Multi-electrodes Resistivity Imaging Survey(MRIS)is an array method of electrical survey.In practice how to choose a reasonable array is the key to get reliable survey results.Based on four methods of MRIS such as Wen...Multi-electrodes Resistivity Imaging Survey(MRIS)is an array method of electrical survey.In practice how to choose a reasonable array is the key to get reliable survey results.Based on four methods of MRIS such as Wenner,Schlumberger,Pole-pole and Dipole-dipole the authors established the model,by studying the result of the forward numerical simulation modeling and inverse modeling,and analyzed the differences among the different forms of detection devices.展开更多
Simultaneous multisite recording using multi-electrode arrays(MEAs) in cultured and acutely-dissociated brain slices and other tissues is an emerging technique in the field of network electrophysiology.Over the past...Simultaneous multisite recording using multi-electrode arrays(MEAs) in cultured and acutely-dissociated brain slices and other tissues is an emerging technique in the field of network electrophysiology.Over the past 40 years,great efforts have been made by both scientists and commercial concerns,to advance this technique.The MEA technique has been widely applied to many regions of the brain,retina,heart and smooth muscle in various studies at the network level.The present review starts from the development of MEA techniques and their uses in brain preparations,and then specifically concentrates on the use of MEA recordings in studies of synaptic plasticity at the network level in both the temporal and spatial domains.Because the MEA technique helps bridge the gap between single-cell recordings and behavioral assays,its wide application will undoubtedly shed light on the mechanisms underlying brain functions and dysfunctions at the network level that remained largely unknown due to the technical difficulties before it matured.展开更多
This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen d...This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen demand (COD), ultraviolet (UV), FTIR absorption spectra, and atomic force microscopy (AFM) were used to monitor the degradation process. The results showed that the efficiency of degradation is raised by increasing the applied voltage, and is further improved when two or three anodes are used. Moreover, the use of Fe^2+ ion can promote the degradation reaction and shorten the degradation time. So the multi-electrode instrument is more efficient in degrading the dye and should be further studied.展开更多
Efflcient collection of water from fog can effectively alleviate the problem of water shortages in foggy but water-scarce areas,such as deserts,islands and so on.Unlike inefflcient fog meshes,corona discharge can char...Efflcient collection of water from fog can effectively alleviate the problem of water shortages in foggy but water-scarce areas,such as deserts,islands and so on.Unlike inefflcient fog meshes,corona discharge can charge water droplets and further enhance the water-collecting effect.This study proposes a novel multi-electrode collecting structure that can achieve efflcient and direction-independent water collection from fog.The multi-electrode structure consists of three parts:a charging electrode,an intercepting electrode and a ground electrode.Four types of watercollecting structures are compared experimentally,and the collection rates from a traditional fog mesh,a wire-mesh electrode with fog coming from a high-voltage electrode,a wire-mesh electrode with fog coming from a ground electrode and a multi-electrode structure are 2–3 g h^(-1),100–120 g h^(-1),60–80 g h^(-1)and 200–220 g h^(-1),respectively.The collection rate of the multielectrode structure is 100–150 times that of a traditional fog mesh and 2–4 times that of a wiremesh electrode.These results demonstrate the superiority of the multi-electrode structure in fog collection.In addition,the motion equation of charged droplets in an electric fleld is also derived,and the optimization strategy of electrode spacing is also discussed.This structure can be applied not only to fog collection,but also to air puriflcation,factory waste gas treatment and other flelds.展开更多
