The rise in construction activities within mountainous regions has significantly increased the frequency of rockfalls.Statistical models for rockfall hazard assessment often struggle to achieve high precision on a lar...The rise in construction activities within mountainous regions has significantly increased the frequency of rockfalls.Statistical models for rockfall hazard assessment often struggle to achieve high precision on a large scale.This limitation arises primarily from the scarcity of historical rockfall data and the inadequacy of conventional assessment indicators in capturing the physical and structural characteristics of rockfalls.This study proposes a physically based deterministic model designed to accurately quantify rockfall hazards at a large scale.The model accounts for multiple rockfall failure modes and incorporates the key physical and structural parameters of the rock mass.Rockfall hazard is defined as the product of three factors:the rockfall failure probability,the probability of reaching a specific position,and the corresponding impact intensity.The failure probability includes probabilities of formation and instability of rock blocks under different failure modes,modeled based on the combination patterns of slope surfaces and rock discontinuities.The Monte Carlo method is employed to account for the randomness of mechanical and geometric parameters when quantifying instability probabilities.Additionally,the rock trajectories and impact energies simulated using Flow-R software are combined with rockfall failure probability to enable regional rockfall hazard zoning.A case study was conducted in Tiefeng,Chongqing,China,considering four types of rockfall failure modes.Hazard zoning results identified the steep and elevated terrains of the northern and southern anaclinal slopes as areas of highest rockfall hazard.These findings align with observed conditions,providing detailed hazard zoning and validating the effectiveness and potential of the proposed model.展开更多
For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was...For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was established based on quadratic polynomial function by taking extremum response surface model as the sub-model of multi-response surface method.The dynamic probabilistic analysis of an aeroengine turbine blisk with two components,and their reliability of deformation and stress failures was obtained,based on thermal-structural coupling technique,by considering the nonlinearity of material parameters and the transients of gas flow,gas temperature and rotational speed.The results show that the comprehensive reliability of structure is 0.9904 when the allowable deformations and stresses of blade and disk are 4.78×10–3 m and 1.41×109 Pa,and 1.64×10–3 m and 1.04×109 Pa,respectively.Besides,gas temperature and rotating speed severely influence the comprehensive reliability of system.Through the comparison of methods,it is shown that the MERSM holds higher computational precision and speed in the probabilistic analysis of turbine blisk,and MERSM computational precision satisfies the requirement of engineering design.The efforts of this study address the difficulties on transients and multiple models coupling for the dynamic probabilistic analysis of multi-component system with multi-failure modes.展开更多
The synthesis of high-quality heteroepitaxial diamond films on iridium composite substrates is a critical step toward advancing diamond for electronic and optical applications.Microwave plasma chemical vapor depositio...The synthesis of high-quality heteroepitaxial diamond films on iridium composite substrates is a critical step toward advancing diamond for electronic and optical applications.Microwave plasma chemical vapor deposition,combined with in situ optical emission spectroscopy,enables precise control over growth modes through plasma parameter tuning.In this study,we examine how methane concentration,microwave power,and gas pressure influence plasma species and,consequently,the growth modes of heteroepitaxial diamond by optical emission spectroscopy and scanning electron microscope.At low nucleation densities,increased methane concentrations promote the transition from faceted polyhedral to ballas structures,driven by elevated C_(2) radical concentrations in the plasma.Conversely,at higher nucleation densities,gas pressure,and substrate temperature dominate growth mode determination,leading to diverse morphologies,such as planar,polycrystalline,octahedral,and step-flow growth.These findings elucidate the interplay among plasma species,growth parameters,and growth mode,offering critical insights for optimizing growth conditions and preparing heteroepitaxial diamond films in a specific growth mode.展开更多
Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both g...Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both global and regional climates.This study assesses the performance of models participating in phase 6 of the Coupled Model Intercomparison Project in simulating interannual variability modes of Northern Hemisphere 500-hPa geopotential height during winter and summer,distinguishing predictable(potentially predictable on seasonal or longer timescales)and unpredictable(intraseasonal and essentially unpredictable at long range)components,using reanalysis data and a variance decomposition method.Although most models effectively capture unpredictable modes in reanalysis,their ability to reproduce dominant predictable modes-specifically the Pacific-North American pattern,Arctic Oscillation,and Western Pacific Oscillation in winter,and the East Atlantic and North Atlantic Oscillations in summer-varies notably.An optimal ensemble is identified to distinguish(a)predictable-external modes,dominated by external forcing,and(b)predictable-internal modes,associated with slow internal variability,during the historical period(1950-2014)and the SSP5-8.5 scenario(2036-2100).Under increased radiative forcing,the leading winter/summer predictable-external mode exhibits a more uniform spatial distribution,remarkably larger trend and annual variance,and enhanced height-sea surface temperature(SST)covariance under SSP5-8.5 compared to historical conditions.The dominant winter/summer predictable-internal modes also exhibit increased variance and height-SST covariance under SSP5-8.5,along with localized changes in spatial configuration.Minimal changes are observed in spatial distribution or variance for dominant winter/summer unpredictable modes under SSP5-8.5.This study,from a predictive perspective,deepens our understanding of model uncertainties and projected changes in circulations.展开更多
In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The ...In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ).展开更多
With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure m...With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure modes are transformed.In order to reveal the failure mode and transformation rule of reinforced concrete slabs under impact loads,a dynamic impact response test was carried out using a drop hammer test device.The dynamic data pertaining to the impact force,support reaction force,structural displacement,and reinforcement strain were obtained through the use of digital image correlation technology(DIC),impact force measurement,and strain measurement.The analysis of the ultimate damage state of the reinforced concrete slab identified four distinct types of impact failure modes:local failure by stamping,overall failure by stamping,local-overall coupling failure,and local failure by punching.Additionally,the influence laws of hammerhead shape,hammer height,and reinforcement ratio on the dynamic response and failure mode transformation of the slab were revealed.The results indicate that:(1)The local damage to the slab by the plane hammer is readily apparent,while the overall damage by the spherical hammer is more pronounced.(2)In comparison to the high reinforcement ratio slabs,the overall bending resistance of the low reinforcement ratio slabs is significantly inferior,and the slab back exhibits further cracks.(3)As the hammer height increases,the slab failure mode undergoes a transformation,shifting from local failure by stamping and overall failure by stamping to local-overall coupling failure and local failure by punching.(4)Three failure mode thresholds have been established,and by comparing the peak impact force with the failure thresholds,the failure mode of the slab can be effectively determined.展开更多
