期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Dynamic prediction of landslide displacement using singular spectrum analysis and stack long short-term memory network 被引量:2
1
作者 LI Li-min Zhang Ming-yue WEN Zong-zhou 《Journal of Mountain Science》 SCIE CSCD 2021年第10期2597-2611,共15页
An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models... An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides. 展开更多
关键词 LANDSLIDE Singular spectrum analysis stack long short-term memory network Dynamic displacement prediction
原文传递
ConvNeXt网络及Stacked BiLSTM-Self-Attention在轴承剩余寿命预测中的应用 被引量:1
2
作者 张印文 王琳霖 +1 位作者 薛文科 梁文婕 《机电工程》 CAS 北大核心 2024年第11期1977-1985,1994,共10页
在滚动轴承剩余使用寿命预测方面,采用传统方法时存在鲁棒性差、精度低等各种问题。近些年来深度学习的发展为解决这些问题提供了新的思路。为了进一步提高对轴承寿命的预测精度,提出了一种基于ConvNeXt网络、堆叠双向长短时记忆网络(SB... 在滚动轴承剩余使用寿命预测方面,采用传统方法时存在鲁棒性差、精度低等各种问题。近些年来深度学习的发展为解决这些问题提供了新的思路。为了进一步提高对轴承寿命的预测精度,提出了一种基于ConvNeXt网络、堆叠双向长短时记忆网络(SBiLSTM)和自注意力机制(Self-Attention)的滚动轴承寿命预测方法。首先,采用连续小波变换(CWT)构造了振动信号的时频图,以更好地捕捉信号的时域和频域特征;然后,将得到的时频图输入到构建的ConvNeXt网络中,通过卷积、池化和层归一化等操作,对时频图的关键特征进行了提取;最后,将提取后的特征输入到SBiLSTM-Self-Attention模块中,进一步提取了时序信息和特征权重分配数据,利用PHM2012挑战数据集进行了验证,通过实验分析了该方法的均方根误差(RMSE)和平均绝对误差(MAE)。研究结果表明:相较于现有技术方法,该方法的平均RMSE为0.031;与其他三种方法,即卷积神经网络(CNN)、深度残差双向门控循环单元(DRN-BiGRU)和深度卷积自注意力双向门控循环单元(DCNN-Self-Attention-BiGRU)相比,其平均RMSE值分别下降了79%、74%和55%,MAE值分别下降了78%、73%和53%,说明该方法在滚动轴承剩余寿命预测中有较好的性能。 展开更多
关键词 滚动轴承 剩余寿命预测 ConvNeXt网络 堆叠双向长短时记忆网络 自注意力机制 深度学习 连续小波变换
在线阅读 下载PDF
Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed 被引量:1
3
作者 Neelam Mughees Mujtaba Hussain Jaffery +2 位作者 Abdullah Mughees Anam Mughees Krzysztof Ejsmont 《Computers, Materials & Continua》 SCIE EI 2023年第6期6375-6393,共19页