Objective To investigate the safety and efficacy of a self-developed novel multi-electrode radiofrequency ablation catheter (Spark) for catheter-based renal denervation (RDN). Methods A total of 14 experimental mi...Objective To investigate the safety and efficacy of a self-developed novel multi-electrode radiofrequency ablation catheter (Spark) for catheter-based renal denervation (RDN). Methods A total of 14 experimental miniature pigs were randomly divided into four groups (55°& 5-watt, 55°& 8-watt, 65°& 5-watt, and 65° & 8-watt groups). Spark was used for left and right renal artery radiofrequency ablation. Blood samples collected from renal arteries and veins as well as renal arteriography were performed on all animals before, immediately after, and three months after procedure to evaluate the effects of Spark on the levels of plasma renin, aldosterone, angiotensin I, and angiotensin II as well as the pathological changes of renal arteries. Results One pig died of an anesthetic accident, 13 pigs successfully underwent the bilateral renal artery ablation. Compared with basic measurements, pigs in all the four groups had significantly decreased mean arterial pres- sure after procedure. Histopathological analysis showed that this procedure could result in intimal hyperplasia, significant peripheral sympa- thetic nerve damage in the renal arteries such as inflammatory cell infiltration and fibrosis in perineurium, uneven distribution of nerve fibers, tissue necrosis, severe vacuolization, fTagmented and unclear nucleoli myelin degeneration, sparse axons, and interruption of continuity. In addition, the renal artery radiofrequency ablation could significantly reduce the levels of plasma renin, aldosterone, angiotensin I, and angio- tensin II in pigs. Conclusions The results suggest that this type of multi-electrode catheter-based radiofrequency ablation could effectively remove peripheral renal sympathetic nerves and reduce the activity of systemic renin-angiotensin system in pigs, thus facilitating the control of systemic blood pressure in pigs.展开更多
Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging tech...Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging technique using voltage indicator dyes or calcium indicator dyes. Especially, calcium imaging using fluorescent calcium indicator dyes is often more useful, because they exhibit larger changes in the fluorescence intensity than voltage indicator dyes and their fluorescence changes can be detect easily. Additionally, calcium signals play key roles in the brain function, such as the long-term potentiation (LTP) in the hippocampus, and calcium imaging can be a powerful tool to elucidate the brain function. In this study, we constructed a measurement apparatus combining the MEA system and laser confocal calcium imaging and simultaneously measured electric signals and calcium signals in acute mouse hippocampal slices. The obtained results showed the availability of the present method.展开更多
Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulati...Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulation on the excitability of the cerebral cortex can vary according to the time interval between the transcranial magnetic stimulation and peripheral nerve stimulation. We established a model of cerebral ischemia in rats via transient middle cerebral artery occlusion. We administered paired associative stimulation with a frequency of 0.05 Hz 90 times over 4 weeks. We then evaluated spatial learning and memory using the Morris water maze. Changes in the cerebral ultra-structure and synaptic plasticity were assessed via transmission electron microscopy and a 64-channel multi-electrode array. We measured mRNA and protein expression levels of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 in the hippocampus using a real-time polymerase chain reaction and western blot assay. Paired associative stimulation treatment significantly improved learning and memory in rats subjected to cerebral ischemia. The ultra-structures of synapses in the CA1 area of the hippocampus in rats subjected to cerebral ischemia were restored by paired associative stimulation. Long-term potentiation at synapses in the CA3 and CA1 regions of the hippocampus was enhanced as well. The protein and mRNA expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 increased after paired associative stimulation treatment. These data indicate that paired associative stimulation can protect cog-nition after cerebral ischemia. The observed effect may be mediated by increases in the mRNA and protein expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1, and by enhanced synaptic plasticity in the CA1 area of the hippocampus. The animal experiments were approved by the Animal Ethics Committee of Tongji Medical College, Huazhong University of Science & Technology, China(approval No. TJ-A20151102) on July 11, 2015.展开更多
An adaptive closed-loop system for spinal cord injury(SCI) repair is designed. It integrates stimulation and recording on 16 pairs of electrodes. Two switches(SAS3 T16/SAS1 T16 X2) fabricated in high-voltage 0.8 μm p...An adaptive closed-loop system for spinal cord injury(SCI) repair is designed. It integrates stimulation and recording on 16 pairs of electrodes. Two switches(SAS3 T16/SAS1 T16 X2) fabricated in high-voltage 0.8 μm process with online re-configurable function are proposed. These two switches are combined with commercial off-the-shelf(COTS) electronics to implement the closed-loop implantable system in compact module. The system includes amplifier for recording neural signals, high-voltage stimulator, power transmission device, central processing module and flexible implantable electrodes. Two customized switches route any electrode to amplifier or stimulator, and nerve stimulation and signal recording are performed through lead wire-driven channels. The entire system is able to operate at up to 28 V, and is a biocompatible package with a volume of 42 mm×35 mm×8 mm. This system solves several problems encountered in implantable devices: low flexibility, negative influence of stimulus artifacts on neural detection and low integration of electrodes.展开更多
