期刊文献+
共找到899篇文章
< 1 2 45 >
每页显示 20 50 100
Differentially private SGD with random features 被引量:1
1
作者 WANG Yi-guang GUO Zheng-chu 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期1-23,共23页
In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data... In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data may contain some sensitive information,it is also of great significance to study privacy-preserving machine learning algorithms.This paper focuses on the performance of the differentially private stochastic gradient descent(SGD)algorithm based on random features.To begin,the algorithm maps the original data into a lowdimensional space,thereby avoiding the traditional kernel method for large-scale data storage requirement.Subsequently,the algorithm iteratively optimizes parameters using the stochastic gradient descent approach.Lastly,the output perturbation mechanism is employed to introduce random noise,ensuring algorithmic privacy.We prove that the proposed algorithm satisfies the differential privacy while achieving fast convergence rates under some mild conditions. 展开更多
关键词 learning theory differential privacy stochastic gradient descent random features reproducing kernel Hilbert spaces
在线阅读 下载PDF
Prediction of Pediatric Sepsis Using a Deep Encoding Network with Cross Features
2
作者 陈潇 张瑞 +1 位作者 汤心溢 钱娟 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第1期131-140,共10页
Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacillicul... Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacilliculture detection method is too time-consuming to receive timely treatment.In this research,we propose a new framework:a deep encoding network with cross features(CF-DEN)that enables accurate early detection of sepsis.Cross features are automatically constructed via the gradient boosting decision tree and distilled into the deep encoding network(DEN)we designed.The DEN is aimed at learning sufficiently effective representation from clinical test data.Each layer of the DEN fltrates the features involved in computation at current layer via attention mechanism and outputs the current prediction which is additive layer by layer to obtain the embedding feature at last layer.The framework takes the advantage of tree-based method and neural network method to extract effective representation from small clinical dataset and obtain accurate prediction in order to prompt patient to get timely treatment.We evaluate the performance of the framework on the dataset collected from Shanghai Children's Medical Center.Compared with common machine learning methods,our method achieves the increase on F1-score by 16.06%on the test set. 展开更多