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely h... Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting. 展开更多
关键词 Deep stacked autoencoder sequence to sequence autoencoder bidirectional long short-term memory network wind speed forecasting solar irradiation forecasting
在线阅读 下载PDF
基于多模型融合Stacking集成学习的油田产量预测 被引量:5
4
作者 张庭婷 潘美琪 +5 位作者 朱天怡 曹煜 张站权 刘单珂 贺兴 于立军 《科技和产业》 2023年第2期263-271,共9页
基于机器学习前沿理论,提出一种基于多模型融合Stacking集成学习方式的组合预测方法,以国内某特高含水油田区块中多口水驱产油井历年生产历史数据为试验样本,预测其动态产油量。依据不同算法的训练原理,选取极限梯度提升树算法、长短记... 基于机器学习前沿理论,提出一种基于多模型融合Stacking集成学习方式的组合预测方法,以国内某特高含水油田区块中多口水驱产油井历年生产历史数据为试验样本,预测其动态产油量。依据不同算法的训练原理,选取极限梯度提升树算法、长短记忆网络(LSTM)、时域卷积网络(TCN)等作为模型的基学习器,采用多元线性回归作为模型的元学习器。结果表明:融合后的Stacking模型充分发挥了各基学习器的优势,相比单一模型,融合后的Stacking模型预测平均误差较小,预测鲁棒性较好。该模型的提出对融合模型在特高含水油藏开发方面具有重要的应用意义。 展开更多
关键词 多模型融合 stacking集成学习 极限梯度提升树 长短期记忆网络 时域卷积网络 产量预测
在线阅读 下载PDF
基于Stacking融合的LSTM-SA-RBF短期负荷预测 被引量:2
5
作者 方娜 邓心 肖威 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第4期131-137,共7页
为了解决单个神经网络预测的局限性和时间序列的波动性,提出了一种奇异谱分析(singular spectrum analysis,SSA)和Stacking框架相结合的短期负荷预测方法。利用随机森林筛选出与历史负荷相关性强烈的特征因素,采用SSA为负荷数据降噪,简... 为了解决单个神经网络预测的局限性和时间序列的波动性,提出了一种奇异谱分析(singular spectrum analysis,SSA)和Stacking框架相结合的短期负荷预测方法。利用随机森林筛选出与历史负荷相关性强烈的特征因素,采用SSA为负荷数据降噪,简化模型计算过程;基于Stacking框架,结合长短期记忆(long and short-term memory,LSTM)-自注意力机制(self-attention mechanism,SA)、径向基(radial base functions,RBF)神经网络和线性回归方法集成新的组合模型,同时利用交叉验证方法避免模型过拟合;选取PJM和澳大利亚电力负荷数据集进行验证。仿真结果表明,与其他模型比较,所提模型预测精度高。 展开更多
关键词 奇异谱分析 stacking算法 长短期记忆网络 径向基神经网络 短期负荷预测
在线阅读 下载PDF
多向堆叠记忆网络在证件图像篡改检测中的应用 被引量:1
6
作者 赵卫东 黄见 +1 位作者 张睿 吴乾奕 《小型微型计算机系统》 北大核心 2025年第2期346-352,共7页
