Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composit...Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials.展开更多
In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the b...In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the basis of the plane-stress and the assumption that the plastic volume is con- stant, three-dimensionai strain formulas were established in consider of the cross-section flattening. Considering the wail-thickness change, the approximate calculation formulas of short axis flattening rate were deduced, with the outer diameter and the inner diameter as parameters. Because different materials have different cross-section flattening rates, a material correction factor was introduced to modify the formula based on experiments. Finally, the validity of the theoretical formulas was proved according to the calculation and the experiment results, which can provide a reference for the forming quality prediction in tube bending.展开更多
The static characteristics of an axial-flux permanentmagnet( AFPM) machine with coreless stator were investigated.Two-dimensional analytical method for prediction of the no-load magnetic field in the AFPM machine with...The static characteristics of an axial-flux permanentmagnet( AFPM) machine with coreless stator were investigated.Two-dimensional analytical method for prediction of the no-load magnetic field in the AFPM machine with coreless stator was derived. Electromotive force( EMF) and axial attraction force were deduced from the analytical method. These values obtained from analytical method were compared with those from finite element method( FEM) and agree well. Finally,a prototype was built for experimental validation and back EMF was measured. The results confirmed the validity of the proposed analytical method.展开更多
The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform met...The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.展开更多
Armored vehicles,to accomplish missions in complex harsh conditions with high mobility,require the transmission system to achieve high energy density and high reliability.The wet multi-disc clutch becomes the perishab...Armored vehicles,to accomplish missions in complex harsh conditions with high mobility,require the transmission system to achieve high energy density and high reliability.The wet multi-disc clutch becomes the perishable component under heavy load,large speed difference,and frequent engagement.Due to the difficulty of maintenance in battlefield,clutch carrying post-buckling separate plate is common,and the clutch working process is obstructed.Therefore,considering the post-buckling plate,the multi-physics thermodynamic model of a wet multi-disc clutch is established to describe the entire engagement and separation process.The influence of the buckling degree on the stress-strain,uniformity of gaps,torque,and temperature characteristics is investigated by the numerical method and testified by bench tests.The results show that with the increasing buckling degree,the clutch engagement and separation times decrease gradually.For the separation process,the non-uniformity of gaps is increased,and gaps are eventually occupied,leading to the continuous rough contact among friction pairs.Therefore,the drag torque is increased.Squeezed by the post-buckling plate,the cooling rates of separate plates are decreased.During repeated engagement-separation,temperatures of plates may reach balance points.Since continuous sliding and temperature concentration,the wear form and degree changes,especially at outer radius.Extra drag torque,heat,and wear threats the friction components which increases the risk of failures of the transmission system and affects the mobility of armored vehicles.展开更多
基金the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials.
基金Supported by the National Natural Science Foundation of China(50805009)Twelve Five-Year Plan Basic Research Item of National Defense of China(A2220110008)
文摘In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the basis of the plane-stress and the assumption that the plastic volume is con- stant, three-dimensionai strain formulas were established in consider of the cross-section flattening. Considering the wail-thickness change, the approximate calculation formulas of short axis flattening rate were deduced, with the outer diameter and the inner diameter as parameters. Because different materials have different cross-section flattening rates, a material correction factor was introduced to modify the formula based on experiments. Finally, the validity of the theoretical formulas was proved according to the calculation and the experiment results, which can provide a reference for the forming quality prediction in tube bending.
基金National Natural Science Foundation of China(No.51207072)
文摘The static characteristics of an axial-flux permanentmagnet( AFPM) machine with coreless stator were investigated.Two-dimensional analytical method for prediction of the no-load magnetic field in the AFPM machine with coreless stator was derived. Electromotive force( EMF) and axial attraction force were deduced from the analytical method. These values obtained from analytical method were compared with those from finite element method( FEM) and agree well. Finally,a prototype was built for experimental validation and back EMF was measured. The results confirmed the validity of the proposed analytical method.
文摘The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.
基金supported by the National Natural Science Foundations of China(Grant Nos.52205047,52175037)Frontier Cross Project of Beijing Institute of Technology(Grant No.2024CX11006)。
文摘Armored vehicles,to accomplish missions in complex harsh conditions with high mobility,require the transmission system to achieve high energy density and high reliability.The wet multi-disc clutch becomes the perishable component under heavy load,large speed difference,and frequent engagement.Due to the difficulty of maintenance in battlefield,clutch carrying post-buckling separate plate is common,and the clutch working process is obstructed.Therefore,considering the post-buckling plate,the multi-physics thermodynamic model of a wet multi-disc clutch is established to describe the entire engagement and separation process.The influence of the buckling degree on the stress-strain,uniformity of gaps,torque,and temperature characteristics is investigated by the numerical method and testified by bench tests.The results show that with the increasing buckling degree,the clutch engagement and separation times decrease gradually.For the separation process,the non-uniformity of gaps is increased,and gaps are eventually occupied,leading to the continuous rough contact among friction pairs.Therefore,the drag torque is increased.Squeezed by the post-buckling plate,the cooling rates of separate plates are decreased.During repeated engagement-separation,temperatures of plates may reach balance points.Since continuous sliding and temperature concentration,the wear form and degree changes,especially at outer radius.Extra drag torque,heat,and wear threats the friction components which increases the risk of failures of the transmission system and affects the mobility of armored vehicles.