关键词 pediatric sepsis gradient boosting decision tree cross feature neural network deep encoding network with cross features(CF-DEN)
原文传递
Robust Lane Detection in Shadows and Low Illumination Conditions using Local Gradient Features 被引量:4
3
作者 Avishek Parajuli Mehmet Celenk H. Bryan Riley 《Open Journal of Applied Sciences》 2013年第1期68-74,共7页
This paper presents a method for lane boundaries detection which is not affected by the shadows, illumination and un-even road conditions. This method is based upon processing grayscale images using local gradient fea... This paper presents a method for lane boundaries detection which is not affected by the shadows, illumination and un-even road conditions. This method is based upon processing grayscale images using local gradient features, characteris-tic spectrum of lanes, and linear prediction. Firstly, points on the adjacent right and left lane are recognized using the local gradient descriptors. A simple linear prediction model is deployed to predict the direction of lane markers. The contribution of this paper is the use of vertical gradient image without converting into binary image(using suitable thre-shold), and introduction of characteristic lane gradient spectrum within the local window to locate the preciselane marking points along the horizontal scan line over the image. Experimental results show that this method has greater tolerance to shadows and low illumination conditions. A comparison is drawn between this method and recent methods reported in the literature. 展开更多
关键词 LOCAL gradient features LANE Detection Linear Prediction CHARACTERISTIC SPECTRUM
暂未订购
Face mask detection algorithm based on HSV+HOG features and SVM 被引量:6
4
作者 HE Yumin WANG Zhaohui +2 位作者 GUO Siyu YAO Shipeng HU Xiangyang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期267-275,共9页
To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine... To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm. 展开更多
关键词 hue-saturation-value(HSV)features histogram of oriented gradient(HOG)features support vector machine(SVM) face mask detection feature point detection
在线阅读 下载PDF
Detection of artificial pornographic pictures based on multiple features and tree mode 被引量:3
5
作者 MAO Xing-liang LI Fang-fang +1 位作者 LIU Xi-yao ZOU Bei-ji 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1651-1664,共14页