随着金融线上业务的迅猛发展,篡改图像信息的问题在风控环节频繁出现.然而,现有的篡改检测模型在处理证件图片的准确性和应对环境干扰方面亟需加强.为解决这一问题,本文提出了一种二阶段篡改检测模型:在第1阶段中,通过将简单堆叠长短期... 随着金融线上业务的迅猛发展,篡改图像信息的问题在风控环节频繁出现.然而,现有的篡改检测模型在处理证件图片的准确性和应对环境干扰方面亟需加强.为解决这一问题,本文提出了一种二阶段篡改检测模型:在第1阶段中,通过将简单堆叠长短期记忆网络改进为多方向堆叠记忆网络,弥补了篡改特征对比方向单一的问题,并且兼顾了图像的位置信息,从而提高篡改鉴别准确率.第2阶段是在初步确定篡改区域后,基于篡改区域外围多层邻域的纹理特征,以注意力机制为核心推测中心区域纹理特征值,再与原中心区域纹理特征值对比筛选假阳性区域.实验表明,本文的改进方法是有效的. 展开更多
关键词 篡改检测 证件图像 多向堆叠记忆网络 多邻域纹理特征
在线阅读 下载PDF
堆叠式LSTM组合模型的充电站用电量预测方法 被引量:1
7
作者 王彩玲 丁当 《计算机时代》 2025年第1期1-4,共4页
随着电动汽车的普及,充电站对电力需求预测的精确性日益提高。本文设计了堆叠式LSTM模型,使用预处理过的某电动汽车充电站用电量数据,对比分析传统模型和LSTM模型在不同评估指标上的表现,验证所提出模型的优越性;还对多层堆叠式LSTM模... 随着电动汽车的普及,充电站对电力需求预测的精确性日益提高。本文设计了堆叠式LSTM模型,使用预处理过的某电动汽车充电站用电量数据,对比分析传统模型和LSTM模型在不同评估指标上的表现,验证所提出模型的优越性;还对多层堆叠式LSTM模型进行训练和测试,分析不同层数LSTM模型的性能,实验结果表明,三层堆叠式LSTM模型优于其他模型,能够显著提高用电量预测的准确度。 展开更多
关键词 用电量预测 长短期记忆网络 卷积神经网络-长短期记忆网络 堆叠式LSTM模型
在线阅读 下载PDF
基于多尺度样本重构与多通道融合的刀具磨损预测
8
作者 史丽晨 李金阳 +2 位作者 张国宁 陈嘉铭 豆卫涛 《制造业自动化》 2025年第9期9-18,共10页
刀具磨损预测对降本增效及保证加工质量意义重大。针对在环境噪声复杂,信噪比较低环境下刀具磨损相关信息特征提取困难、所提特征利用率低、预测精度和准确度不高等问题,首先提出了一种对振动信号进行多尺度样本重构(Multi-scale Sample... 刀具磨损预测对降本增效及保证加工质量意义重大。针对在环境噪声复杂,信噪比较低环境下刀具磨损相关信息特征提取困难、所提特征利用率低、预测精度和准确度不高等问题,首先提出了一种对振动信号进行多尺度样本重构(Multi-scale Sample Reconstruction,MSR)的方法来降低噪声对后续模型预测效果的影响,随后提出了一种以残差神经网络(Residual Neural Network,ResNet)和双向长短期记忆(Bidirectional Long Short-Term Memory Networks,BILSTM)网络集成模型为基础并通过在每个残差层融合交叉注意力机制(Criss Cross Attention,CCA),采用堆叠双向长短期记忆网络(Stacked Bidirectional Long Short-Term Memory Networks,SBILSTM)的改进模型,将改进模型与ResNet-BILSTM模型以及传统的深度学习模型进行对比,结果表明该方法很显著地提高了刀具磨损的预测精度和准确度。 展开更多
关键词 刀具磨损 残差神经网络 堆叠双向长短时记忆网络 多尺度样本重构
在线阅读 下载PDF
基于记忆胶囊与注意力的语音情感识别 被引量:1
9
作者 董红亮 钮焱 +1 位作者 孙杨 李军 《计算机工程》 北大核心 2025年第4期169-177,共9页
