期刊文献+
共找到5,097篇文章
< 1 2 250 >
每页显示 20 50 100
Direct computing methods for turn flows in traffic assignment
1
作者 任刚 王炜 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期225-228,共4页
Two methods based on a slight modification of the regular traffic assignmentalgorithms are proposed to directly compute turn flows instead of estimating them from link flows orobtaining them by expanding the networks.... Two methods based on a slight modification of the regular traffic assignmentalgorithms are proposed to directly compute turn flows instead of estimating them from link flows orobtaining them by expanding the networks. The first one is designed on the path-turn incidencerelationship, and it is similar to the computational procedure of link flows. It applies to thetraffic assignment algorithms that can provide detailed path structures. The second utilizes thelink-turn incidence relationship and the conservation of flow on links, a law deriving from thisrelationship. It is actually an improved version of Dial's logit assignment algorithm. The proposedapproaches can avoid the shortcomings both of the estimation methods, e. g. Furness's model andFrator's model, and of the network-expanding method in precision, stability and computation scale.Finally, they are validated by numerical examples. 展开更多
关键词 turn flow traffic assignment Dial's algorithm directly computing method
在线阅读 下载PDF
Information Flow Security Models for Cloud Computing 被引量:3
2
作者 Congdong Lv Ji Zhang +1 位作者 Zhoubao Sun Gang Qian 《Computers, Materials & Continua》 SCIE EI 2020年第12期2687-2705,共19页
Cloud computing provides services to users through Internet.This open mode not only facilitates the access by users,but also brings potential security risks.In cloud computing,the risk of data leakage exists between u... Cloud computing provides services to users through Internet.This open mode not only facilitates the access by users,but also brings potential security risks.In cloud computing,the risk of data leakage exists between users and virtual machines.Whether direct or indirect data leakage,it can be regarded as illegal information flow.Methods,such as access control models can control the information flow,but not the covert information flow.Therefore,it needs to use the noninterference models to detect the existence of illegal information flow in cloud computing architecture.Typical noninterference models are not suitable to certificate information flow in cloud computing architecture.In this paper,we propose several information flow models for cloud architecture.One model is for transitive cloud computing architecture.The others are for intransitive cloud computing architecture.When concurrent access actions execute in the cloud architecture,we want that security domain and security domain do not affect each other,that there is no information flow between security domains.But in fact,there will be more or less indirect information flow between security domains.Our models are concerned with how much information is allowed to flow.For example,in the CIP model,the other domain can learn the sequence of actions.But in the CTA model,the other domain can’t learn the information.Which security model will be used in an architecture depends on the security requirements for that architecture. 展开更多
关键词 Cloud computing security information flow security NONINTERFERENCE noninterference models
在线阅读 下载PDF
Computational and experimental analysis of flow velocity and complex vortex formation around a group of bridge piers
3
作者 Nima Ikani Jaan H.Pu +4 位作者 Prashanth Reddy Hanmaiahgari Bimlesh Kumar Ebrahim Hamid Hussein Al-Qadami Mohd Adib Mohammad Razi Shu-yan Zang 《Water Science and Engineering》 2025年第2期247-258,共12页
In this study,the flow characteristics around a group of three piers arranged in tandem were investigated both numerically and experimentally.The simulation utilised the volume of fluid(VOF)model in conjunction with t... In this study,the flow characteristics around a group of three piers arranged in tandem were investigated both numerically and experimentally.The simulation utilised the volume of fluid(VOF)model in conjunction with the k–ɛmethod(i.e.,for flow turbulence representations),implemented through the ANSYS FLUENT software,to model the free-surface flow.The simulation results were validated against laboratory measurements obtained using an acoustic Doppler velocimeter.The comparative analysis revealed discrepancies between the simulated and measured maximum velocities within the investigated flow field.However,the numerical results demonstrated a distinct vortex-induced flow pattern following the