It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this wor... It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this work, we studied how to detect artificial pornographic pictures, especially when they are on social networks. The whole detection process can be divided into two stages: feature selection and picture detection. In the feature selection stage, seven types of features that favour picture detection were selected. In the picture detection stage, three steps were included. 1) In order to alleviate the imbalance in the number of artificial pornographic pictures and normal ones, the training dataset of artificial pornographic pictures was expanded. Therefore, the features which were extracted from the training dataset can also be expanded too. 2) In order to reduce the time of feature extraction, a fast method which extracted features based on the proportionally scaled picture rather than the original one was proposed. 3) Three tree models were compared and a gradient boost decision tree (GBDT) was selected for the final picture detection. Three sets of experimental results show that the proposed method can achieve better recognition precision and drastically reduce the time cost of the method. 展开更多
关键词 multiple feature artificial pornographic pictures picture detection gradient boost decision tree
在线阅读 下载PDF
Underwater Terrain Image Stitching Based on Spatial Gradient Feature Block 被引量:2
6
作者 Zhenzhou Wang Jiashuo Li +1 位作者 Xiang Wang Xuanhao Niu 《Computers, Materials & Continua》 SCIE EI 2022年第8期4157-4171,共15页
At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature poi... At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature points.In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block.First,the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information.The accelerated-KAZE(AKAZE)algorithm is used to combine the feature block information to match the reference image and the target image.Then,the random sample consensus(RANSAC)is applied to optimize the matching results.Finally,image fusion is performed with the global homography and the optimal seam-line method to improve the accuracy of image overlay fusion.The experimental results show that the proposed method in this paper effectively divides images into feature blocks by combining spatial information and gradient information,which not only solves the problem of stitching failure of underwater terrain images due to unobvious features,and further reduces the sensitivity to noise,but also effectively reduces the iterative calculation in the feature point matching process of the traditional method,and improves the stitching speed.Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image. 展开更多
关键词 Underwater terrain images image stitching feature block fuzzy C-means spatial gradient information A-KAZE
在线阅读 下载PDF
Correlation between clinical features of liver cirrhosis and endoscopic ultrasound-guided portal pressure gradient
7