Salinity stress is a serious environmental threat that has a detrimental impact on agricultural yield and productivity.The effects of plasma-treated water(PTW)and metal ions(M)on Pak Choi growth and salt tolerance gen...Salinity stress is a serious environmental threat that has a detrimental impact on agricultural yield and productivity.The effects of plasma-treated water(PTW)and metal ions(M)on Pak Choi growth and salt tolerance genes under salinity stress have not yet been studied.To bridge these gaps,we explored the effects of PTW and PTW+M,prepared using multi-electrode cylindrical dielectric barrier discharged plasma,on Pak Choi seedlings irrigated with 100 mM NaCl solution for 7 d,with an aim to improve plant tolerance to salinity.PTW and PTW+M significantly improved the length and dry weight of shoots and roots,as well as photosynthetic activity,by increasing chlorophyll a and b,pheophytin a and b,total pheophytin,and carotenoid contents.Plant biomass increased maximum of up to 54.4%,shoot length 18.1%,and root length 26.01%in the PTW+M group compared to the control.Furthermore,total chlorophyll and pheophytin content increased 2.16 and 1.55 times after PTW+M irrigation compared to control(DI irrigation)under salinity stress.PTW and PTW+M irrigation further reduced the plasma membrane permeability along with an increase in hydration and intracellular NO and Ca^(2+)levels,with ionic balance and osmotic adjustment genes under salinity stress.Additionally,the treatments improved the primary metabolite accumulation of sugars,sugar alcohols,organic acids,and amino acids,as osmo-protectants,and modulated the adaptation to mitigate salinity stress.In conclusion,PTW and PTW+M irrigation mitigated salinity stress by promoting osmotic adjustment,membrane impermeability,hydration capacity,and the upregulation of salt tolerance genes and primary metabolites in Pak Choi seedlings under salinity stress.展开更多
基金Supported by Project of the National High Technology Research and Development Program of China(No.2007AA06Z215)
文摘Multi-electrodes Resistivity Imaging Survey(MRIS)is an array method of electrical survey.In practice how to choose a reasonable array is the key to get reliable survey results.Based on four methods of MRIS such as Wenner,Schlumberger,Pole-pole and Dipole-dipole the authors established the model,by studying the result of the forward numerical simulation modeling and inverse modeling,and analyzed the differences among the different forms of detection devices.
基金supported by grants from the National Natural Science Foundation of China(30770668,81070899,81171049)973 program (2011CB504100) to J.C
文摘Simultaneous multisite recording using multi-electrode arrays(MEAs) in cultured and acutely-dissociated brain slices and other tissues is an emerging technique in the field of network electrophysiology.Over the past 40 years,great efforts have been made by both scientists and commercial concerns,to advance this technique.The MEA technique has been widely applied to many regions of the brain,retina,heart and smooth muscle in various studies at the network level.The present review starts from the development of MEA techniques and their uses in brain preparations,and then specifically concentrates on the use of MEA recordings in studies of synaptic plasticity at the network level in both the temporal and spatial domains.Because the MEA technique helps bridge the gap between single-cell recordings and behavioral assays,its wide application will undoubtedly shed light on the mechanisms underlying brain functions and dysfunctions at the network level that remained largely unknown due to the technical difficulties before it matured.
基金supported the by Project of Key Science and Technology of Education Ministry (20050)the Natural Science Foundation of Gansu Province (3ZS041-A25-028)the Invention Project of Science & Technology (KJCXGC-01, NWNU), China
文摘This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen demand (COD), ultraviolet (UV), FTIR absorption spectra, and atomic force microscopy (AFM) were used to monitor the degradation process. The results showed that the efficiency of degradation is raised by increasing the applied voltage, and is further improved when two or three anodes are used. Moreover, the use of Fe^2+ ion can promote the degradation reaction and shorten the degradation time. So the multi-electrode instrument is more efficient in degrading the dye and should be further studied.