first pier and throughout the vicinity of the entire pier group,which aligned reasonably well with experimental data.In the heavily narrowed spaces between the piers,simulated velocity profiles were overestimated in the free-surface region and underestimated in the areas near the bed to the mid-stream when compared to measurements.These discrepancies diminished away from the regions with intense vortices,indicating that the employed model was capable of simulating relatively less disturbed flow turbulence.Furthermore,velocity results from both simulations and measurements were compared based on velocity distributions at three different depth ratios(0.15,0.40,and 0.62)to assess vortex characteristic around the piers.This comparison revealed consistent results between experimental and simulated data.This research contributes to a deeper understanding of flow dynamics around complex interactive pier systems,which is critical for designing stable and sustainable hydraulic structures.Furthermore,the insights gained from this study provide valuable information for engineers aiming to develop effective strategies for controlling scour and minimizing destructive vortex effects,thereby guiding the design and maintenance of sustainable infrastructure. 展开更多
关键词 CFD computation ADV measurements Pier group flow turbulence Velocity profile
在线阅读 下载PDF
Research on data pre-deployment in information service flow of digital ocean cloud computing
4
作者 SHI Suixiang XU Lingyu +4 位作者 DONG Han WANG Lei WU Shaochun QIAO Baiyou WANG Guoren 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第9期82-92,共11页
Data pre-deployment in the HDFS (Hadoop distributed file systems) is more complicated than that in traditional file systems. There are many key issues need to be addressed, such as determining the target location of... Data pre-deployment in the HDFS (Hadoop distributed file systems) is more complicated than that in traditional file systems. There are many key issues need to be addressed, such as determining the target location of the data prefetching, the amount of data to be prefetched, the balance between data prefetching services and normal data accesses. Aiming to solve these problems, we employ the characteristics of digital ocean information service flows and propose a deployment scheme which combines input data prefetching with output data oriented storage strategies. The method achieves the parallelism of data preparation and data processing, thereby massively reducing I/O time cost of digital ocean cloud computing platforms when processing multi-source information synergistic tasks. The experimental results show that the scheme has a higher degree of parallelism than traditional Hadoop mechanisms, shortens the waiting time of a running service node, and significantly reduces data access conflicts. 展开更多
关键词 HDFS data prefetching cloud computing service flow digital ocean
在线阅读 下载PDF
Simulation of Free Surface Flows Based on MapReduce in Cloud Computing
5
作者 刘旭 班晓娟 王墨涵 《China Communications》 SCIE CSCD 2011年第6期28-35,共8页
Simulating turbulent liquids with breaking waves and splashes is among the most desired features in fluid animation. Lagrangian methods such as Smoothed Particle Hydrodynamics method (SPH) are a promising way to captu... Simulating turbulent liquids with breaking waves and splashes is among the most desired features in fluid animation. Lagrangian methods such as Smoothed Particle Hydrodynamics method (SPH) are a promising way to capture such properties. However, the Particle-based liquid surface simulation has not been applied very well since its consumption is way too large. This paper derives the governing equations in SPH approaches and parallelizes the dynamics-based surface simulation with the MapReduce program models which apply the SPH approach in Cloud Computing. Compared to the serial methods, this approach obtained a 3.11 times speedup on the experimental platform. 展开更多
关键词 MAPREDUCE SPH cloud computing free surface flows parallelize
在线阅读 下载PDF
High performance parallel computing of large eddy simulation of the flow in a curved duct with square cross section
6
作者 樊洪明 黄伟 魏英杰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第4期442-446,共5页