作者 LUO Rongkun 《China Medical Abstracts(Internal Medicine)》 2025年第1期40-41,共2页
Objective To investigate the correlation between the clinical features and endoscopic ultrasound-guided portal pressure gradient(EUS-PPG)in patients with cirrhosis.Methods A total of 148 patients with cirrhosis and po... Objective To investigate the correlation between the clinical features and endoscopic ultrasound-guided portal pressure gradient(EUS-PPG)in patients with cirrhosis.Methods A total of 148 patients with cirrhosis and portal hypertension who underwent EUS-PPG measurement at the Third Xiangya Hospital of Central South University from March 15,2022 to June 20,2023 were selected.The clinical data of patients collected before EUS-PPG measurement were analyzed.Variations in the EUS-PPG across different clinical data subgroups were analyzed.Multivariate linear regression analysis was used to explore the independent factors influencing EUS-PPG.Results The EUS-PPG was significantly elevated in patients exhibiting red signs(16.62±5.33 mmHg VS 13.44±5.34 mmHg,t=3.616,P<0.001),gastroesophageal varices(15.78±5.30 mmHg VS 9.70±4.77 mmHg,t=4.247,P<0.001),hepatic encephalopathy(20.83±7.52 mmHg VS 14.92±5.35 mmHg,t=2.606,P=0.010),thrombocytopenia(15.66±5.39 mmHg VS 13.29±5.83mmHg,t=2.136,P=0.034),hypoproteinemia(16.13±5.86 mmHg VS 14.12±5.03 mmHg,t=2.230,P=0.027),and an increased international normalized ratio(16.25±6.00 mmHg VS 14.40±5.11mmHg,t=2.022,P=0.045).Conversely,the EUS-PPG was significantly reduced in patients with a history of splenectomy and devascularization(13.17±5.88mmHgVS15.73±5.34mmHg,t=-2.379,P=0.019).The EUS-PPG in patients with varying degrees of ascites(no VS slight VS moderate or severe:13.40±5.48 mmHg VS 15.90±5.49 mmHg VS 16.69±5.17 mmHg,F=5.188,P=0.007)and different Child-Pugh classifications(A VS B VS C:14.07±5.05 mmHg VS 15.69±5.74 mmHg VS 17.64±5.99 mmHg,F=3.066,P=0.049)increased gradually.Multivariable linear regression analysis showed that red signs(β=2.44,t=2.732,P=0.007),gastroesophageal varices(β=4.45,t=2.990,P=0.003),ascites(β=1.75,t=2.368,P=0.019),and hepatic encephalopathy(β=5.82,t=2.644,P=0.009)were independentftactors fortheelevated1EUS-PPG.Conclusion There is a significant correlation between EUS-PPG and the clinical features related to the severity of cirrhotic portal hypertension,which indicates the feasibility of EUS-PPG in evaluating cirrhotic portal hypertension. 展开更多
关键词 liver cirrhosis portal hypertension endoscopic ultrasound guided portal pressure gradient multivariate linear regression analysis clinical features clinical data
原文传递
Product Image Classification Based on Fusion Features
8