The Pacific Meridional Mode(PMM)and the Atlantic Meridional Mode(AMM)are key modes of interannual sea surface temperature(SST)variability in the Pacific and Atlantic Oceans,respectively.Analysis of CMIP6 model outputs...The Pacific Meridional Mode(PMM)and the Atlantic Meridional Mode(AMM)are key modes of interannual sea surface temperature(SST)variability in the Pacific and Atlantic Oceans,respectively.Analysis of CMIP6 model outputs reveals a robust intensification of the PMM under global warming,whereas the AMM exhibits no consensus among models.These different responses are attributed to mid-to-high latitude atmospheric forcing and subtropical feedback mechanisms.Changes in the upper-level westerly jet drive distinct atmospheric variability over the North Pacific and Atlantic,amplifying sea-level pressure variations associated with the PMM but weakening those linked to the AMM.The SST response to atmospheric forcing shows an increase in the Pacific and a decrease in the Atlantic,both of which are significantly positively correlated with the respective changes in each mode.The enhanced wind-evaporation-SST(WES)feedback,primarily driven by rising background SSTs,positively impacts the intensification of both modes.In the subtropical Pacific,the PMM is further strengthened by an increasing latent heat flux response.The enhancement of the PMM is principally connected to intensified atmospheric forcing and strengthened subtropical feedback.Although the WES feedback is enhanced to some extent,wind anomalies that oppose the climatological state reduce latent heat flux.Combined with the weakening of atmospheric forcing over the Atlantic,this phenomenon contributes to the uncertainty in the AMM's response to global warming.展开更多
We apply the WKB approximation method,matrix method,and finite difference method to study the gravitational quasi-normal modes of charged spherically symmetric black holes surrounded by quintessence fluid in Rastall g...We apply the WKB approximation method,matrix method,and finite difference method to study the gravitational quasi-normal modes of charged spherically symmetric black holes surrounded by quintessence fluid in Rastall gravity.By comparing the spherically symmetric spacetime metric of charged black holes surrounded by quintessence fluid in Rastall gravity with that of general relativity,we can find that the modifications to general relativity in this modified gravity theory can be described by parameters such asλ,Q,and C_(a),etc.In four-dimensional spacetime,we investigate the impact of charge Q and parameter C_(a) on the gravitational quasi-normal modes of charged black holes surrounded by quintessence field in Rastall gravity.The aim is to search for observational evidence of such black holes in astrophysical observations and,consequently,test the validity of Rastall theory.In five-dimensional(5D)spacetime,we study the impact of the parameter C_(a) on the gravitational quasi-normal modes of Rastall black holes surrounded by quintessence field and summarize the corresponding variation patterns.展开更多
Utilizing the Standardized Precipitation Evapotranspiration Index(SPEI)and ERA5 reanalysis data,this study investigates the variability of spring drought in southern China from 1979 to 2022 and its associated drivers....Utilizing the Standardized Precipitation Evapotranspiration Index(SPEI)and ERA5 reanalysis data,this study investigates the variability of spring drought in southern China from 1979 to 2022 and its associated drivers.The results indicate that southern China experienced interdecadal changes in SPEI over the past several decades,which can be concluded that drought severity intensified from 1979 to 2010,whereas a transition shift towards increased wetness occurred from 2010 to 2022.The first Empirical Orthogonal Function(EOF1)mode of SPEI variability in southern China accounts for 44.37%of the total variance,reflecting a uniform variation of SPEI across the region.In contrast,the second Empirical Orthogonal Function(EOF2),which explains 24.41%of the total variance,reveals a west-east dipole pattern in SPEI variability.Further analysis indicates that the positive phase of EOF1 is primarily driven by warm sea surface temperature anomalies(SSTAs)in the tropical eastern Pacific.These anomalies induce an anomalous anticyclone over the Philippine Sea,enhancing water vapor transport to southern China during spring.The positive phase of EOF2 is jointly influenced by warm SSTAs in the tropical Indian Ocean and the central Pacific;the latter induces anticyclonic anomalies over the Philippine Sea,which enhance water vapor transport from the western Pacific and increase precipitation in the eastern part of southern China.However,the warm SSTAs in the tropical Indian Ocean trigger an anomalous anticyclone over South Asia,inhibiting water vapor transport from the Bay of Bengal to the western part of southern China and thus reducing precipitation there.展开更多
To broaden the frequency regulation range of piezoelectric motors,this paper proposes a piezoelectric vibrator that operates in multiple in-plane vibration modes with distinct resonance frequencies.The piezoelectric v...To broaden the frequency regulation range of piezoelectric motors,this paper proposes a piezoelectric vibrator that operates in multiple in-plane vibration modes with distinct resonance frequencies.The piezoelectric vibrator was constructed by reasonably arranging multiple groups of piezoelectric ceramic(PZT)sheets based on the most typical rectangular plate piezoelectric motors.Suitable working modes were selected,and the excitation method of these operating modes was also analyzed.Besides,interactions between selected operating modes were also investigated.The finite element software,ANSYS,was adopted to optimize the structural parameters of the vibrator through modal analysis to match the resonance frequencies of specific modes.After that,whether the selected operating modes can be successfully motivated was verified by harmonic response analysis.Finally,the vibration characteristics of piezoelectric vibrators under conventional vibration modes and multiple modes were acquired by transient analysis,respectively.Simulation results reveal that under dual-frequency excitation scheme 1,response displacements of the driving point are relatively larger.This strategy not only facilitates the excitation of B4 mode but also enables control over the ratio of horizontal to vertical displacements of the driving point.Additionally,incorporating B4 mode expands the frequency adjustment range of piezoelectric vibrators.展开更多
