature extraction in YOLOv5s backbone network is replaced with asymmetric convolution block re-parameterization convolution to improve the detection of different shapes of smoke.Then,coordinate attention mechanism is introduced in the deeper layer of the backbone network to further improve the localization of translucent smoke.Finally,the detection of smoke at different scales is further improved by using the feature pyramid convolution module instead of the standard convolution module of the feature pyramid in the model.The experimental results demonstrate the feasibility and superiority of the proposed model for multi-scene smoke detection.展开更多
The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland im...The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland image segmentation and extraction.An EnFCM remote sensing forest land extraction method based on PCA multi-feature fusion was proposed.Firstly,histogram equalization was applied to improve the image contrast.Secondly,the texture and edge features of the image were extracted,and a multi-feature fused pixel image was generated using the PCA technique.Moreover,the fused feature was used as a feature constraint to measure the difference of pixels instead of a single grey-scale feature.Finally,an improved feature distance metric calculated the similarity between the pixel points and the cluster center to complete the cluster segmentation.The experimental results showed that the error was between 1.5%and 4.0%compared with the forested area counted by experts’hand-drawing,which could obtain a high accuracy segmentation and extraction result.展开更多
Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low informatio...Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low information density in dialogues,methods based on trigger enhancement have been proposed,yielding positive results.However,trigger enhancement faces challenges,which cause suboptimal model performance.First,the proportion of annotated triggers is low in DialogRE.Second,feature representations of triggers and arguments often contain conflicting information.In this paper,we propose a novel Multi-Feature Filtering and Fusion trigger enhancement approach to overcome these limitations.We first obtain representations of arguments,and triggers that contain rich semantic information through attention and gate methods.Then,we design a feature filtering mechanism that eliminates conflicting features in the encoding of trigger prototype representations and their corresponding argument pairs.Additionally,we utilize large language models to create prompts based on Chain-of-Thought and In-context Learning for automated trigger extraction.Experiments show that our model increases the average F1 score by 1.3%in the dialogue relation extraction task.Ablation and case studies confirm the effectiveness of our model.Furthermore,the feature filtering method effectively integrates with other trigger enhancement models,enhancing overall performance and demonstrating its ability to resolve feature conflicts.展开更多
Caused by the environment clutter,the radar false alarm plots are unavoidable.Suppressing false alarm points has always been a key issue in Radar plots procession.In this paper,a radar false alarm plots elimination me...Caused by the environment clutter,the radar false alarm plots are unavoidable.Suppressing false alarm points has always been a key issue in Radar plots procession.In this paper,a radar false alarm plots elimination method based on multi-feature extraction and classification is proposed to effectively eliminate false alarm plots.Firstly,the density based spatial clustering of applications with noise(DBSCAN)algorithm is used to cluster the radar echo data processed by constant false-alarm rate(CFAR).The multi-features including the scale features,time domain features and transform domain features are extracted.Secondly,a feature evaluation method combining pearson correlation coefficient(PCC)and entropy weight method(EWM)is proposed to evaluate interrelation among features,effective feature combination sets are selected as inputs of the classifier.Finally,False alarm plots classified as clutters are eliminated.The experimental results show that proposed method can eliminate about 90%false alarm plots with less target loss rate.展开更多
Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noti...Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.展开更多
Because of the developed economy and lush vegetation in southern China, the following obstacles or difficulties exist in remote sensing land surface classification: 1) Diverse surface composition types;2) Undulating t...Because of the developed economy and lush vegetation in southern China, the following obstacles or difficulties exist in remote sensing land surface classification: 1) Diverse surface composition types;2) Undulating terrains;3) Small fragmented land;4) Indistinguishable shadows of surface objects. It is our top priority to clarify how to use the concept of big data (Data mining technology) and various new technologies and methods to make complex surface remote sensing information extraction technology develop in the direction of automation, refinement and intelligence. In order to achieve the above research objectives, the paper takes the Gaofen-2 satellite data produced in China as the data source, and takes the complex surface remote sensing information extraction technology as the research object, and intelligently analyzes the remote sensing information of complex surface on the basis of completing the data collection and preprocessing. The specific extraction methods are as follows: 1) extraction research on fractal texture features of Brownian motion;2) extraction research on color features;3) extraction research on vegetation index;4) research on vectors and corresponding classification. In this paper, fractal texture features, color features, vegetation features and spectral features of remote sensing images are combined to form a combination feature vector, which improves the dimension of features, and the feature vector improves the difference of remote sensing features, and it is more conducive to the classification of remote sensing features, and thus it improves the classification accuracy of remote sensing images. It is suitable for remote sensing information extraction of complex surface in southern China. This method can be extended to complex surface area in the future.展开更多