当前语音情感识别中因情感特征提取不充分和模型对复杂情感表达建模能力不足,导致识别准确率降低。为了提高当前语音情感识别准确率,提出一种基于记忆胶囊和注意力的语音情感识别方法。首先,提取了语音中梅尔频率倒谱系数(MFCC)、能量... 当前语音情感识别中因情感特征提取不充分和模型对复杂情感表达建模能力不足,导致识别准确率降低。为了提高当前语音情感识别准确率,提出一种基于记忆胶囊和注意力的语音情感识别方法。首先,提取了语音中梅尔频率倒谱系数(MFCC)、能量的均方根(RMS)、梅尔语谱图、过零率(ZCR)、色度分布5种特征;然后,在MFCC特征的基础上,提取MFCC的一阶、二阶和三阶差分动态特征,并将其拼接;最后,将这些特征堆叠成一维向量的形式,通过引入记忆胶囊和注意力机制所构建的模型,完成对语音情感识别分类工作。实验结果表明,所提的模型具有较好的泛化性和鲁棒性,有效提升了语音情感识别的准确率,在RAVDESS、EMODB和IEMOCAP 3个数据集上的准确率分别达到了95.87%、98.82%和98.23%,与现有的方法相比,识别准确率均得到了有效提升。 展开更多
关键词 语音情感识别 特征提取 特征堆叠 记忆胶囊网络 注意力机制
在线阅读 下载PDF
基于投资者情绪和栈式自编码器的股价预测模型
10
作者 蔡俊杰 王爱银 《哈尔滨商业大学学报(自然科学版)》 2025年第1期120-128,共9页
为提高股价预测的准确性,通过非线性组合的方法,构造了一种融合投资者情绪和栈式去噪自编码器(SDAE)和LSTM组合模型.通过情感分析(SA)提取的情感指数和SDAE提取的股票高质量特征被用作LSTM模型的输入.基于Python开发环境对恒生指数(HSI... 为提高股价预测的准确性,通过非线性组合的方法,构造了一种融合投资者情绪和栈式去噪自编码器(SDAE)和LSTM组合模型.通过情感分析(SA)提取的情感指数和SDAE提取的股票高质量特征被用作LSTM模型的输入.基于Python开发环境对恒生指数(HSI)进行了研究,实验结果表明,所提方法的预测性能优于其他对比方法,其平均绝对误差(MAPE)、R^(2)和方向准确度(DA)值分别达到1.12%、0.92和84.93%,具有准确度较高的预测能力. 展开更多
关键词 股价预测 投资者情绪 栈式去噪自编码器 长短期记忆网络 非线性组合
在线阅读 下载PDF
基于堆叠集成学习的非侵入式负荷高精度辨识方法
11
作者 黄宇 何耿生 +4 位作者 刘西卓 刘玺 牟景艳 陈学艳 曾金灿 《计算机应用》 北大核心 2025年第S1期323-328,共6页
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N... 非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷监测 集成学习 堆叠方法 序列到序列 双向长短期记忆网络 去噪自编码器
在线阅读 下载PDF
融合动态知识图谱和FCN-SLSTM-AM的电力现场作业风险预测模型
12
作者 杨迎春 唐立军 +2 位作者 赵旭 罕天玺 李正志 《电气自动化》 2025年第5期32-35,共4页
针对电力现场作业风险预测准确率低的问题,提出了基于动态知识图谱的电力现场作业风险预测模型。首先,对电力现场作业数据进行处理,构建电力现场作业风险动态知识图谱;然后,在动态知识图谱的基础上提出了基于全卷积网络-堆叠式长短期记... 针对电力现场作业风险预测准确率低的问题,提出了基于动态知识图谱的电力现场作业风险预测模型。首先,对电力现场作业数据进行处理,构建电力现场作业风险动态知识图谱;然后,在动态知识图谱的基础上提出了基于全卷积网络-堆叠式长短期记忆网络-注意力机制的电力现场作业风险预测模型;最后利用全卷积网络模型和堆叠式长短期记忆网络模型分别提取数据的时空特征,对电力现场作业风险进行预测。试验结果表明,所提模型可以准确预测出潜在的安全风险,证明了所提模型在电力现场作业风险预测的有效性。 展开更多
关键词 知识图谱 现场作业 风险预警 全卷积网络 堆叠式长短期记忆网络
在线阅读 下载PDF
基于改进HHO-LightGBM与CNN-LSTM的水质分类方法
13
作者 罗缘 朱文忠 吴宇浩 《兰州工业学院学报》 2025年第6期99-105,共7页