To ensure the safe implementation of underground reservoirs in abandoned coal mines,this study explores the mechanical behavior and failure mechanisms of coal-concrete composite structures under staged cyclic loading....To ensure the safe implementation of underground reservoirs in abandoned coal mines,this study explores the mechanical behavior and failure mechanisms of coal-concrete composite structures under staged cyclic loading.Specimens with coal-to-concrete height ratios ranging from 0.5:1 to 3:1 were tested,with damage evolution continuously monitored using acoustic emission techniques.Results indicate that while the peak strength of pure materials decreases by approximately 1 MPa under cyclic stress compared to uniaxial compression,composite specimens exhibit strength enhancements exceeding 5 MPa.However,the peak strength of composite specimens decreases with increasing coal height,from 30 MPa at CR0.5 to 20 MPa at CR3.0.The damage state was assessed using the dynamic elastic strain energy index and Felicity ratio,which revealed that composite specimens are more prone to early damage accumulation.Spatial acoustic emission localization further reveals distinct failure modes across specimens with varying height ratios.To elucidate these differences,interfacial effects were incorporated into a modified twin-shear unified strength theory.The refined model accurately predicts the internal strength distribution and failure characteristics of the composite structures.These findings provide a theoretical basis for the structural design and safe operation of underground reservoir dams.展开更多
Due to the limitations of widely used energy spectrum and spectral analyses for the determination of trace elements in coal,the modes of occurrence of Li still remains unclear.This study investigated the distribution ...Due to the limitations of widely used energy spectrum and spectral analyses for the determination of trace elements in coal,the modes of occurrence of Li still remains unclear.This study investigated the distribution of Li in selected bulk samples and in-situ kaolinite particles in the No.6 Li-rich coals from the Haerwusu Mine of the Jungar Coalfield using ICP-MS and LA-ICP-MS.The results reveal an elevated Li concentration in the lower section of the No.6 coal with high Sr/Ba ratio compared to the upper section with more terrigenous mudstone along the vertical profile.LA-ICP-MS mapping and spot analyses results showed that Li was concentrated in kaolinite but occur in variations in the concentrations of Li among different types of kaolinite.The concentration of Li in kaolinite is ranked as follows:cryptocrystalline kaolinite(2225.83 ppm)>vermicular kaolinite(651.49 ppm)>altered K-bearing kaolinite(593.44 ppm)>clastic kaolinite(478.68 ppm).The in-situ concentration of Li in kaolinite is much higher than that of the bulk samples,indicating that kaolinite is the dominant host mineral for Li as well.The Al2O3/TiO2 and Nb/Yb-Zr/TiO2 ratios indicate that Li in No.6 coal primarily originated from Paleoproterozoic granite in the Yinshan Mountain and felsic volcanic ash.Seawater leaching has a critical influence on the redistribution of Li in the coal from the Haerwusu Mine or even the whole Jungar Coalfield.展开更多
A numerical and experimental study was conducted to investigate the Laser Ablation(LA)ignition mode in an ethylene-fueled supersonic combustor with a cavity flameholder.Theexperiments were operated under a Mach number...A numerical and experimental study was conducted to investigate the Laser Ablation(LA)ignition mode in an ethylene-fueled supersonic combustor with a cavity flameholder.Theexperiments were operated under a Mach number 2.92 supersonic inflow,with stagnation pressureof 2.4 MPa and stagnation temperature of 1600 K.Reynolds-averaged Navier-Stokes simulationswere conducted to characterize the mixing process and flow field structure.This study identifiedfour distinct LA ignition modes.Under the specified condition,laser ablation in zero and negativedefocusing states manifested two distinct ignition modes termed Laser Ablation Direct Ignition(LADI)mode and Laser Ablation Re-Ignition(LARI)mode,correspondingly.LA ignition in alocal small cavity,created by depressing the flow field regulator,could facilitate the ignition modetransforming from LARI mode to Laser Ablation Transition Ignition(LATI)mode.On the otherhand,the elevation of the flow field regulator effectively inhibited the forward propagation of theinitial flame kernel and reduced the dissipation of LA plasma,further enhancing the LADI mode.Based on these characteristics,the LADI mode was subdivided into strong(LADI-S)and weak(LADI-W)modes.Facilitating the transition of ignition modes through alterations in the local flowfield could contribute to attaining a more effective and stable LA ignition.展开更多
Objective:To investigate the delivery modes of women with repeat pregnancies involving uterine scars and their effects on both mothers and neonates.Methods:A study was conducted on 100 patients treated at Shenzhen Mat...Objective:To investigate the delivery modes of women with repeat pregnancies involving uterine scars and their effects on both mothers and neonates.Methods:A study was conducted on 100 patients treated at Shenzhen Maternity and Child Healthcare Hospital from July 2023 to July 2024.The participants were divided into a control group and an observation group,with 50 cases in each.The division was based on the indications for prior cesarean section,cervical maturity,postpartum complications,and thickness of the cesarean scar.The control group underwent cesarean delivery,while the observation group experienced vaginal delivery.The two groups were compared in terms of intrapartum blood loss,postpartum blood loss within 2 hours,length of hospital stay,Apgar scores at 1-minute post-birth,and incidences of neonatal fever and jaundice.Results:The observation group had significantly lower intrapartum blood loss,postpartum blood loss within 2 hours,and shorter hospital stays compared to the control group(P<0.05).Additionally,the Apgar scores at 1 minute post-birth were significantly higher in the observation group(P<0.05).The incidence of neonatal fever and jaundice was significantly lower in the observation group(P<0.05).These differences were statistically significant.Conclusion:Vaginal delivery has high clinical value for women with repeat pregnancies involving uterine scars.It reduces maternal intrapartum and postpartum blood loss,shortens hospital stays,improves neonatal Apgar scores,and decreases the incidences of neonatal fever and jaundice.This method is worthy of clinical application and promotion.展开更多
Dual-output power amplifiers(PAs)have shown great potential in the area of radar,satellite and wireless communication systems.However,the flexibility of the power allocation in a dual-output PA without sacrificing eff...Dual-output power amplifiers(PAs)have shown great potential in the area of radar,satellite and wireless communication systems.However,the flexibility of the power allocation in a dual-output PA without sacrificing efficiency and circuit complexity still needs further investigation.This paper presents a digitally dual-input dual-output(DIDO)PA with reconfigurable modes for power allocation application.The proposed DIDO PA is consist of two identical sub-amplifiers and a 90◦coupler,showing a simple circuit topology.The input amplitudes of the two sub-amplifiers and their phase difference is dynamically controlled leveraging on the dual-input technique,leading to reconfigurable operation modes from power allocation to Doherty.In the power allocation mode,flexible power allocation between two output ports can be obtained by the DIDO PA without sacrificing drain efficiency(DE).On the other hand,flexible power transferring and enhanced back-off DE can be simultaneously achieved by the DIDO PA when it is in the Doherty mode.As a proof of concept,a DIDO PA operating at 2.4 GHz is fabricated and measured in this paper.In the power allocation mode,the DIDO PA achieves a DE of more than 71.8%with a total output power of larger than 44 dBm.Moreover,when the DIDO PA operates in the Doherty mode,it could deliver a maximum output power of more than 44 dBm with a saturation DE of more than 73.9%and a 6 dB back-off DE of more than 61.2%.展开更多