The increasing Chinese online reviews contain rich product demand information,especially for search products.This study suggests a product feature extraction model from online reviews based on multi-feature fusion nam...The increasing Chinese online reviews contain rich product demand information,especially for search products.This study suggests a product feature extraction model from online reviews based on multi-feature fusion named PFEMF(products features extraction based on multi-feature fusion)model.Combining sentence and word characteristics of Chinese online reviews,the model explores the lexical features,frequency features,span features,and semantic similarity features of words.And then,they are fused to identify the features that customers are concerned about most by sequential relationship analysis.The identified product feature provides direction for product innovation and facilitates the product selection for customers.Finally,the study takes iPad Air as an example to prove this model.The results show that the extraction performance of the PFEMF model is superior to the traditional term frequency-inverse document frequency(tf-idf)algorithm,word span algorithm,and semantic similarity algorithm.展开更多
In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The e...In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation.展开更多
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi...In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.展开更多
Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or...Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.展开更多
The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for th...The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for the market service for green energy consumers.This study proposed a two-stage feature extraction approach for green energy consumers leveraging clustering and termfrequency-inverse document frequency(TF-IDF)algorithms within a knowledge graph framework to provide an information basis that supports the green development of the retail electricity market.First,the multi-source heterogeneous data of green energy consumers under an actual market environment is systematically introduced and the information is categorized into discrete,interval,and relational features.A clustering algorithm was employed to extract features of the trading behavior of green energy consumers in the first stage using the parameter data of green retail electricity contracts.Then,TF-IDF algorithm was applied in the second stage to extract features for green energy consumers in different clusters.Finally,the effectiveness of the proposed approach was validated based on the actual operational data in a southern province of China.It is shown that the most significant discrepancy between the retail trading behaviors of green energy consumers is the power share of green retail packages,whose averaged values are 25.64%,50%,39.66%,and 24.89%in four different clusters,respectively.Additionally,power supply bureaus and electricity retail companies affects the behavior of the green energy consumers most significantly.展开更多
Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatical...Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatically mine available SFO resources.An essential aspect of constructing SFO-KG is the extraction of Chinese entity relations.Unfortunately,there is currently no publicly available Chinese SFO entity Relation Extraction(RE)dataset.Moreover,publicly available SFO text data contain numerous NA(representing for“No Answer”)relation category sentences that resemble other relation sentences and pose challenges in accurate classification,resulting in low recall and precision for the NA relation category in entity RE.Consequently,this issue adversely affects both the accuracy of constructing the knowledge graph and the efficiency of RE processes.To address these challenges,this paper proposes a method for extracting Chinese SFO text entity relations based on dynamic integrated learning.This method includes the construction of a manually annotated Chinese SFO entity RE dataset and a classifier combining features of SFO resource data.The proposed approach combines integrated learning and pre-training models,specifically utilizing Bidirectional Encoder Representation from Transformers(BERT).In addition,it incorporates one-class classification,attention mechanisms,and dynamic feedback mechanisms to improve the performance of the RE model.Experimental results show that the proposed method outperforms the traditional methods in terms of F1 value when extracting entity relations from both balanced and long-tailed datasets.展开更多
Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the con...Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the context of fewshot and zero-shot scenarios remains highly challenging due to the scarcity of training data.Large language models(LLMs),on the other hand,can generalize well to unseen tasks with few-shot demonstrations or even zero-shot instructions and have demonstrated impressive ability for a wide range of natural language understanding or generation tasks.Nevertheless,it is unclear,whether such effectiveness can be replicated in the task of IE,where the target tasks involve specialized schema and quite abstractive entity or relation concepts.In this paper,we first examine the validity of LLMs in executing IE tasks with an established prompting strategy and further propose multiple types of augmented prompting methods,including the structured fundamental prompt(SFP),the structured interactive reasoning prompt(SIRP),and the voting-enabled structured interactive reasoning prompt(VESIRP).The experimental results demonstrate that while directly promotes inferior performance,the proposed augmented prompt methods significantly improve the extraction accuracy,achieving comparable or even better performance(e.g.,zero-shot FewNERD,FewNERD-INTRA)than state-of-theart methods that require large-scale training samples.This study represents a systematic exploration of employing instruction-following LLM for the task of IE.It not only establishes a performance benchmark for this novel paradigm but,more importantly,validates a practical technical pathway through the proposed prompt enhancement method,offering a viable solution for efficient IE in low-resource settings.展开更多
Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigat...Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties.展开更多
This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of ...This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of chickpea protein isolate(CPI).Compared with the non-ultrasound group,ultrasound treatment at 400 W resulted in the largest increase in CPI yield,and both the particle size and turbidity decreased with increasing ultrasound power from 0 to 400 W.The scanning electron microscope results showed a uniform structural distribution of CPI.Moreover,itsα-helix content increased,β-sheet content decreased,and total sulfhydryl group content and endogenous fluorescence intensity rose,illustrating that UAE changed the secondary and tertiary structure of CPI.At 400 W,the solubility of the emulsion increased to 63.18%,and the best emulsifying properties were obtained;the emulsifying activity index(EAI)and emulsifying stability index(ESI)increased by 85.42%and 46.78%,respectively.Furthermore,the emulsion droplets formed were smaller and more uniform.In conclusion,proper UAE power conditions increased the extraction yield and protein content of CPI,and effectively improved its structure and emulsifying characteristics.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducte...This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.展开更多
The physical examination of the fruit of soursop fruit (Annona muricata) selected from different parent trees was investigated. Three-stage modified Soxhlet method was used which includes a percolator (boiler and refl...The physical examination of the fruit of soursop fruit (Annona muricata) selected from different parent trees was investigated. Three-stage modified Soxhlet method was used which includes a percolator (boiler and reflux) which circulates the solvent, a thimble (usually made of thick filter paper) which retains the seed to be extracted, and a siphon mechanism, which periodically empties the condensed solvent from the thimble back into the percolator. The extraction of oil from the seed and the percentage yield was examined. The oil samples were characterized for physico-chemical properties. The maximum values of physical parameters found were fruit weight 3.7 ± 7.09, fruit length 12.2 ± 28.3 cm, with 15.2 ± 20.81 cm and 0.12 ± 18.91 g for pulp weight. The percentage oil yield of 48.5% was obtained due to the environmental factors such as the soil type, planting season and optimal temperature of the region of seed cultivation. The result of chemical properties showed maximum acid value 0.46 mg KOH, FFA of 0.33 mg, saponification of 189.4 mg KOH mg and peroxide value of 4.33 mg/g. The oil physical properties as discovered have a melting point of 32˚C, smoke point of 198˚C and flash point of 280˚C. The results obtained in this study further reveal the potential of oil from seed of soursop as a substitute for conventional vegetable oil due to its high flash point which is an indication of its low flammability and can be used as a good source of food, industrially can be used as an anti-microbial agent and for pest control.展开更多
As Satellite Frequency and Orbit(SFO)constitute scarce natural resources,constructing a Satellite Frequency and Orbit Knowledge Graph(SFO-KG)becomes crucial for optimizing their utilization.In the process of building ...As Satellite Frequency and Orbit(SFO)constitute scarce natural resources,constructing a Satellite Frequency and Orbit Knowledge Graph(SFO-KG)becomes crucial for optimizing their utilization.In the process of building the SFO-KG from Chinese unstructured data,extracting Chinese entity relations is the fundamental step.Although Relation Extraction(RE)methods in the English field have been extensively studied and developed earlier than their Chinese counterparts,their direct application to Chinese texts faces significant challenges due to linguistic distinctions such as unique grammar,pictographic characters,and prevalent polysemy.The absence of comprehensive reviews on Chinese RE research progress necessitates a systematic investigation.A thorough review of Chinese RE has been conducted from four methodological approaches:pipeline RE,joint entityrelation extraction,open domain RE,and multimodal RE techniques.In addition,we further analyze the essential research infrastructure,including specialized datasets,evaluation benchmarks,and competitions within Chinese RE research.Finally,the current research challenges and development trends in the field of Chinese RE were summarized and analyzed from the perspectives of ecological construction methods for datasets,open domain RE,N-ary RE,and RE based on large language models.This comprehensive review aims to facilitate SFO-KG construction and its practical applications in SFO resource management.展开更多