科学有效地评估地表水的水质对于水资源管理和人类健康具有重要意义。提出了一种基于改进哈里斯鹰优化算法(Harris Hawk Optimization,HHO)优化LightGBM,并结合卷积神经网络(Convolutional Neural Network,CNN)与LSTM(Long Short-Term M... 科学有效地评估地表水的水质对于水资源管理和人类健康具有重要意义。提出了一种基于改进哈里斯鹰优化算法(Harris Hawk Optimization,HHO)优化LightGBM,并结合卷积神经网络(Convolutional Neural Network,CNN)与LSTM(Long Short-Term Memory,LSTM)的水质分类方法。利用改进HHO优化LightGBM超参数,提升其计算效率与分类性能;同时构建CNN-LSTM模型以捕捉水质数据中的深层特征关联。为充分利用不同模型的优势,采用堆叠(Stacking)策略,将CNN-LSTM与优化后的LightGBM作为基学习器进行融合。实验结果表明:集成模型在分类准确率、召回率和F1分数等指标上,较单一模型平均提升2.7%、3.6%和3.2%。在处理复杂水质特征方面表现优异,分类准确性更高。对水质分类研究具有参考价值,有助于提高水质管理水平与决策效率。 展开更多
关键词 卷积神经网络-长短期记忆网络(CNN-LSTM) 水质分类 哈里斯鹰优化算法 LightGBM stacking集成学习
在线阅读 下载PDF
基于MSLSTM-DA模型的水质自动监测异常数据报警 被引量:9
14
作者 嵇晓燕 姚志鹏 +3 位作者 杨凯 陈亚男 王正 安新国 《中国环境科学》 EI CAS CSCD 北大核心 2022年第4期1877-1883,共7页
提出一种基于多元堆叠长短时记忆网络-差值分析(MSLSTM-DA)模型对地表水质异常数据进行报警的方法.该方法首先建立MSLSTM模型对水质指标数据进行预测,再基于预测结果的残差分布建立DA模型,并确定各个指标的数据异常阈值,当实测数据与预... 提出一种基于多元堆叠长短时记忆网络-差值分析(MSLSTM-DA)模型对地表水质异常数据进行报警的方法.该方法首先建立MSLSTM模型对水质指标数据进行预测,再基于预测结果的残差分布建立DA模型,并确定各个指标的数据异常阈值,当实测数据与预测数据差值大于阈值时进行数据报警.以长江流域监测断面的水质数据进行了方法有效性验证.结果表明,构建的预测模型对5个指标的MAE、MAPE均值比BP神经网络预测模型降低21.0%,17.8%,比LSTM模型降低16.8%,17.9%.皮尔逊系数均值比BP神经网络、LSTM模型的分别高5.9%,4.4%.5个指标共检出水质异常数据37条,其中34条经人工判断确实存在有异常,报警准确率高达91.9%. 展开更多
关键词 堆叠长短时记忆网络 差值分析 水质异常报警
在线阅读 下载PDF
深度学习在手写汉字识别中的应用综述 被引量:114
15
作者 金连文 钟卓耀 +3 位作者 杨钊 杨维信 谢泽澄 孙俊 《自动化学报》 EI CSCD 北大核心 2016年第8期1125-1141,共17页
手写汉字识别(Handwritten Chinese character recognition,HCCR)是模式识别的一个重要研究领域,最近几十年来得到了广泛的研究与关注,随着深度学习新技术的出现,近年来基于深度学习的手写汉字识别在方法和性能上得到了突破性的进展.本... 手写汉字识别(Handwritten Chinese character recognition,HCCR)是模式识别的一个重要研究领域,最近几十年来得到了广泛的研究与关注,随着深度学习新技术的出现,近年来基于深度学习的手写汉字识别在方法和性能上得到了突破性的进展.本文综述了深度学习在手写汉字识别领域的研究进展及具体应用.首先介绍了手写汉字识别的研究背景与现状.其次简要概述了深度学习的几种典型结构模型并介绍了一些主流的开源工具,在此基础上详细综述了基于深度学习的联机和脱机手写汉字识别的方法,阐述了相关方法的原理、技术细节、性能指标等现状情况,最后进行了分析与总结,指出了手写汉字识别领域仍需要解决的问题及未来的研究方向. 展开更多