Time-averaged thermal convection in a rotating horizontal annulus with a higher temperature at its inner boundary is studied.The centrifugal force plays a stabilizing role,while thermal convection is determined by the...Time-averaged thermal convection in a rotating horizontal annulus with a higher temperature at its inner boundary is studied.The centrifugal force plays a stabilizing role,while thermal convection is determined by the“thermovibrational mechanism”.Convective flow is excited due to oscillations of a non-isothermal rotating fluid.Thermal vibrational convectionmanifests in the form of two-dimensional vortices elongated along the axis of rotation,which develop in a threshold manner with an increase in the amplitude of fluid oscillations.The objective of the present study is to clarify the nature of another phenomenon,i.e.,three-dimensional convective vortices observed in the experiments both before the excitation of the convection described above and in the supercritical region.The experimental study of the oscillatory and the time-averaged flow fields by particle image velocimetry is accompanied by the theoretical research of inertial waves.It is found that three-dimensional fluid flows owe their origin to inertial waves.This is confirmed by a high degree of agreement between the experimental and theoretical results.Experiments with cavities of different lengths indicate that the vortices are clearly seen in cavities thatmeet the conditions of resonant excitation of inertial modes.Furthermore,the length of the cavity has no effect on heat transfer,which is explained by the comparatively low intensity of the wave-induced flows.The main contribution to heat transfer is due to vortices elongated along the axis of rotation.The novel results are of significant practical importance in various fields.展开更多
Natural gas hydrate widely exists in the South China Sea as clean energy.A three-phase transition layer widely exists in low permeability Class I hydrates in the Shenhu offshore area.Therefore,taking into account the ...Natural gas hydrate widely exists in the South China Sea as clean energy.A three-phase transition layer widely exists in low permeability Class I hydrates in the Shenhu offshore area.Therefore,taking into account the low-permeability characteristics with an average permeability of 5.5 mD and moderate heterogeneity,a 3-D geological model of heterogeneous Class I hydrate reservoirs with three-phase transition layers is established by Kriging interpolation and stochastic modeling method,and a numerical simulation model is used to describe the depressurization production performance of the reservoir.With the development of depressurization,a specific range of complete decomposition zones appear both in the hydrate and transition layers.The entire decomposition zone of the whole reservoir tends to outward and upward diffusion.There is apparent methane escape in the three-phase transition layer.Due to the improvement of local permeability caused by the phase transition of hydrate dissociation,some methane accumulation occurs at the bottom of the hydrate layer,forming a local methane enrichment zone.The methane migration trends in reservoirs are mainly characterized by movement toward production wells and hydrate layers under the influence of gravity.However,due to the permeability limitation of hydrate reservoirs,many fluids have not been effectively produced and remain in the reservoir.Therefore,to improve the effective pressure drop of the reservoir,the perforation method and pressure reduction method were optimized by analyzing the influencing factors based on the gas production rate.The comparative study demonstrates that perforating through the free gas layer combined with one-time depressurization can enhance the effective depressurization and improve production performance.The gas production rate from perforating through the free gas layer can be twice as high as that from perforating through the transition layer.This study can provide theoretical support for the utilization of marine energy.展开更多
Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral r...Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral resolution limit of microscopy.However,the physical effects leading to resolution enhancement are still frequently debated.In addition,various configurations of MAM operating in transmission mode as well as reflection mode are examined,and the results are sometimes generalized.We present a rigorous simulation model of MAM and introduce a way to quantify the resolution enhancement.The lateral resolution is compared for microscope arrangements in reflection and transmission modes.Furthermore,we discuss different physical effects with respect to their contribution to resolution enhancement.The results indicate that the effects impacting the resolution in MAM strongly depend on the arrangement of the microscope and the measurement object.As a highlight,we outline that evanescent waves in combination with whispering gallery modes also improve the imaging capabilities,enabling super-resolution under certain circumstances.This result is contrary to the conclusions drawn from previous studies,where phase objects have been analyzed,and thus further emphasizes the complexity of the physical mechanisms underlying MAM.展开更多
In this paper we consider a static spherically symmetric black hole(BH)embedded in a Dehnen-(1,4,0)-type dark matter(DM)halo in the presence of a cloud string.We examine and present data on how the core density of the...In this paper we consider a static spherically symmetric black hole(BH)embedded in a Dehnen-(1,4,0)-type dark matter(DM)halo in the presence of a cloud string.We examine and present data on how the core density of the DM halo parameter and the cloud string parameter affect BH attributes such as quasinormal modes(QNMs)and shadow cast.To do this,we first look into the effective potential of perturbation equations for three types of perturbation fields with different spins:massless scalar field,electromagnetic field and gravitational field.Then,using the sixth-order Wentzel-Kramers-Brillouin approximation,we examine QNMs of the BH disturbed by the three fields and derive quasinormal frequencies.The changes in QNM versus the core density parameter and the cloud string parameter for three disturbances are explored.We also investigate how the core density and the cloud string parameter affect the photon sphere and shadow radius.Interestingly,the study shows that the influence of Dehnen-type DM and cloud strings increases both the photon sphere and the shadow radius.Finally,we employ observational data from Sgr A^(*) and M87^(*) to set limitations on the BH parameters.展开更多
This paper focuses on the application of AIGC(Artificial Intelligence Generated Content)technology in higher vocational education teaching modes.It deeply explores the significant meaning of AIGC in empowering higher ...This paper focuses on the application of AIGC(Artificial Intelligence Generated Content)technology in higher vocational education teaching modes.It deeply explores the significant meaning of AIGC in empowering higher vocational education,and analyzes the existing problems when AIGC technology is applied to such teaching modes,covering aspects like technology application,teaching staff,students’adaptability,and educational management.Meanwhile,it puts forward targeted and effective paths for AIGC technology to empower higher vocational education teaching modes,including optimizing technology application,strengthening teacher training,improving students’literacy,and perfecting educational management.The paper aims to promote the in-depth integration of AIGC technology and higher vocational education,realize the innovation and high-quality development of higher vocational education teaching modes,and provide theoretical references and practical guidance for cultivating high-quality technical and skilled talents who meet the needs of the new era.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42172318 and 42377186)the National Key R&D Program of China(Grant No.2023YFC3007201).