Large eddy simulation(LES) cooperated with a high performance parallel computing method is applied to simulate the flow in a curved duct with square cross section in the paper. The method consists of parallel domain d... Large eddy simulation(LES) cooperated with a high performance parallel computing method is applied to simulate the flow in a curved duct with square cross section in the paper. The method consists of parallel domain decomposition of grids, creation of virtual diagonal bordered matrix, assembling of boundary matrix, parallel LDL^T decomposition, parallel solving of Poisson Equation, parallel estimation of convergence and so on. The parallel computing method can solve the problems that are difficult to solve using traditional serial computing. Furthermore, existing microcomputers can be fully used to resolve some large-scale problems of complex turbulent flow. 展开更多
关键词 turbulent flow large eddy simulation finite element method domain decomposition method parallel computing
在线阅读 下载PDF
AN EFFICIENT FINITE-DIFFERENCE ALGORITHM FOR COMPUTING AXISYMMETRIC TRANSONIC NACELLE FLOW FIELDS
7
作者 Huang MingkeNanjing Aeronautical Institute 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1990年第4期225-232,共8页
A finite difference method for computing the axisymmetric, transonic flows over a nacelle is presented in this paper. By use of the conservative full-potential equation, body-fitted grid, and the exact boundary condit... A finite difference method for computing the axisymmetric, transonic flows over a nacelle is presented in this paper. By use of the conservative full-potential equation, body-fitted grid, and the exact boundary conditions, a new AF scheme is constructed according to the criterion of optimum convergence. The proposed scheme has been applied to transonic nacelle flow problems. Computation for several nacelles shows the rapid convergence of this scheme and excellent agreement with the experimental results. 展开更多
关键词 AN EFFICIENT FINITE-DIFFERENCE ALGORITHM FOR computing AXISYMMETRIC TRANSONIC NACELLE flow FIELDS
在线阅读 下载PDF
Application of computational fluid dynamic to model the hydraulic performance of subsurface flow wetlands 被引量:17
8
作者 FAN Liwei Hai Reti +2 位作者 WANG Wenxing LU Zexiang YANG Zhiming 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第12期1415-1422,共8页
A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was... A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr... 展开更多
关键词 subsurface flow wetland computational fluid dynamic resident time distribution hydraulic performance
在线阅读 下载PDF
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled with Rotor Systems 被引量:21
9
作者 LI Qiang YU Guichang +1 位作者 LIU Shulian ZHENG Shuiying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期926-932,共7页
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli... Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system. 展开更多
关键词 mesh movement transient flow computational fluid dynamics (CFD) fluid-structure interaction (FSI) journal bearing
在线阅读 下载PDF
Generation of Dynamic Grids and Computation of Unsteady Transonic Flows around Assemblies 被引量:6
10
作者 陆志良 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2001年第1期1-5,共5页
Algebraic methods and rapid deforming techniques are used to generate three-dimensional boundary-fitted dynamic grids for assemblies. The conservative full-potential equation is solved by a time-accurate approximate f... Algebraic methods and rapid deforming techniques are used to generate three-dimensional boundary-fitted dynamic grids for assemblies. The conservative full-potential equation is solved by a time-accurate approximate factorization algorithm and internal Newton iterations. An integral boundary layer method based on the dissipation integral is used to account for viscous effects. The computational results about unsteady transonic forces on wings, bodies and control surfaces are in agreement with experimental data. 展开更多
关键词 ALGEBRA Algorithms Approximation theory Boundary layer flow computational fluid dynamics Integral equations Iterative methods Newtonian flow Transonic flow Unsteady flow Viscous flow WINGS
在线阅读 下载PDF
Modeling of gas-solid flow in a CFB riser based on computational particle fluid dynamics 被引量:7
11
作者 Zhang Yinghui Lan Xingying Gao Jinsen 《Petroleum Science》 SCIE CAS CSCD 2012年第4期535-543,共9页
A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior ... A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime. 展开更多
关键词 Gas-solid flow circulating fluidized bed computational particle fluid dynamics modeling HYDRODYNAMICS
原文传递
Flow Ripple of Axial Piston Pump with Computational Fluid Dynamic Simulation Using Compressible Hydraulic Oil 被引量:22
12
作者 MA Ji'en XU Bing +1 位作者 ZHANG Bin YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期45-52,共8页