作者 杨晓慧 刘静静 杨利军 《Chinese Quarterly Journal of Mathematics》 2015年第3期429-441,共13页
Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images cl... Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images classification system, is still low. In this paper, we propose a local texture descriptor termed fan refined local binary pattern, which captures more detailed information by integrating the spatial distribution into the local binary pattern feature. We compare our approach with different methods on a subset of product images on Amazon/e Bay and parts of PI100 and experimental results have demonstrated that our proposed approach is superior to the current existing methods. The highest classification precision is increased by 21% and the average classification time is reduced by 2/3. 展开更多
关键词 product image CLASSIFICATION FAN refined local binary pattern(FRLBP) PYRAMID HISTOGRAM of orientated gradients(PHOG) FUSION features
在线阅读 下载PDF
Prediction of Alzheimer’s Using Random Forest with Radiomic Features
9
作者 Anuj Singh Raman Kumar Arvind Kumar Tiwari 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期513-530,共18页
Alzheimer’s disease is a non-reversible,non-curable,and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention.It is a ... Alzheimer’s disease is a non-reversible,non-curable,and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention.It is a frequently occurring mental illness that occurs in about 60%–80%of cases of dementia.It is usually observed between people in the age group of 60 years and above.Depending upon the severity of symptoms the patients can be categorized in Cognitive Normal(CN),Mild Cognitive Impairment(MCI)and Alzheimer’s Disease(AD).Alzheimer’s disease is the last phase of the disease where the brain is severely damaged,and the patients are not able to live on their own.Radiomics is an approach to extracting a huge number of features from medical images with the help of data characterization algorithms.Here,105 number of radiomic features are extracted and used to predict the alzhimer’s.This paper uses Support Vector Machine,K-Nearest Neighbour,Gaussian Naïve Bayes,eXtreme Gradient Boosting(XGBoost)and Random Forest to predict Alzheimer’s disease.The proposed random forest-based approach with the Radiomic features achieved an accuracy of 85%.This proposed approach also achieved 88%accuracy,88%recall,88%precision and 87%F1-score for AD vs.CN,it achieved 72%accuracy,73%recall,72%precisionand 71%F1-score for AD vs.MCI and it achieved 69%accuracy,69%recall,68%precision and 69%F1-score for MCI vs.CN.The comparative analysis shows that the proposed approach performs better than others approaches. 展开更多