文摘The rise in construction activities within mountainous regions has significantly increased the frequency of rockfalls.Statistical models for rockfall hazard assessment often struggle to achieve high precision on a large scale.This limitation arises primarily from the scarcity of historical rockfall data and the inadequacy of conventional assessment indicators in capturing the physical and structural characteristics of rockfalls.This study proposes a physically based deterministic model designed to accurately quantify rockfall hazards at a large scale.The model accounts for multiple rockfall failure modes and incorporates the key physical and structural parameters of the rock mass.Rockfall hazard is defined as the product of three factors:the rockfall failure probability,the probability of reaching a specific position,and the corresponding impact intensity.The failure probability includes probabilities of formation and instability of rock blocks under different failure modes,modeled based on the combination patterns of slope surfaces and rock discontinuities.The Monte Carlo method is employed to account for the randomness of mechanical and geometric parameters when quantifying instability probabilities.Additionally,the rock trajectories and impact energies simulated using Flow-R software are combined with rockfall failure probability to enable regional rockfall hazard zoning.A case study was conducted in Tiefeng,Chongqing,China,considering four types of rockfall failure modes.Hazard zoning results identified the steep and elevated terrains of the northern and southern anaclinal slopes as areas of highest rockfall hazard.These findings align with observed conditions,providing detailed hazard zoning and validating the effectiveness and potential of the proposed model.
基金Projects (51275138,51605016) supported by the National Natural Science Foundation of ChinaProject (12531109) supported by the Science Foundation of Heilongjiang Provincial Department of Education,ChinaProject supported by Research Start-up Funding of Fudan University,China
文摘For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was established based on quadratic polynomial function by taking extremum response surface model as the sub-model of multi-response surface method.The dynamic probabilistic analysis of an aeroengine turbine blisk with two components,and their reliability of deformation and stress failures was obtained,based on thermal-structural coupling technique,by considering the nonlinearity of material parameters and the transients of gas flow,gas temperature and rotational speed.The results show that the comprehensive reliability of structure is 0.9904 when the allowable deformations and stresses of blade and disk are 4.78×10–3 m and 1.41×109 Pa,and 1.64×10–3 m and 1.04×109 Pa,respectively.Besides,gas temperature and rotating speed severely influence the comprehensive reliability of system.Through the comparison of methods,it is shown that the MERSM holds higher computational precision and speed in the probabilistic analysis of turbine blisk,and MERSM computational precision satisfies the requirement of engineering design.The efforts of this study address the difficulties on transients and multiple models coupling for the dynamic probabilistic analysis of multi-component system with multi-failure modes.
基金funded by the National Key Research and Development Program of China(Grant No.2022YFB3608602)the National Natural Science Foundation of China(Grant Nos.62404215 and 62574199)Instrument and Equipment Development Project of CAS(Grant No.PTYQ2024TD0003)。
文摘The synthesis of high-quality heteroepitaxial diamond films on iridium composite substrates is a critical step toward advancing diamond for electronic and optical applications.Microwave plasma chemical vapor deposition,combined with in situ optical emission spectroscopy,enables precise control over growth modes through plasma parameter tuning.In this study,we examine how methane concentration,microwave power,and gas pressure influence plasma species and,consequently,the growth modes of heteroepitaxial diamond by optical emission spectroscopy and scanning electron microscope.At low nucleation densities,increased methane concentrations promote the transition from faceted polyhedral to ballas structures,driven by elevated C_(2) radical concentrations in the plasma.Conversely,at higher nucleation densities,gas pressure,and substrate temperature dominate growth mode determination,leading to diverse morphologies,such as planar,polycrystalline,octahedral,and step-flow growth.These findings elucidate the interplay among plasma species,growth parameters,and growth mode,offering critical insights for optimizing growth conditions and preparing heteroepitaxial diamond films in a specific growth mode.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2342210 and 42275043)the National Institute of Natural Hazards,Ministry of Emergency Management of China(Grant Nos.J2223806,ZDJ2024-25 and ZDJ2025-34)。
文摘Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both global and regional climates.This study assesses the performance of models participating in phase 6 of the Coupled Model Intercomparison Project in simulating interannual variability modes of Northern Hemisphere 500-hPa geopotential height during winter and summer,distinguishing predictable(potentially predictable on seasonal or longer timescales)and unpredictable(intraseasonal and essentially unpredictable at long range)components,using reanalysis data and a variance decomposition method.Although most models effectively capture unpredictable modes in reanalysis,their ability to reproduce dominant predictable modes-specifically the Pacific-North American pattern,Arctic Oscillation,and Western Pacific Oscillation in winter,and the East Atlantic and North Atlantic Oscillations in summer-varies notably.An optimal ensemble is identified to distinguish(a)predictable-external modes,dominated by external forcing,and(b)predictable-internal modes,associated with slow internal variability,during the historical period(1950-2014)and the SSP5-8.5 scenario(2036-2100).Under increased radiative forcing,the leading winter/summer predictable-external mode exhibits a more uniform spatial distribution,remarkably larger trend and annual variance,and enhanced height-sea surface temperature(SST)covariance under SSP5-8.5 compared to historical conditions.The dominant winter/summer predictable-internal modes also exhibit increased variance and height-SST covariance under SSP5-8.5,along with localized changes in spatial configuration.Minimal changes are observed in spatial distribution or variance for dominant winter/summer unpredictable modes under SSP5-8.5.This study,from a predictive perspective,deepens our understanding of model uncertainties and projected changes in circulations.
基金support of the Research Project Supported by Shanxi Scholarship Council of China(2022-040)"Chunhui Plan"Collaborative Research Project by the Ministry of Education of China(HZKY20220507)+2 种基金National Natural Science Foundation of China(52104338)Applied Fundamental Research Programs of Shanxi Province(202303021221036)Shandong Postdoctoral Science Foundation(SDCX-ZG-202303027,SDBX2023054).
文摘In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ).
基金Supported by the National Natural Science Foundation of China(Grant No.52078283)Shandong Provincial Natural Science Foundation(Project No.ZR2024MA094)。
文摘With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure modes are transformed.In order to reveal the failure mode and transformation rule of reinforced concrete slabs under impact loads,a dynamic impact response test was carried out using a drop hammer test device.The dynamic data pertaining to the impact force,support reaction force,structural displacement,and reinforcement strain were obtained through the use of digital image correlation technology(DIC),impact force measurement,and strain measurement.The analysis of the ultimate damage state of the reinforced concrete slab identified four distinct types of impact failure modes:local failure by stamping,overall failure by stamping,local-overall coupling failure,and local failure by punching.Additionally,the influence laws of hammerhead shape,hammer height,and reinforcement ratio on the dynamic response and failure mode transformation of the slab were revealed.The results indicate that:(1)The local damage to the slab by the plane hammer is readily apparent,while the overall damage by the spherical hammer is more pronounced.(2)In comparison to the high reinforcement ratio slabs,the overall bending resistance of the low reinforcement ratio slabs is significantly inferior,and the slab back exhibits further cracks.(3)As the hammer height increases,the slab failure mode undergoes a transformation,shifting from local failure by stamping and overall failure by stamping to local-overall coupling failure and local failure by punching.(4)Three failure mode thresholds have been established,and by comparing the peak impact force with the failure thresholds,the failure mode of the slab can be effectively determined.