In recent years,with the rapid development of deep learning technology,relational triplet extraction techniques have also achieved groundbreaking progress.Traditional pipeline models have certain limitations due to er...In recent years,with the rapid development of deep learning technology,relational triplet extraction techniques have also achieved groundbreaking progress.Traditional pipeline models have certain limitations due to error propagation.To overcome the limitations of traditional pipeline models,recent research has focused on jointly modeling the two key subtasks-named entity recognition and relation extraction-within a unified framework.To support future research,this paper provides a comprehensive review of recently published studies in the field of relational triplet extraction.The review examines commonly used public datasets for relational triplet extraction techniques and systematically reviews current mainstream joint extraction methods,including joint decoding methods and parameter sharing methods,with joint decoding methods further divided into table filling,tagging,and sequence-to-sequence approaches.In addition,this paper also conducts small-scale replication experiments on models that have performed well in recent years for each method to verify the reproducibility of the code and to compare the performance of different models under uniform conditions.Each method has its own advantages in terms of model design,task handling,and application scenarios,but also faces challenges such as processing complex sentence structures,cross-sentence relation extraction,and adaptability in low-resource environments.Finally,this paper systematically summarizes each method and discusses the future development prospects of joint extraction of relational triples.展开更多
基金the Natural Science Foundation of Zhejiang Province(Nos.LY20F020015 and LY21F020015)the National Natural Science Foundation of China(Nos.61972121 and 61902099)。
文摘This study proposes a multi-scene smoke detection algorithm based on a multi-feature extraction method to address the problems of varying smoke shapes in different scenes,difficulty in locating and detecting translucent smoke,and variable smoke scales.First,the convolution module of feature extraction in YOLOv5s backbone network is replaced with asymmetric convolution block re-parameterization convolution to improve the detection of different shapes of smoke.Then,coordinate attention mechanism is introduced in the deeper layer of the backbone network to further improve the localization of translucent smoke.Finally,the detection of smoke at different scales is further improved by using the feature pyramid convolution module instead of the standard convolution module of the feature pyramid in the model.The experimental results demonstrate the feasibility and superiority of the proposed model for multi-scene smoke detection.
基金supported by National Natural Science Foundation of China(No.61761027)Gansu Young Doctor’s Fund for Higher Education Institutions(No.2021QB-053)。
文摘The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland image segmentation and extraction.An EnFCM remote sensing forest land extraction method based on PCA multi-feature fusion was proposed.Firstly,histogram equalization was applied to improve the image contrast.Secondly,the texture and edge features of the image were extracted,and a multi-feature fused pixel image was generated using the PCA technique.Moreover,the fused feature was used as a feature constraint to measure the difference of pixels instead of a single grey-scale feature.Finally,an improved feature distance metric calculated the similarity between the pixel points and the cluster center to complete the cluster segmentation.The experimental results showed that the error was between 1.5%and 4.0%compared with the forested area counted by experts’hand-drawing,which could obtain a high accuracy segmentation and extraction result.
基金supported by the National Key Research and Development Program of China(No.2023YFF0905400)the National Natural Science Foundation of China(No.U2341229).
文摘Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low information density in dialogues,methods based on trigger enhancement have been proposed,yielding positive results.However,trigger enhancement faces challenges,which cause suboptimal model performance.First,the proportion of annotated triggers is low in DialogRE.Second,feature representations of triggers and arguments often contain conflicting information.In this paper,we propose a novel Multi-Feature Filtering and Fusion trigger enhancement approach to overcome these limitations.We first obtain representations of arguments,and triggers that contain rich semantic information through attention and gate methods.Then,we design a feature filtering mechanism that eliminates conflicting features in the encoding of trigger prototype representations and their corresponding argument pairs.Additionally,we utilize large language models to create prompts based on Chain-of-Thought and In-context Learning for automated trigger extraction.Experiments show that our model increases the average F1 score by 1.3%in the dialogue relation extraction task.Ablation and case studies confirm the effectiveness of our model.Furthermore,the feature filtering method effectively integrates with other trigger enhancement models,enhancing overall performance and demonstrating its ability to resolve feature conflicts.