关键词 Alzheimer’s disease radiomic features cognitive normal support vector machine mild cognitive impairment extreme gradient boosting random forest
暂未订购
基于梯度提升决策树算法的电力工程造价预测模型 被引量:3
10
作者 邵帅 赵祥 +2 位作者 敖慧凝 柳禾丰 王冬 《沈阳工业大学学报》 北大核心 2025年第3期302-308,共7页
[目的]电力工程造价预测在电网企业资源优化、财务稳定、风险管理、效率提升、项目决策、政策制定、市场秩序维护和投资者决策等方面具有重要意义。针对传统预测方法综合性能较差的问题,并考虑电力工程造价数据的小样本特性,提出了一种... [目的]电力工程造价预测在电网企业资源优化、财务稳定、风险管理、效率提升、项目决策、政策制定、市场秩序维护和投资者决策等方面具有重要意义。针对传统预测方法综合性能较差的问题,并考虑电力工程造价数据的小样本特性,提出了一种基于梯度提升决策树(gradient boosting decision tree,GBDT)的预测模型,通过优化训练过程中的残差,显著提升预测精度。[方法]从自然环境和技术因素出发,深入分析了电力工程造价的影响因子,筛选出11个影响电力工程造价的关键变量。通过数据清洗、特征编码和对数变换,构建适配GBDT模型的特征工程。采用Optuna框架进行超参数调优,并利用5折交叉验证法评估模型性能。模型优化以拟合优度作为评价指标,迭代寻找最优超参数,直至满足预测精度要求或达到最大迭代次数,最终建立结合Optuna框架的梯度提升决策树预测模型。以某地区变电工程造价数据为例,90%的数据样本作为训练集和验证集,10%的数据样本作为测试集,对比分析随机森林、神经网络、GBDT和结合Optuna的GBDT模型的预测效果,通过拟合优度与均方根误差进行性能评估。[结果]实验结果显示,结合Optuna的GBDT模型预测效果优于随机森林、神经网络及GBDT算法,预测值在真实值的±10元/kVA区间浮动。在验证集上,拟合优度为0.8923,均方根误差为8.01;在测试集上,拟合优度为0.8866,均方根误差为8.09。[结论]基于GBDT的电力工程造价预测模型能够精准预测电力工程造价,相较传统方法具有更高预测精度,尤其适用于电力工程造价类的小样本数据集。结合Optuna框架进行超参数调优,进一步提升了预测效果。未来研究将引入更多样本数据,并结合神经网络算法,探索更优的预测方案,助力电网企业实现高效运营与良性发展。 展开更多
关键词 电力工程 造价预测 梯度提升决策树 残差优化 对数变换 影响因子 特征工程 Optuna框架
在线阅读 下载PDF
导弹测试数据LGS-SAX的压缩方法
11
作者 张勇 何广军 +1 位作者 李宁 于元元 《电光与控制》 北大核心 2025年第11期109-115,共7页
随着新型导弹装备故障诊断、健康状态判断的测试数据的不断增长,去冗压缩简化处理成为准确高效分析数据的关键。针对符号聚合近似(SAX)数据简化处理方法的不足,即有效信息损失和数据分析精度不高的问题,提出了一种梯度局部搜索法符号聚... 随着新型导弹装备故障诊断、健康状态判断的测试数据的不断增长,去冗压缩简化处理成为准确高效分析数据的关键。针对符号聚合近似(SAX)数据简化处理方法的不足,即有效信息损失和数据分析精度不高的问题,提出了一种梯度局部搜索法符号聚合逼近(LGS-SAX)的方法,此法按照许可误差要求对可能含有故障信息的数据特征点进行搜索,把这些特征点作为分割点,保留这些特征信息点,压缩正常状态的平滑数据点,提高数据特征值的保留比例,降低冗余数据比例,从而达到高效压缩数据而保留特征信息的效果。在某导弹不同测试数据集上与其他先进改进算法进行对比实验,所提方法误差小,特征信息损失小,压缩比例大,运算效率高。 展开更多
关键词 梯度局部搜索法符号聚合逼近 数据压缩 信息特征保留
在线阅读 下载PDF
基于IWOA-LightGBM模型的矿用挖掘机发动机故障诊断研究
12
作者 顾清华 白书宇 王丹 《矿业研究与开发》 北大核心 2025年第9期184-191,共8页
针对矿用挖掘机发动机故障类别不均衡,导致故障诊断精度不高的问题,提出了一种改进的鲸鱼算法(WOA)优化轻量级梯度提升机(LightGBM)的矿用挖掘机发动机智能故障诊断方法。首先,利用递归特征交叉验证消除法(RFECV)对采集的挖掘机发动机... 针对矿用挖掘机发动机故障类别不均衡,导致故障诊断精度不高的问题,提出了一种改进的鲸鱼算法(WOA)优化轻量级梯度提升机(LightGBM)的矿用挖掘机发动机智能故障诊断方法。首先,利用递归特征交叉验证消除法(RFECV)对采集的挖掘机发动机故障数据的特征进行提取,删除不相关的特征。其次,采用Focal-Loss改进LightGBM的损失函数,提出一种改进的WOA对LightGBM的超参数寻优,构建新的诊断模型。最后,利用某矿山挖掘机发动机故障数据进行验证,并与常见的集成模型、调优框架和诊断算法进行对比分析。结果表明:所提出的矿用挖掘机发动机故障诊断模型IWOA-LightGBM的准确率和F1分数分别为98.08%和98.53%,诊断性能较好,可为矿山机械设备的智能诊断提供参考。 展开更多
关键词 矿用挖掘机 发动机 故障诊断 递归特征交叉验证消除法 轻量级梯度提升机 鲸鱼算法
原文传递
梯度区分与特征范数驱动的开放世界目标检测
13
作者 张英俊 闫薇薇 +2 位作者 谢斌红 张睿 陆望东 《计算机应用》 北大核心 2025年第7期2203-2210,共8页
开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDF... 开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDFN-OWOD)网络模型。针对未知类召回率偏低的问题,提出梯度区分性表征模块(GDRM),即利用反向传播的梯度差异区分未知类别和背景,以提高未知类召回率;此外,引入基于图分割的框聚类(GSBC)算法将物体边界框的确定建模为图分解问题,从而减少冗余的边界框,进而降低模型的计算量;针对未知类误识别的问题,采用基于特征范数的分类器(FN-BC)选择性能最优的卷积层识别已知和未知类别,以达到更高的识别准确率。在M-OWODB数据集上的实验结果表明,与最优对比模型相比在T1、T2、T3任务中GDFN-OWOD的未知类召回率分别提升了1.1、2.1、0.9个百分点,而绝对开集误差(A-OSE)分别降低了35.1%、28.7%和12.2%。可见,与现有的OWOD网络模型相比,所提网络模型有效缓解了未知类的召回率偏低和误识别的问题。 展开更多