基金the National Natural Science Foundation of China(Nos.42230405,41975092)the National Key R&D Program of China(No.2023YFF0805100)+1 种基金the Shandong Natural Science Foundation Project(No.ZR2019ZD12)the Taishan Scholars Project of Shandong Province(No.tsqn202306095)。
文摘The Pacific Meridional Mode(PMM)and the Atlantic Meridional Mode(AMM)are key modes of interannual sea surface temperature(SST)variability in the Pacific and Atlantic Oceans,respectively.Analysis of CMIP6 model outputs reveals a robust intensification of the PMM under global warming,whereas the AMM exhibits no consensus among models.These different responses are attributed to mid-to-high latitude atmospheric forcing and subtropical feedback mechanisms.Changes in the upper-level westerly jet drive distinct atmospheric variability over the North Pacific and Atlantic,amplifying sea-level pressure variations associated with the PMM but weakening those linked to the AMM.The SST response to atmospheric forcing shows an increase in the Pacific and a decrease in the Atlantic,both of which are significantly positively correlated with the respective changes in each mode.The enhanced wind-evaporation-SST(WES)feedback,primarily driven by rising background SSTs,positively impacts the intensification of both modes.In the subtropical Pacific,the PMM is further strengthened by an increasing latent heat flux response.The enhancement of the PMM is principally connected to intensified atmospheric forcing and strengthened subtropical feedback.Although the WES feedback is enhanced to some extent,wind anomalies that oppose the climatological state reduce latent heat flux.Combined with the weakening of atmospheric forcing over the Atlantic,this phenomenon contributes to the uncertainty in the AMM's response to global warming.
基金Project supported by the National Natural Science Foundation of China(Grant No.42230207)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.G1323523064)。
文摘We apply the WKB approximation method,matrix method,and finite difference method to study the gravitational quasi-normal modes of charged spherically symmetric black holes surrounded by quintessence fluid in Rastall gravity.By comparing the spherically symmetric spacetime metric of charged black holes surrounded by quintessence fluid in Rastall gravity with that of general relativity,we can find that the modifications to general relativity in this modified gravity theory can be described by parameters such asλ,Q,and C_(a),etc.In four-dimensional spacetime,we investigate the impact of charge Q and parameter C_(a) on the gravitational quasi-normal modes of charged black holes surrounded by quintessence field in Rastall gravity.The aim is to search for observational evidence of such black holes in astrophysical observations and,consequently,test the validity of Rastall theory.In five-dimensional(5D)spacetime,we study the impact of the parameter C_(a) on the gravitational quasi-normal modes of Rastall black holes surrounded by quintessence field and summarize the corresponding variation patterns.
基金Natural Science Foundation of Guangdong Province,China(2024A1515011352)National Natural Science Founda-tion of China(42275020)+2 种基金Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhu-hai)(311021001)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)Shanghai Frontiers Science Center of Atmosphere-Ocean Interaction(FDAOS-OP202401)。
文摘Utilizing the Standardized Precipitation Evapotranspiration Index(SPEI)and ERA5 reanalysis data,this study investigates the variability of spring drought in southern China from 1979 to 2022 and its associated drivers.The results indicate that southern China experienced interdecadal changes in SPEI over the past several decades,which can be concluded that drought severity intensified from 1979 to 2010,whereas a transition shift towards increased wetness occurred from 2010 to 2022.The first Empirical Orthogonal Function(EOF1)mode of SPEI variability in southern China accounts for 44.37%of the total variance,reflecting a uniform variation of SPEI across the region.In contrast,the second Empirical Orthogonal Function(EOF2),which explains 24.41%of the total variance,reveals a west-east dipole pattern in SPEI variability.Further analysis indicates that the positive phase of EOF1 is primarily driven by warm sea surface temperature anomalies(SSTAs)in the tropical eastern Pacific.These anomalies induce an anomalous anticyclone over the Philippine Sea,enhancing water vapor transport to southern China during spring.The positive phase of EOF2 is jointly influenced by warm SSTAs in the tropical Indian Ocean and the central Pacific;the latter induces anticyclonic anomalies over the Philippine Sea,which enhance water vapor transport from the western Pacific and increase precipitation in the eastern part of southern China.However,the warm SSTAs in the tropical Indian Ocean trigger an anomalous anticyclone over South Asia,inhibiting water vapor transport from the Bay of Bengal to the western part of southern China and thus reducing precipitation there.
基金funded by National Natural Science Foundation of China,grant number 52205292.
文摘To broaden the frequency regulation range of piezoelectric motors,this paper proposes a piezoelectric vibrator that operates in multiple in-plane vibration modes with distinct resonance frequencies.The piezoelectric vibrator was constructed by reasonably arranging multiple groups of piezoelectric ceramic(PZT)sheets based on the most typical rectangular plate piezoelectric motors.Suitable working modes were selected,and the excitation method of these operating modes was also analyzed.Besides,interactions between selected operating modes were also investigated.The finite element software,ANSYS,was adopted to optimize the structural parameters of the vibrator through modal analysis to match the resonance frequencies of specific modes.After that,whether the selected operating modes can be successfully motivated was verified by harmonic response analysis.Finally,the vibration characteristics of piezoelectric vibrators under conventional vibration modes and multiple modes were acquired by transient analysis,respectively.Simulation results reveal that under dual-frequency excitation scheme 1,response displacements of the driving point are relatively larger.This strategy not only facilitates the excitation of B4 mode but also enables control over the ratio of horizontal to vertical displacements of the driving point.Additionally,incorporating B4 mode expands the frequency adjustment range of piezoelectric vibrators.