The flow ripple,which is the source of noise in an axial piston pump,is widely studied today with the computational fluid dynamic(CFD)technology development.In the traditional CFD modeling,the fluid compressibility,wh... The flow ripple,which is the source of noise in an axial piston pump,is widely studied today with the computational fluid dynamic(CFD)technology development.In the traditional CFD modeling,the fluid compressibility,which strongly influences the accuracy of the flow ripple simulation results,is often neglected.So a compressible sub-model was added with user defined function(UDF)in the CFD model to predict the flow ripple.At the same time,a test rig of flow ripple was built to study the validity of simulation.The flow ripple of pump was tested with different working parameters,including the rotation speed and the working pressure.The comparisons with experimental results show that the validity of the CFD model with compressible hydraulic oil is acceptable in analyzing the flow tipple characteristics.In this paper,the improved CFD model increases the accuracy of flow ripple rate to about one-magnitude order.Therefore,the compressible model of hydraulic oil is necessary in the flow ripple investigation of CFD simulation.The compressibility of hydraulic oil has significant effect on flow ripple,and the compression ripple takes about 88%of the total flow ripple of pump.Leakage ripple has the lowest proportion of about 4%,and geometrical ripple leakage ripple takes the remnant 8%.Besides,the influence of working parameters was investigated through the CFD simulations and experimental measurements.Comparison results show that the amplitude of flow ripple grows with the increasing of rotation speed and working pressure,and the flow ripple rate is independent of the rotation speed.However,flow ripple rate of piston pump grows with the increasing of working pressure,because the leakage ripple will increase with the pressure growing.The investigation on flow ripple of an axial piston pump using compressible hydraulic oil provides a more validity simulation model for the CFD analyzing and is beneficial to further understanding of the flow ripple characteristics in an axial piston pump. 展开更多
关键词 axial piston pump flow ripple computational fluid dynamics
在线阅读 下载PDF
Simulation and Analysis on the Two-Phase Flow Fields in a Rotating-Stream-Tray Absorber by Using Computational Fluid Dynamics 被引量:8
13
作者 邵雄飞 吴忠标 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期169-173,共5页
The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model... The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design. 展开更多
关键词 rotating-stream-tray two-phase flow field SIMULATION computational fluid dynamics
在线阅读 下载PDF
COMPUTATIONAL FLUID DYNAMICS RESEARCH ON PRESSURE LOSS OF CROSS-FLOW PERFORATED MUFFLER 被引量:15
14
作者 HU Xiaodong ZHOU Yiqi +2 位作者 FANG Jianhua MAN Xiliang ZHAO Zhengxu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期88-93,共6页
The pressure loss of cross-flow perforated of physical modeling, simulation and data processing. muffler has been computed with the procedure Three-dimensional computational fluid dynamics (CFD) has been used to inv... The pressure loss of cross-flow perforated of physical modeling, simulation and data processing. muffler has been computed with the procedure Three-dimensional computational fluid dynamics (CFD) has been used to investigate the relations of porosities, flow velocity and diameter of the holes with the pressure loss. Accordingly, some preliminary results have been obtained that pressure loss increases with porosity descent as nearly a hyperbolic trend, rising flow velocity of the input makes the pressure loss increasing with parabola trend, diameter of holes affects little about pressure loss of the muffler. Otherwise, the holes on the perforated pipes make the air flow gently and meanly, which decreases the air impact to the wall and pipes in the muffler. A practical perforated muffler is used to illustrate the available of this method for pressure loss computation, and the comparison shows that the computation results with the method of CFD has reference value for muffler design. 展开更多
关键词 Perforated muffler Pressure loss computational fluid dynamics (CFD) Porosity flow velocity
在线阅读 下载PDF
Three-dimensional Computational Fluid Dynamics Modeling of Two-phase Flow in a Structured Packing Column 被引量:4
15
作者 张小斌 姚蕾 +1 位作者 邱利民 张学军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第9期959-966,共8页
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed... Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations. 展开更多
关键词 structured packing column two-phase flow computational fluid dynamics THREE-DIMENSION
在线阅读 下载PDF
COMPUTATIONAL FLOW RATE FEEDBACK AND CONTROL METHOD IN HYDRAULIC ELEVATORS 被引量:6
16
作者 Xu Bing Ma Jien Lin Jianjie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期490-493,共4页