关键词 开放世界目标检测 反向传播梯度 图分割算法 特征范数 卷积神经网络
在线阅读 下载PDF
基于图像特征的烟幕干扰效能评估方法
14
作者 刘书信 丁佳麟 +1 位作者 赵凤 陈春生 《激光与红外》 北大核心 2025年第4期607-614,共8页
烟幕以其施放方式简单、效费比高等优点成为了现代战场的主要干扰手段之一,但目前针对烟幕干扰效能评估的方法较少,且缺少定量评估手段。本文提出了基于图像特征的烟幕干扰效能评估方法(HD-EEMSSJ),通过外场试验获取了真实试验数据并对... 烟幕以其施放方式简单、效费比高等优点成为了现代战场的主要干扰手段之一,但目前针对烟幕干扰效能评估的方法较少,且缺少定量评估手段。本文提出了基于图像特征的烟幕干扰效能评估方法(HD-EEMSSJ),通过外场试验获取了真实试验数据并对该方法评估效果进行测试。该方法从导引头跟踪机制出发,将图像的方向梯度直方图特征、深度特征、余弦相似度以及亮度特征进行加权融合,得出定量化的评估结果HD-EEMSSJ指数,该指数能够更加准确且敏锐地体现出烟幕的动态干扰情况,为后期干扰效果的分级评定提供参考依据。经多组试验数据验证结果表明,HD-EEMSSJ指数对比传统的图像质量评估方法PSNR、RFSIM、SSIM以及本文提出的EEMSSJ方法具有更好的评估效果,准确性分别提高了533.15%、170.2%、26.4%和3.25%。 展开更多
关键词 图像特征 烟幕干扰 效能评估 方向梯度直方图
在线阅读 下载PDF
基于改进支持向量机的动态多点手势动作识别方法 被引量:1
15
作者 张科星 何江 《吉林大学学报(信息科学版)》 2025年第3期583-590,共8页
针对手势识别由于分割效果差,导致识别率较低等问题,提出基于改进支持向量机的动态多点手势动作识别方法。选用深度阈值法分割动态多点手势图像,提取出手掌中最大的圆细化手部区域,获取7维手部HOG(Histogram of Oriented Gradients)特... 针对手势识别由于分割效果差,导致识别率较低等问题,提出基于改进支持向量机的动态多点手势动作识别方法。选用深度阈值法分割动态多点手势图像,提取出手掌中最大的圆细化手部区域,获取7维手部HOG(Histogram of Oriented Gradients)特征向量,完成手势动作图像预处理。引入支持向量机,并且通过误差项改进该算法。采用改进后的支持向量机最优线性分类特征向量,利用支持向量机输入分类后的手势特征向量,实现动态多点手势动作识别。实验结果表明,所提方法受光照影响波动小,在有光照情况下,识别率达到92.5%以上,而无光照情况下,识别率仍高于90.0%,并且图像分割信息完整、识别准确性高。 展开更多
关键词 改进支持向量机 动态多点手势 手势动作识别 HOG特征提取 BP神经网络
在线阅读 下载PDF
分布式光伏功率预测的时空特征融合方法研究
16
作者 张晓辉 刘钰婷 +1 位作者 马锴 钟嘉庆 《中国电机工程学报》 北大核心 2025年第S1期231-244,共14页
准确的光伏功率预测对电网调度和电站运行具有重要意义。由于分布式光伏(distributed photovoltaics,DPV)系统受多种时空因素影响,传统基于单一模型的方法难以充分挖掘其时序变化规律与空间相关特性,导致预测精度低、模型适应性弱。该... 准确的光伏功率预测对电网调度和电站运行具有重要意义。由于分布式光伏(distributed photovoltaics,DPV)系统受多种时空因素影响,传统基于单一模型的方法难以充分挖掘其时序变化规律与空间相关特性,导致预测精度低、模型适应性弱。该文提出一种融合时空特征,结合麻雀搜索算法(sparrow search algorithm,SSA)优化极端梯度提升算法(extreme gradient boosting,XGBoost)和差分移动自回归平均(autoregressive integrated moving average,ARIMA)模型的DPV功率预测方法。首先,提出基于斯皮尔曼相关系数筛选与历史光伏功率高度相关的气象因素,并将其输入到SSA优化的XGBoost模型中,以提取和预测时间相关性特征;然后,结合日累计发电量与功率变化率,提出一种基于天气类型的光伏功率数据分类方法,并进一步提出利用斯皮尔曼分析识别与目标站点功率高度相关的参考电站;在此基础上,构建结合动态权重的ARIMA模型,实现对空间相关性特征的建模与预测;最后,提出一种基于信息熵加权的时空特征融合框架模型,根据时间与空间预测模型的误差动态调整其贡献度,生成融合预测结果。以f1电站为研究对象的对比实验结果表明,该文所提出的方法在预测精度与鲁棒性方面均优于传统单一模型,验证了其在DPV功率预测中的实用性和有效性。 展开更多
关键词 分布式光伏 时空特征融合 功率预测 麻雀搜索算法-极端梯度提升算法-差分移动自回归平均模型 信息熵
原文传递
基于深度强化学习的综合能源系统优化调度
17
作者 梁海峰 闫峰 +1 位作者 尚隽 王楚通 《内蒙古电力技术》 2025年第4期21-29,共9页