基金supported by the Deep Earth Probe and Mineral Resources Exploration-National Science and Technology Major Project(No.2024ZD1003903)National Natural Science Foundation of China(Nos.52374078,U24A20616,and 52074043)+1 种基金Sichuan-Chongqing Science and Technology Project Innovation Cooperation Program(No.2024TIAD-CYKJCXX0011)the Fundamental Research Funds for the Central Universities(No.2023CDJKYJH021).
文摘To ensure the safe implementation of underground reservoirs in abandoned coal mines,this study explores the mechanical behavior and failure mechanisms of coal-concrete composite structures under staged cyclic loading.Specimens with coal-to-concrete height ratios ranging from 0.5:1 to 3:1 were tested,with damage evolution continuously monitored using acoustic emission techniques.Results indicate that while the peak strength of pure materials decreases by approximately 1 MPa under cyclic stress compared to uniaxial compression,composite specimens exhibit strength enhancements exceeding 5 MPa.However,the peak strength of composite specimens decreases with increasing coal height,from 30 MPa at CR0.5 to 20 MPa at CR3.0.The damage state was assessed using the dynamic elastic strain energy index and Felicity ratio,which revealed that composite specimens are more prone to early damage accumulation.Spatial acoustic emission localization further reveals distinct failure modes across specimens with varying height ratios.To elucidate these differences,interfacial effects were incorporated into a modified twin-shear unified strength theory.The refined model accurately predicts the internal strength distribution and failure characteristics of the composite structures.These findings provide a theoretical basis for the structural design and safe operation of underground reservoir dams.
基金supported by the National Key R&D Program of China(No.2021YFC2902003)National Natural Science Foundation of China(No.42302193No.42272201).
文摘Due to the limitations of widely used energy spectrum and spectral analyses for the determination of trace elements in coal,the modes of occurrence of Li still remains unclear.This study investigated the distribution of Li in selected bulk samples and in-situ kaolinite particles in the No.6 Li-rich coals from the Haerwusu Mine of the Jungar Coalfield using ICP-MS and LA-ICP-MS.The results reveal an elevated Li concentration in the lower section of the No.6 coal with high Sr/Ba ratio compared to the upper section with more terrigenous mudstone along the vertical profile.LA-ICP-MS mapping and spot analyses results showed that Li was concentrated in kaolinite but occur in variations in the concentrations of Li among different types of kaolinite.The concentration of Li in kaolinite is ranked as follows:cryptocrystalline kaolinite(2225.83 ppm)>vermicular kaolinite(651.49 ppm)>altered K-bearing kaolinite(593.44 ppm)>clastic kaolinite(478.68 ppm).The in-situ concentration of Li in kaolinite is much higher than that of the bulk samples,indicating that kaolinite is the dominant host mineral for Li as well.The Al2O3/TiO2 and Nb/Yb-Zr/TiO2 ratios indicate that Li in No.6 coal primarily originated from Paleoproterozoic granite in the Yinshan Mountain and felsic volcanic ash.Seawater leaching has a critical influence on the redistribution of Li in the coal from the Haerwusu Mine or even the whole Jungar Coalfield.
基金supported by the National Natural Science Foundation of China(Nos.12272408 and 11925207)the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China(No.2024J12057)。
文摘A numerical and experimental study was conducted to investigate the Laser Ablation(LA)ignition mode in an ethylene-fueled supersonic combustor with a cavity flameholder.Theexperiments were operated under a Mach number 2.92 supersonic inflow,with stagnation pressureof 2.4 MPa and stagnation temperature of 1600 K.Reynolds-averaged Navier-Stokes simulationswere conducted to characterize the mixing process and flow field structure.This study identifiedfour distinct LA ignition modes.Under the specified condition,laser ablation in zero and negativedefocusing states manifested two distinct ignition modes termed Laser Ablation Direct Ignition(LADI)mode and Laser Ablation Re-Ignition(LARI)mode,correspondingly.LA ignition in alocal small cavity,created by depressing the flow field regulator,could facilitate the ignition modetransforming from LARI mode to Laser Ablation Transition Ignition(LATI)mode.On the otherhand,the elevation of the flow field regulator effectively inhibited the forward propagation of theinitial flame kernel and reduced the dissipation of LA plasma,further enhancing the LADI mode.Based on these characteristics,the LADI mode was subdivided into strong(LADI-S)and weak(LADI-W)modes.Facilitating the transition of ignition modes through alterations in the local flowfield could contribute to attaining a more effective and stable LA ignition.
文摘Objective:To investigate the delivery modes of women with repeat pregnancies involving uterine scars and their effects on both mothers and neonates.Methods:A study was conducted on 100 patients treated at Shenzhen Maternity and Child Healthcare Hospital from July 2023 to July 2024.The participants were divided into a control group and an observation group,with 50 cases in each.The division was based on the indications for prior cesarean section,cervical maturity,postpartum complications,and thickness of the cesarean scar.The control group underwent cesarean delivery,while the observation group experienced vaginal delivery.The two groups were compared in terms of intrapartum blood loss,postpartum blood loss within 2 hours,length of hospital stay,Apgar scores at 1-minute post-birth,and incidences of neonatal fever and jaundice.Results:The observation group had significantly lower intrapartum blood loss,postpartum blood loss within 2 hours,and shorter hospital stays compared to the control group(P<0.05).Additionally,the Apgar scores at 1 minute post-birth were significantly higher in the observation group(P<0.05).The incidence of neonatal fever and jaundice was significantly lower in the observation group(P<0.05).These differences were statistically significant.Conclusion:Vaginal delivery has high clinical value for women with repeat pregnancies involving uterine scars.It reduces maternal intrapartum and postpartum blood loss,shortens hospital stays,improves neonatal Apgar scores,and decreases the incidences of neonatal fever and jaundice.This method is worthy of clinical application and promotion.
基金supported in part by the National Natural Science Foundation of China(No.62201100).
文摘Dual-output power amplifiers(PAs)have shown great potential in the area of radar,satellite and wireless communication systems.However,the flexibility of the power allocation in a dual-output PA without sacrificing efficiency and circuit complexity still needs further investigation.This paper presents a digitally dual-input dual-output(DIDO)PA with reconfigurable modes for power allocation application.The proposed DIDO PA is consist of two identical sub-amplifiers and a 90◦coupler,showing a simple circuit topology.The input amplitudes of the two sub-amplifiers and their phase difference is dynamically controlled leveraging on the dual-input technique,leading to reconfigurable operation modes from power allocation to Doherty.In the power allocation mode,flexible power allocation between two output ports can be obtained by the DIDO PA without sacrificing drain efficiency(DE).On the other hand,flexible power transferring and enhanced back-off DE can be simultaneously achieved by the DIDO PA when it is in the Doherty mode.As a proof of concept,a DIDO PA operating at 2.4 GHz is fabricated and measured in this paper.In the power allocation mode,the DIDO PA achieves a DE of more than 71.8%with a total output power of larger than 44 dBm.Moreover,when the DIDO PA operates in the Doherty mode,it could deliver a maximum output power of more than 44 dBm with a saturation DE of more than 73.9%and a 6 dB back-off DE of more than 61.2%.