关键词 深度学习 手写汉字识别 卷积神经网络 回归神经网络 长短时记忆模型 层叠自动编码机
在线阅读 下载PDF
一种高效网络数据捕包平台的设计与实现 被引量:2
16
作者 张志斌 郭莉 +1 位作者 陈明宇 方滨兴 《计算机工程》 EI CAS CSCD 北大核心 2005年第20期212-213,共2页
提出了一种基于用户空间的捕包平台设计――ULPF(User Level Packet Filter)。系统完全在用户空间实现;通过修改网卡驱动将数据绕过操作系统内核直接提交给用户空间避免了耗时的数据拷贝操作;利用网络数据包长度的局部性实现了一个高效... 提出了一种基于用户空间的捕包平台设计――ULPF(User Level Packet Filter)。系统完全在用户空间实现;通过修改网卡驱动将数据绕过操作系统内核直接提交给用户空间避免了耗时的数据拷贝操作;利用网络数据包长度的局部性实现了一个高效的内存分配算法避免了多线程带来的内存分配开销。实验证明,该平台基本可以实现将网络数据流线速还原到TCP层。 展开更多
关键词 捕包 网络协议栈 内核 内存分配
在线阅读 下载PDF
基于贝叶斯优化的SWDAE-LSTM滚动轴承早期故障预测方法研究 被引量:52
17
作者 石怀涛 尚亚俊 +2 位作者 白晓天 郭磊 马辉 《振动与冲击》 EI CSCD 北大核心 2021年第18期286-297,共12页
针对滚动轴承的早期故障特征较弱,在强噪声背景下难以有效提取以致生命周期很难准确预测的问题,提出了一种基于贝叶斯优化(BO)的滑动窗堆叠去噪自编码器(SWDAE)和长短期记忆(LSTM)网络的早期故障预测模型。使用滑动窗算法保留具有非线... 针对滚动轴承的早期故障特征较弱,在强噪声背景下难以有效提取以致生命周期很难准确预测的问题,提出了一种基于贝叶斯优化(BO)的滑动窗堆叠去噪自编码器(SWDAE)和长短期记忆(LSTM)网络的早期故障预测模型。使用滑动窗算法保留具有非线性特征和时序特征的历史正常数据,输入到模型中进行训练,使模型学习滚动轴承的正常运行状态趋势。将滚动轴承运行的数据输入到训练好的SWDAE-LSTM模型中进行实时在线监控,利用模型的预测值与真实值的残差检测滚动轴承早期故障。针对模型超参数组合选择困难的问题,使用贝叶斯优化算法对模型的超参数进行调优。最后,使用美国辛辛那提大学智能维护中心(IMSCenter)的轴承全生命周期数据以及机械故障综合模拟实验装置获取的数据进行仿真实验验证。结果表明,使用贝叶斯优化算法进行智能调参的模型和基于时域指标的方法对比,可以更早的有效检测出滚动轴承的早期故障并具有很强的鲁棒性。与其余深度学习方法比较,其模型的诊断准确率高于其他方法,进一步证明了其有效性和可靠性。 展开更多
关键词 滚动轴承 早期故障预测 贝叶斯优化(BO) 滑动窗算法 堆叠去噪自编码(SWDAE) 长短时记忆(LSTM)网络
在线阅读 下载PDF
基于层级注意力模型的视频序列表情识别 被引量:3
18
作者 王晓华 潘丽娟 +3 位作者 彭穆子 胡敏 金春花 任福继 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第1期27-35,共9页