文摘Caused by the environment clutter,the radar false alarm plots are unavoidable.Suppressing false alarm points has always been a key issue in Radar plots procession.In this paper,a radar false alarm plots elimination method based on multi-feature extraction and classification is proposed to effectively eliminate false alarm plots.Firstly,the density based spatial clustering of applications with noise(DBSCAN)algorithm is used to cluster the radar echo data processed by constant false-alarm rate(CFAR).The multi-features including the scale features,time domain features and transform domain features are extracted.Secondly,a feature evaluation method combining pearson correlation coefficient(PCC)and entropy weight method(EWM)is proposed to evaluate interrelation among features,effective feature combination sets are selected as inputs of the classifier.Finally,False alarm plots classified as clutters are eliminated.The experimental results show that proposed method can eliminate about 90%false alarm plots with less target loss rate.
基金The paper is supported by the Research Foundation for OutstandingYoung Teachers , China University of Geosciences ( Wuhan) ( No .CUGQNL0616) Research Foundationfor State Key Laboratory of Geo-logical Processes and Mineral Resources ( No . MGMR2002-02)Hubei Provincial Depart ment of Education (B) .
文摘Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.
文摘Because of the developed economy and lush vegetation in southern China, the following obstacles or difficulties exist in remote sensing land surface classification: 1) Diverse surface composition types;2) Undulating terrains;3) Small fragmented land;4) Indistinguishable shadows of surface objects. It is our top priority to clarify how to use the concept of big data (Data mining technology) and various new technologies and methods to make complex surface remote sensing information extraction technology develop in the direction of automation, refinement and intelligence. In order to achieve the above research objectives, the paper takes the Gaofen-2 satellite data produced in China as the data source, and takes the complex surface remote sensing information extraction technology as the research object, and intelligently analyzes the remote sensing information of complex surface on the basis of completing the data collection and preprocessing. The specific extraction methods are as follows: 1) extraction research on fractal texture features of Brownian motion;2) extraction research on color features;3) extraction research on vegetation index;4) research on vectors and corresponding classification. In this paper, fractal texture features, color features, vegetation features and spectral features of remote sensing images are combined to form a combination feature vector, which improves the dimension of features, and the feature vector improves the difference of remote sensing features, and it is more conducive to the classification of remote sensing features, and thus it improves the classification accuracy of remote sensing images. It is suitable for remote sensing information extraction of complex surface in southern China. This method can be extended to complex surface area in the future.
基金This work was supported by the National Planning Office of Philosophy and Social Science,China(Grant No.:20BGL044)the Fundamental Research Funds for the Central Universities,China(Grant No.:N2106012).
文摘The increasing Chinese online reviews contain rich product demand information,especially for search products.This study suggests a product feature extraction model from online reviews based on multi-feature fusion named PFEMF(products features extraction based on multi-feature fusion)model.Combining sentence and word characteristics of Chinese online reviews,the model explores the lexical features,frequency features,span features,and semantic similarity features of words.And then,they are fused to identify the features that customers are concerned about most by sequential relationship analysis.The identified product feature provides direction for product innovation and facilitates the product selection for customers.Finally,the study takes iPad Air as an example to prove this model.The results show that the extraction performance of the PFEMF model is superior to the traditional term frequency-inverse document frequency(tf-idf)algorithm,word span algorithm,and semantic similarity algorithm.
基金supported by the National Natural Science Foundation of China(Nos.12072027,62103052,61603346 and 62103379)the Henan Key Laboratory of General Aviation Technology,China(No.ZHKF-230201)+3 种基金the Funding for the Open Research Project of the Rotor Aerodynamics Key Laboratory,China(No.RAL20200101)the Key Research and Development Program of Henan Province,China(Nos.241111222000 and 241111222900)the Key Science and Technology Program of Henan Province,China(No.232102220067)the Scholarship Funding from the China Scholarship Council(No.202206030079).
文摘In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation.
文摘In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.
基金Project supported by the National Natural Science Foundation of China(52074031)the Key Research and Development Program of Shandong Province(ZR2021MB051,ZR2020ME256)the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(GCP202117)。
文摘Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.
基金support by the Science and Technology Project of Guangdong Power Exchange Center Co.,Ltd.(No.GDKJXM20222599)National Natural Science Foundation of China(No.52207104)Natural Science Foundation of Guangdong Province(No.2024A1515010426).