为减少智能体达到收敛所需的训练轮数,提高经验样本利用效率,优化综合能源系统(Integrated Energy System,IES)能量调度,引入深度强化学习(Deep Reinforcement Learning,DRL)算法,提出一种基于多环境实例和数据特征分数经验采样机制的... 为减少智能体达到收敛所需的训练轮数,提高经验样本利用效率,优化综合能源系统(Integrated Energy System,IES)能量调度,引入深度强化学习(Deep Reinforcement Learning,DRL)算法,提出一种基于多环境实例和数据特征分数经验采样机制的改进深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)算法。首先,借助多环境实例促使智能体和环境进行大量交互,从而获得有效的指导经验;其次,对不同类型数据进行特征量化处理,并依据特征分数进行经验采样,提高样本利用效率;最后,将改进DDPG算法与经典柔性动作-评价(Soft Actor⁃Critic,SAC)算法、双延迟深度确定性策略梯度(Twin Delayed Deep Deterministic Policy Gradient,TD3)算法进行对比实验,实验结果验证了所提算法在提高收敛速度和样本利用效率方面的有效性,并通过算例仿真对模型增量学习后的性能提升进行了验证。 展开更多
关键词 综合能源系统 深度强化学习 改进深度确定性策略梯度算法 多环境实例 特征分数
在线阅读 下载PDF
基于融合XGBoost的变电工程造价数据预测算法 被引量:1
18
作者 周波 刘云 +2 位作者 李维嘉 亓彦珣 王立功 《沈阳工业大学学报》 北大核心 2025年第3期317-323,共7页
【目的】传统电网变电工程造价预测方法通常依赖单一影响因子或线性假设模型,难以全面捕捉多因子间复杂的非线性关系,预测精度不足。此外,现有方法在处理高维度分类变量时面临维度爆炸或信息损失等问题,尤其在小样本数据场景下容易过拟... 【目的】传统电网变电工程造价预测方法通常依赖单一影响因子或线性假设模型,难以全面捕捉多因子间复杂的非线性关系,预测精度不足。此外,现有方法在处理高维度分类变量时面临维度爆炸或信息损失等问题,尤其在小样本数据场景下容易过拟合。因此,本文构建了一种能有效融合多源影响因子、适应非线性关系且在小样本数据中表现稳健的变电工程造价预测模型,为电网企业的投资决策提供更精准的技术支持。【方法】提出了一种基于均值编码(ME)并融合极端梯度提升框架(XGBoost)的变电工程造价预测模型(ME-XGB)。首先,从设备和材料、施工工艺、施工规模、地理环境及设计标准等多维度中提取13个关键影响因子,涵盖分类变量与连续变量。针对分类变量与造价间的非线性关系,利用均值编码进行特征工程处理,通过计算类别内目标变量即单位容量造价的均值并结合平滑因子,将分类变量转化为连续特征,既保留类别信息又避免维度爆炸。其次,利用XGBoost构建预测模型,通过集成多棵决策树逐步修正残差,并引入正则化项和超参数调优,提升模型泛化能力。实验选取某电网公司200个变电工程样本,随机划分为训练集(80%)与测试集(20%),以平均绝对误差(M_(AE))和拟合优度(R^(2))作为评价指标,与MK-TESM、BP神经网络和XGBoost模型的性能进行对比分析。【结果】ME-XGB模型在测试集上的预测精度显著优于对比模型。其M_(AE)中位数与均值分别为5和6.875,较MK-TESM、BP神经网络和XGBoost模型均有所降低。同时,ME-XGB模型的R^(2)值达到0.8579,远高于对比模型,表明该模型对数据变动的解释能力更强。此外,箱线图分析结果显示,ME-XGB模型的预测误差分布范围最窄,验证了该模型的稳定性更强。超参数调优结果表明,XGBoost模型的树深度和学习率等超参数设置有效平衡了模型复杂度与过拟合风险。【结论】ME-XGB模型通过均值编码解决了分类变量非线性表达与维度控制问题,结合XGBoost模型的集成学习能力,显著提升了小样本场景下的预测性能。ME-XGB模型在平均绝对误差、拟合优度及误差稳定性方面均优于对比模型,可为电网企业提供更可靠的造价预测。未来研究可进一步探索动态影响因子的建模,并结合迁移学习拓展模型在跨区域工程中的应用。 展开更多
关键词 变电工程 造价预测 非线性 影响因子 极端梯度提升 均值编码 融合框架 特征工程
在线阅读 下载PDF
基于地磁特征提取的搜索导航研究
19
作者 郭娇娇 杨宾锋 +2 位作者 纪晓琳 曹海霞 郭宁宁 《空军工程大学学报》 北大核心 2025年第4期75-81,88,共8页
现有地磁导航研究所采用的导航参量大多是基于原始地磁参量,地磁参量的选取会影响导航的效率,在选择导航参量过程中存在人为性。针对这一问题,提出一种基于地磁特征提取的搜索导航方法,利用主成分分析的方法提取出能较为全面地描述该位... 现有地磁导航研究所采用的导航参量大多是基于原始地磁参量,地磁参量的选取会影响导航的效率,在选择导航参量过程中存在人为性。针对这一问题,提出一种基于地磁特征提取的搜索导航方法,利用主成分分析的方法提取出能较为全面地描述该位置磁场信息的地磁特征作为新的导航参量,结合现有的进化搜索策略和梯度下降法,充分利用提取出的地磁特征作为新的导航参量,引导载体不断向目标趋近,实现导航目的。实验结果表明:基于原始地磁参量的传统搜索导航方法目标函数迭代步数为647,基于提取主成分特征的搜索导航方法目标函数迭代步数为564,而文中提出的基于主成分特征的进化梯度导航方法迭代步数为238,迭代步数明显下降,导航效率提高,并且子目标函数收敛的一致性也更好,能较好地利用原有磁场信息,在自主远程导航中具有很好的应用前景。 展开更多
关键词 地磁导航 特征提取 主成分分析 进化梯度搜索
在线阅读 下载PDF
基于特征筛选对烧结钕铁硼矫顽力的预测研究
20
作者 李金栋 孙旭 +1 位作者 韩瑞 周栋 《稀土》 北大核心 2025年第3期122-132,共11页
机器学习为预测烧结钕铁硼的矫顽力提供了全新途径。本文研究了基于特征筛选对烧结钕铁硼磁体矫顽力的预测结果影响,构建了包括烧结钕铁硼的组成成分、烧结工艺的数据集,并利用特征筛选对数据集进行优化,简化模型的同时提高模型性能。... 机器学习为预测烧结钕铁硼的矫顽力提供了全新途径。本文研究了基于特征筛选对烧结钕铁硼磁体矫顽力的预测结果影响,构建了包括烧结钕铁硼的组成成分、烧结工艺的数据集,并利用特征筛选对数据集进行优化,简化模型的同时提高模型性能。新模型在预测方面表现出色,能够有效提升模型的预测效果。最终,通过实验验证所建立的模型,在不同成分的钕铁硼磁体的实验数据上表现良好,预测结果与实验值高度一致。 展开更多
关键词 烧结钕铁硼磁体 矫顽力 机器学习 特征筛选 梯度提升回归
原文传递
上一页 1 2 45 下一页 到第
使用帮助 返回顶部