长短期记忆网络(LSTM)广泛应用于视频序列的人脸表情识别,针对单层LSTM表达能力有限,在解决复杂问题时其泛化能力易受制约的不足,提出一种层级注意力模型:使用堆叠LSTM学习时间序列数据的分层表示,利用自注意力机制构建差异化的层级关系... 长短期记忆网络(LSTM)广泛应用于视频序列的人脸表情识别,针对单层LSTM表达能力有限,在解决复杂问题时其泛化能力易受制约的不足,提出一种层级注意力模型:使用堆叠LSTM学习时间序列数据的分层表示,利用自注意力机制构建差异化的层级关系,并通过构造惩罚项,进一步结合损失函数优化网络结构,提升网络性能.在CK+和MMI数据集上的实验结果表明,由于构建了良好的层次级别特征,时间序列上的每一步都从更感兴趣的特征层级上挑选信息,相较于普通的单层LSTM,层级注意力模型能够更加有效地表达视频序列的情感信息. 展开更多
关键词 视频序列 人脸表情识别 堆叠长短期记忆网络 自注意力机制
在线阅读 下载PDF
基于堆叠LSTM的多源矿压预测模型分析 被引量:8
19
作者 贾澎涛 苗云风 《矿业研究与开发》 CAS 北大核心 2021年第8期79-82,共4页
矿压失衡引起的顶板事故是煤矿重大灾害之一,矿压的精准预测对保证煤层的安全开采具有重要意义。为提高矿压的预测精度,提出了一种基于堆叠LSTM的多源矿压预测模型。首先,采用灰色关联度对煤矿工作面多源矿压进行分析排序并进行数据预处... 矿压失衡引起的顶板事故是煤矿重大灾害之一,矿压的精准预测对保证煤层的安全开采具有重要意义。为提高矿压的预测精度,提出了一种基于堆叠LSTM的多源矿压预测模型。首先,采用灰色关联度对煤矿工作面多源矿压进行分析排序并进行数据预处理;其次,采用堆叠式网络结构,确定每一个LSTM层的隐藏节点数、迭代次数等参数;最后,采用Adam优化算法对模型进行优化,从而对工作面矿压进行预测。采用均方根误差作为评价指标对预测模型性能进行评估,实验结果表明:相较于BP模型,堆叠LSTM多源矿压预测模型在训练集和测试集上RMSE分别减少了49.15%和51.26%;相较于LSTM,分别减少了45.37%和46.61%;相较于GRU,分别减少了44.66%和45.89%。因此,堆叠LSTM多源矿压预测模型在工作面矿压预测方面具有更高的精确性。 展开更多
关键词 深度学习 堆叠式网络 长短时记忆网络 多源矿压
原文传递
基于再编码的无监督时间序列异常检测模型 被引量:9
20
作者 尹春勇 周立文 《计算机应用》 CSCD 北大核心 2023年第3期804-811,共8页
针对时间序列的数据不平衡和高度复杂的时间相关性导致的异常检测准确率低的问题,以生成对抗网络(GAN)作为基础提出一种基于再编码的无监督时间序列异常检测模型RTGAN。首先,使用具有周期一致性的多个生成器保证生成样本的多样性,从而... 针对时间序列的数据不平衡和高度复杂的时间相关性导致的异常检测准确率低的问题,以生成对抗网络(GAN)作为基础提出一种基于再编码的无监督时间序列异常检测模型RTGAN。首先,使用具有周期一致性的多个生成器保证生成样本的多样性,从而学习不同的异常模式;其次,使用堆叠式LSTM-dropout RNN捕获时间相关性;然后,使用二次编码在潜在空间中比较生成样本和真实样本之间的差异,并将此差异作为再编码误差当作异常分数的一部分,从而提高异常检测的准确率;最后,使用新的异常分数对单变量和多变量时间序列数据集进行异常检测。将所提模型与七种基线异常检测模型在单变量和多变量时间序列上进行了比较。实验结果表明,所提模型在所有数据集上均获得了最高的平均F1值(0.815),并且总体性能分别比原始自编码器(AE)模型Dense-AE和最新的基准模型USAD高出36.29%和8.52%。通过不同的信噪比(SNR)检测模型的健壮性,结果表明所提模型一直优于LSTM-VAE、USAD和OmniAnomaly,尤其在SNR为30%情况下,RTGAN的F1值分别比USAD和OmniAnomaly高出13.53%和10.97%。可见所提模型能有效提高异常检测的准确率和鲁棒性。 展开更多
关键词 生成对抗网络 异常检测 时间序列 堆叠式长短期记忆网络 自编码器 再编码
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部