文摘The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for the market service for green energy consumers.This study proposed a two-stage feature extraction approach for green energy consumers leveraging clustering and termfrequency-inverse document frequency(TF-IDF)algorithms within a knowledge graph framework to provide an information basis that supports the green development of the retail electricity market.First,the multi-source heterogeneous data of green energy consumers under an actual market environment is systematically introduced and the information is categorized into discrete,interval,and relational features.A clustering algorithm was employed to extract features of the trading behavior of green energy consumers in the first stage using the parameter data of green retail electricity contracts.Then,TF-IDF algorithm was applied in the second stage to extract features for green energy consumers in different clusters.Finally,the effectiveness of the proposed approach was validated based on the actual operational data in a southern province of China.It is shown that the most significant discrepancy between the retail trading behaviors of green energy consumers is the power share of green retail packages,whose averaged values are 25.64%,50%,39.66%,and 24.89%in four different clusters,respectively.Additionally,power supply bureaus and electricity retail companies affects the behavior of the green energy consumers most significantly.
文摘Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatically mine available SFO resources.An essential aspect of constructing SFO-KG is the extraction of Chinese entity relations.Unfortunately,there is currently no publicly available Chinese SFO entity Relation Extraction(RE)dataset.Moreover,publicly available SFO text data contain numerous NA(representing for“No Answer”)relation category sentences that resemble other relation sentences and pose challenges in accurate classification,resulting in low recall and precision for the NA relation category in entity RE.Consequently,this issue adversely affects both the accuracy of constructing the knowledge graph and the efficiency of RE processes.To address these challenges,this paper proposes a method for extracting Chinese SFO text entity relations based on dynamic integrated learning.This method includes the construction of a manually annotated Chinese SFO entity RE dataset and a classifier combining features of SFO resource data.The proposed approach combines integrated learning and pre-training models,specifically utilizing Bidirectional Encoder Representation from Transformers(BERT).In addition,it incorporates one-class classification,attention mechanisms,and dynamic feedback mechanisms to improve the performance of the RE model.Experimental results show that the proposed method outperforms the traditional methods in terms of F1 value when extracting entity relations from both balanced and long-tailed datasets.
基金supported by the National Natural Science Foundation of China(62222212).
文摘Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the context of fewshot and zero-shot scenarios remains highly challenging due to the scarcity of training data.Large language models(LLMs),on the other hand,can generalize well to unseen tasks with few-shot demonstrations or even zero-shot instructions and have demonstrated impressive ability for a wide range of natural language understanding or generation tasks.Nevertheless,it is unclear,whether such effectiveness can be replicated in the task of IE,where the target tasks involve specialized schema and quite abstractive entity or relation concepts.In this paper,we first examine the validity of LLMs in executing IE tasks with an established prompting strategy and further propose multiple types of augmented prompting methods,including the structured fundamental prompt(SFP),the structured interactive reasoning prompt(SIRP),and the voting-enabled structured interactive reasoning prompt(VESIRP).The experimental results demonstrate that while directly promotes inferior performance,the proposed augmented prompt methods significantly improve the extraction accuracy,achieving comparable or even better performance(e.g.,zero-shot FewNERD,FewNERD-INTRA)than state-of-theart methods that require large-scale training samples.This study represents a systematic exploration of employing instruction-following LLM for the task of IE.It not only establishes a performance benchmark for this novel paradigm but,more importantly,validates a practical technical pathway through the proposed prompt enhancement method,offering a viable solution for efficient IE in low-resource settings.
基金supported by the Key Research and Development Program of Hunan Province of China(No.2022NK2036)Xiangxi Prefecture Science and Technology Plan Project"School-Local Integration"Special Project(No.2022001)the scientific research project of Hunan Provincial Department of Education(No.22B0520).
文摘Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties.
文摘This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of chickpea protein isolate(CPI).Compared with the non-ultrasound group,ultrasound treatment at 400 W resulted in the largest increase in CPI yield,and both the particle size and turbidity decreased with increasing ultrasound power from 0 to 400 W.The scanning electron microscope results showed a uniform structural distribution of CPI.Moreover,itsα-helix content increased,β-sheet content decreased,and total sulfhydryl group content and endogenous fluorescence intensity rose,illustrating that UAE changed the secondary and tertiary structure of CPI.At 400 W,the solubility of the emulsion increased to 63.18%,and the best emulsifying properties were obtained;the emulsifying activity index(EAI)and emulsifying stability index(ESI)increased by 85.42%and 46.78%,respectively.Furthermore,the emulsion droplets formed were smaller and more uniform.In conclusion,proper UAE power conditions increased the extraction yield and protein content of CPI,and effectively improved its structure and emulsifying characteristics.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
基金This study was supported by the National Natural Science Foundation of China(U20A20148)the Major Science and Technology Projects of the Xizang(Tibet)Autonomous Region(XZ202201ZD0004G and XZ202201ZD0004G01).