The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor rece... The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments arc carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out. 展开更多
关键词 Hydraulic elevator computational flow rate Proportional valve
在线阅读 下载PDF
Numerical computation and analysis of unsteady viscous flow around autonomous underwater vehicle with propellers based on sliding mesh 被引量:4
17
作者 高富东 潘存云 韩艳艳 《Journal of Central South University》 SCIE EI CAS 2012年第4期944-952,共9页
The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheele... The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs. 展开更多
关键词 computational fluid dynamics sliding mesh wheel propeller autonomous underwater vehicle viscous flow field
在线阅读 下载PDF
A Cloud Computing Security Model Based on Noninterference 被引量:1
18
作者 Lü Congdong QIAN Gang CHEN Tao 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第3期194-200,共7页
In cloud computing, the risk of data leakage exists between users and virtual machines. Whether it is direct or indirect data leakage, it can be regarded as illegal information flow. Methods such as access control mod... In cloud computing, the risk of data leakage exists between users and virtual machines. Whether it is direct or indirect data leakage, it can be regarded as illegal information flow. Methods such as access control models can control the information flow rather than the covert information flow. Therefore, it needs to use the noninterference models to detect the existence of illegal information flow in cloud computing. Typical noninterference models are not suitable to verificate information flow in cloud computing. When concurrent access actions execute in the cloud architecture, security domains do not affect each other, because there is no information flow between security domains. Based on this, we propose noninterference for cloud architecture in which concurrent access and sequential access coexist. When the sequential actions execute, the information flow between security domains can flow in accordance with established rules. When concurrent access actions execute, there should not be the information flow between security domains. 展开更多
关键词 CLOUD computing SECURITY information flow SECURITY NONINTERFERENCE NONINTERFERENCE MODELS
原文传递
Computation of Unsteady Flow Past a Biomimetic Fin 被引量:1
19
作者 HaoLiu NaomiKato 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第2期108-120,共13页
The unsteady hydrodynamics of a biomimetic fin attached to a cylindrical body has been studied numerically using a computational fluid dynamic (CFD) simulator based on an in-house solver of the Navier-Stokes equations... The unsteady hydrodynamics of a biomimetic fin attached to a cylindrical body has been studied numerically using a computational fluid dynamic (CFD) simulator based on an in-house solver of the Navier-Stokes equations, combined with a recently developed multi-block, overset grid method. The fin-body CFD model is based on a mechanical pectoral fin device, which consists of a cylindrical body and an asymmetric fin and can mimic flapping, rowing and feathering motions of the pectoral fins in fishes. First the multi-block, overset grid method incorporated into the NS solver was verified through an extensive study of unsteady flows past a single fin undergoing rowing and feathering motion. Then unsteady flows past the biomimetic fin-body model undergoing the same motions were computed and compared with the measurements of forces of the mechanical pectoral fin, which shows good agreement in both time-varying and time-averaged hydrodynamic forces. The relationship between force generation and vortex dynamics points to the importance of the match in fin kinematics between power and recovery strokes and implies that an optimal selection of parameters of phase lags between and amplitudes of rowing and feathering motions can improve the performance of labriform propulsion in terms of either maximum force generation or minimum mechanical power. 展开更多
关键词 computATION unsteady flow biomimetic fin CFD
在线阅读 下载PDF
Computational fluid dynamics simulation of gas-liquid two phases flow in 320 m^3 air-blowing mechanical flotation cell using different turbulence models 被引量:4
20
作者 沈政昌 陈建华 +2 位作者 张谌虎 廖幸锦 李玉琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2385-2392,共8页
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in... According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method. 展开更多
关键词 computational fluid dynamics (CFD) simulation flotation cell gas-liquid two-phases flow
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部