基金supported by the National Key Research and Development Program of China(Nos.2016YFC0401002 and 2016YFC0401006)National Natural Science Foundation of China(Nos.51577080 and 51821005)。
文摘Efflcient collection of water from fog can effectively alleviate the problem of water shortages in foggy but water-scarce areas,such as deserts,islands and so on.Unlike inefflcient fog meshes,corona discharge can charge water droplets and further enhance the water-collecting effect.This study proposes a novel multi-electrode collecting structure that can achieve efflcient and direction-independent water collection from fog.The multi-electrode structure consists of three parts:a charging electrode,an intercepting electrode and a ground electrode.Four types of watercollecting structures are compared experimentally,and the collection rates from a traditional fog mesh,a wire-mesh electrode with fog coming from a high-voltage electrode,a wire-mesh electrode with fog coming from a ground electrode and a multi-electrode structure are 2–3 g h^(-1),100–120 g h^(-1),60–80 g h^(-1)and 200–220 g h^(-1),respectively.The collection rate of the multielectrode structure is 100–150 times that of a traditional fog mesh and 2–4 times that of a wiremesh electrode.These results demonstrate the superiority of the multi-electrode structure in fog collection.In addition,the motion equation of charged droplets in an electric fleld is also derived,and the optimization strategy of electrode spacing is also discussed.This structure can be applied not only to fog collection,but also to air puriflcation,factory waste gas treatment and other flelds.
文摘Objective To investigate the safety and efficacy of a self-developed novel multi-electrode radiofrequency ablation catheter (Spark) for catheter-based renal denervation (RDN). Methods A total of 14 experimental miniature pigs were randomly divided into four groups (55°& 5-watt, 55°& 8-watt, 65°& 5-watt, and 65° & 8-watt groups). Spark was used for left and right renal artery radiofrequency ablation. Blood samples collected from renal arteries and veins as well as renal arteriography were performed on all animals before, immediately after, and three months after procedure to evaluate the effects of Spark on the levels of plasma renin, aldosterone, angiotensin I, and angiotensin II as well as the pathological changes of renal arteries. Results One pig died of an anesthetic accident, 13 pigs successfully underwent the bilateral renal artery ablation. Compared with basic measurements, pigs in all the four groups had significantly decreased mean arterial pres- sure after procedure. Histopathological analysis showed that this procedure could result in intimal hyperplasia, significant peripheral sympa- thetic nerve damage in the renal arteries such as inflammatory cell infiltration and fibrosis in perineurium, uneven distribution of nerve fibers, tissue necrosis, severe vacuolization, fTagmented and unclear nucleoli myelin degeneration, sparse axons, and interruption of continuity. In addition, the renal artery radiofrequency ablation could significantly reduce the levels of plasma renin, aldosterone, angiotensin I, and angio- tensin II in pigs. Conclusions The results suggest that this type of multi-electrode catheter-based radiofrequency ablation could effectively remove peripheral renal sympathetic nerves and reduce the activity of systemic renin-angiotensin system in pigs, thus facilitating the control of systemic blood pressure in pigs.
文摘Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging technique using voltage indicator dyes or calcium indicator dyes. Especially, calcium imaging using fluorescent calcium indicator dyes is often more useful, because they exhibit larger changes in the fluorescence intensity than voltage indicator dyes and their fluorescence changes can be detect easily. Additionally, calcium signals play key roles in the brain function, such as the long-term potentiation (LTP) in the hippocampus, and calcium imaging can be a powerful tool to elucidate the brain function. In this study, we constructed a measurement apparatus combining the MEA system and laser confocal calcium imaging and simultaneously measured electric signals and calcium signals in acute mouse hippocampal slices. The obtained results showed the availability of the present method.