文摘This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.
文摘The physical examination of the fruit of soursop fruit (Annona muricata) selected from different parent trees was investigated. Three-stage modified Soxhlet method was used which includes a percolator (boiler and reflux) which circulates the solvent, a thimble (usually made of thick filter paper) which retains the seed to be extracted, and a siphon mechanism, which periodically empties the condensed solvent from the thimble back into the percolator. The extraction of oil from the seed and the percentage yield was examined. The oil samples were characterized for physico-chemical properties. The maximum values of physical parameters found were fruit weight 3.7 ± 7.09, fruit length 12.2 ± 28.3 cm, with 15.2 ± 20.81 cm and 0.12 ± 18.91 g for pulp weight. The percentage oil yield of 48.5% was obtained due to the environmental factors such as the soil type, planting season and optimal temperature of the region of seed cultivation. The result of chemical properties showed maximum acid value 0.46 mg KOH, FFA of 0.33 mg, saponification of 189.4 mg KOH mg and peroxide value of 4.33 mg/g. The oil physical properties as discovered have a melting point of 32˚C, smoke point of 198˚C and flash point of 280˚C. The results obtained in this study further reveal the potential of oil from seed of soursop as a substitute for conventional vegetable oil due to its high flash point which is an indication of its low flammability and can be used as a good source of food, industrially can be used as an anti-microbial agent and for pest control.
文摘As Satellite Frequency and Orbit(SFO)constitute scarce natural resources,constructing a Satellite Frequency and Orbit Knowledge Graph(SFO-KG)becomes crucial for optimizing their utilization.In the process of building the SFO-KG from Chinese unstructured data,extracting Chinese entity relations is the fundamental step.Although Relation Extraction(RE)methods in the English field have been extensively studied and developed earlier than their Chinese counterparts,their direct application to Chinese texts faces significant challenges due to linguistic distinctions such as unique grammar,pictographic characters,and prevalent polysemy.The absence of comprehensive reviews on Chinese RE research progress necessitates a systematic investigation.A thorough review of Chinese RE has been conducted from four methodological approaches:pipeline RE,joint entityrelation extraction,open domain RE,and multimodal RE techniques.In addition,we further analyze the essential research infrastructure,including specialized datasets,evaluation benchmarks,and competitions within Chinese RE research.Finally,the current research challenges and development trends in the field of Chinese RE were summarized and analyzed from the perspectives of ecological construction methods for datasets,open domain RE,N-ary RE,and RE based on large language models.This comprehensive review aims to facilitate SFO-KG construction and its practical applications in SFO resource management.
基金funding from Key Areas Science and Technology Research Plan of Xinjiang Production And Construction Corps Financial Science and Technology Plan Project under Grant Agreement No.2023AB048 for the project:Research and Application Demonstration of Data-driven Elderly Care System.
文摘In recent years,with the rapid development of deep learning technology,relational triplet extraction techniques have also achieved groundbreaking progress.Traditional pipeline models have certain limitations due to error propagation.To overcome the limitations of traditional pipeline models,recent research has focused on jointly modeling the two key subtasks-named entity recognition and relation extraction-within a unified framework.To support future research,this paper provides a comprehensive review of recently published studies in the field of relational triplet extraction.The review examines commonly used public datasets for relational triplet extraction techniques and systematically reviews current mainstream joint extraction methods,including joint decoding methods and parameter sharing methods,with joint decoding methods further divided into table filling,tagging,and sequence-to-sequence approaches.In addition,this paper also conducts small-scale replication experiments on models that have performed well in recent years for each method to verify the reproducibility of the code and to compare the performance of different models under uniform conditions.Each method has its own advantages in terms of model design,task handling,and application scenarios,but also faces challenges such as processing complex sentence structures,cross-sentence relation extraction,and adaptability in low-resource environments.Finally,this paper systematically summarizes each method and discusses the future development prospects of joint extraction of relational triples.