基金funded by the Ministry of Education of the Russian Federation within the framework of a state assignment,number 1023032300071-6-2.3.1.
文摘Time-averaged thermal convection in a rotating horizontal annulus with a higher temperature at its inner boundary is studied.The centrifugal force plays a stabilizing role,while thermal convection is determined by the“thermovibrational mechanism”.Convective flow is excited due to oscillations of a non-isothermal rotating fluid.Thermal vibrational convectionmanifests in the form of two-dimensional vortices elongated along the axis of rotation,which develop in a threshold manner with an increase in the amplitude of fluid oscillations.The objective of the present study is to clarify the nature of another phenomenon,i.e.,three-dimensional convective vortices observed in the experiments both before the excitation of the convection described above and in the supercritical region.The experimental study of the oscillatory and the time-averaged flow fields by particle image velocimetry is accompanied by the theoretical research of inertial waves.It is found that three-dimensional fluid flows owe their origin to inertial waves.This is confirmed by a high degree of agreement between the experimental and theoretical results.Experiments with cavities of different lengths indicate that the vortices are clearly seen in cavities thatmeet the conditions of resonant excitation of inertial modes.Furthermore,the length of the cavity has no effect on heat transfer,which is explained by the comparatively low intensity of the wave-induced flows.The main contribution to heat transfer is due to vortices elongated along the axis of rotation.The novel results are of significant practical importance in various fields.
基金supported by the Sinopec Technology Research and Development Project(No.30000000-22-ZC0607-0235,No.33550000-22-ZC0607-0009)the National Natural Science Foundation of China(No.52334002).
文摘Natural gas hydrate widely exists in the South China Sea as clean energy.A three-phase transition layer widely exists in low permeability Class I hydrates in the Shenhu offshore area.Therefore,taking into account the low-permeability characteristics with an average permeability of 5.5 mD and moderate heterogeneity,a 3-D geological model of heterogeneous Class I hydrate reservoirs with three-phase transition layers is established by Kriging interpolation and stochastic modeling method,and a numerical simulation model is used to describe the depressurization production performance of the reservoir.With the development of depressurization,a specific range of complete decomposition zones appear both in the hydrate and transition layers.The entire decomposition zone of the whole reservoir tends to outward and upward diffusion.There is apparent methane escape in the three-phase transition layer.Due to the improvement of local permeability caused by the phase transition of hydrate dissociation,some methane accumulation occurs at the bottom of the hydrate layer,forming a local methane enrichment zone.The methane migration trends in reservoirs are mainly characterized by movement toward production wells and hydrate layers under the influence of gravity.However,due to the permeability limitation of hydrate reservoirs,many fluids have not been effectively produced and remain in the reservoir.Therefore,to improve the effective pressure drop of the reservoir,the perforation method and pressure reduction method were optimized by analyzing the influencing factors based on the gas production rate.The comparative study demonstrates that perforating through the free gas layer combined with one-time depressurization can enhance the effective depressurization and improve production performance.The gas production rate from perforating through the free gas layer can be twice as high as that from perforating through the transition layer.This study can provide theoretical support for the utilization of marine energy.
基金supported by the German Research Foundation(DFG)(Grant Nos.LE 992/14-3 and LE 992/15-3).
文摘Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral resolution limit of microscopy.However,the physical effects leading to resolution enhancement are still frequently debated.In addition,various configurations of MAM operating in transmission mode as well as reflection mode are examined,and the results are sometimes generalized.We present a rigorous simulation model of MAM and introduce a way to quantify the resolution enhancement.The lateral resolution is compared for microscope arrangements in reflection and transmission modes.Furthermore,we discuss different physical effects with respect to their contribution to resolution enhancement.The results indicate that the effects impacting the resolution in MAM strongly depend on the arrangement of the microscope and the measurement object.As a highlight,we outline that evanescent waves in combination with whispering gallery modes also improve the imaging capabilities,enabling super-resolution under certain circumstances.This result is contrary to the conclusions drawn from previous studies,where phase objects have been analyzed,and thus further emphasizes the complexity of the physical mechanisms underlying MAM.
基金supported by the National Natural Science Foundation of China under Grant No.11675143the National Key Research and Development Program of China under Grant No.2020YFC2201503。
文摘In this paper we consider a static spherically symmetric black hole(BH)embedded in a Dehnen-(1,4,0)-type dark matter(DM)halo in the presence of a cloud string.We examine and present data on how the core density of the DM halo parameter and the cloud string parameter affect BH attributes such as quasinormal modes(QNMs)and shadow cast.To do this,we first look into the effective potential of perturbation equations for three types of perturbation fields with different spins:massless scalar field,electromagnetic field and gravitational field.Then,using the sixth-order Wentzel-Kramers-Brillouin approximation,we examine QNMs of the BH disturbed by the three fields and derive quasinormal frequencies.The changes in QNM versus the core density parameter and the cloud string parameter for three disturbances are explored.We also investigate how the core density and the cloud string parameter affect the photon sphere and shadow radius.Interestingly,the study shows that the influence of Dehnen-type DM and cloud strings increases both the photon sphere and the shadow radius.Finally,we employ observational data from Sgr A^(*) and M87^(*) to set limitations on the BH parameters.
文摘This paper focuses on the application of AIGC(Artificial Intelligence Generated Content)technology in higher vocational education teaching modes.It deeply explores the significant meaning of AIGC in empowering higher vocational education,and analyzes the existing problems when AIGC technology is applied to such teaching modes,covering aspects like technology application,teaching staff,students’adaptability,and educational management.Meanwhile,it puts forward targeted and effective paths for AIGC technology to empower higher vocational education teaching modes,including optimizing technology application,strengthening teacher training,improving students’literacy,and perfecting educational management.The paper aims to promote the in-depth integration of AIGC technology and higher vocational education,realize the innovation and high-quality development of higher vocational education teaching modes,and provide theoretical references and practical guidance for cultivating high-quality technical and skilled talents who meet the needs of the new era.