基金supported by the National Natural Science Foundation of China,No.81272156(to TCG)
文摘Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulation on the excitability of the cerebral cortex can vary according to the time interval between the transcranial magnetic stimulation and peripheral nerve stimulation. We established a model of cerebral ischemia in rats via transient middle cerebral artery occlusion. We administered paired associative stimulation with a frequency of 0.05 Hz 90 times over 4 weeks. We then evaluated spatial learning and memory using the Morris water maze. Changes in the cerebral ultra-structure and synaptic plasticity were assessed via transmission electron microscopy and a 64-channel multi-electrode array. We measured mRNA and protein expression levels of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 in the hippocampus using a real-time polymerase chain reaction and western blot assay. Paired associative stimulation treatment significantly improved learning and memory in rats subjected to cerebral ischemia. The ultra-structures of synapses in the CA1 area of the hippocampus in rats subjected to cerebral ischemia were restored by paired associative stimulation. Long-term potentiation at synapses in the CA3 and CA1 regions of the hippocampus was enhanced as well. The protein and mRNA expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 increased after paired associative stimulation treatment. These data indicate that paired associative stimulation can protect cog-nition after cerebral ischemia. The observed effect may be mediated by increases in the mRNA and protein expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1, and by enhanced synaptic plasticity in the CA1 area of the hippocampus. The animal experiments were approved by the Animal Ethics Committee of Tongji Medical College, Huazhong University of Science & Technology, China(approval No. TJ-A20151102) on July 11, 2015.
基金Supported by the National Natural Science Foundation of China(No.61474107)the National Key Technologies R&D Program(No.2016YFC0105604)。
文摘An adaptive closed-loop system for spinal cord injury(SCI) repair is designed. It integrates stimulation and recording on 16 pairs of electrodes. Two switches(SAS3 T16/SAS1 T16 X2) fabricated in high-voltage 0.8 μm process with online re-configurable function are proposed. These two switches are combined with commercial off-the-shelf(COTS) electronics to implement the closed-loop implantable system in compact module. The system includes amplifier for recording neural signals, high-voltage stimulator, power transmission device, central processing module and flexible implantable electrodes. Two customized switches route any electrode to amplifier or stimulator, and nerve stimulation and signal recording are performed through lead wire-driven channels. The entire system is able to operate at up to 28 V, and is a biocompatible package with a volume of 42 mm×35 mm×8 mm. This system solves several problems encountered in implantable devices: low flexibility, negative influence of stimulus artifacts on neural detection and low integration of electrodes.
基金supported by the(NRF)with grants funded by the Korean government(MIST)(NRF-2021R1A6A1A03038785)by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2020-0-01846)partially by Kwangwoon University in 2024.
文摘Salinity stress is a serious environmental threat that has a detrimental impact on agricultural yield and productivity.The effects of plasma-treated water(PTW)and metal ions(M)on Pak Choi growth and salt tolerance genes under salinity stress have not yet been studied.To bridge these gaps,we explored the effects of PTW and PTW+M,prepared using multi-electrode cylindrical dielectric barrier discharged plasma,on Pak Choi seedlings irrigated with 100 mM NaCl solution for 7 d,with an aim to improve plant tolerance to salinity.PTW and PTW+M significantly improved the length and dry weight of shoots and roots,as well as photosynthetic activity,by increasing chlorophyll a and b,pheophytin a and b,total pheophytin,and carotenoid contents.Plant biomass increased maximum of up to 54.4%,shoot length 18.1%,and root length 26.01%in the PTW+M group compared to the control.Furthermore,total chlorophyll and pheophytin content increased 2.16 and 1.55 times after PTW+M irrigation compared to control(DI irrigation)under salinity stress.PTW and PTW+M irrigation further reduced the plasma membrane permeability along with an increase in hydration and intracellular NO and Ca^(2+)levels,with ionic balance and osmotic adjustment genes under salinity stress.Additionally,the treatments improved the primary metabolite accumulation of sugars,sugar alcohols,organic acids,and amino acids,as osmo-protectants,and modulated the adaptation to mitigate salinity stress.In conclusion,PTW and PTW+M irrigation mitigated salinity stress by promoting osmotic adjustment,membrane impermeability,hydration capacity,and the upregulation of salt tolerance genes and primary metabolites in Pak Choi seedlings under salinity stress.