This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functio...This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functionally graded(FG)materials such as conventional,axial,bi-directional,and tri-directional,and the material distribution models like power-law,exponential,trigonometric,polynomial functions,etc.It also discusses the application of advanced size-dependent theories like Eringen’s nonlocal elasticity,nonlocal strain gradient,modified couple stress,and consistent couple stress theories,which are essential to predict the behavior of structures at small scales.The review covers the mechanical analysis of MDFG nanostructures in nanobeams,nanopipes,nanoplates,and nanoshells and their dynamic and static responses under different loading conditions.The effect of multi-directional material gradation on stiffness,stability and vibration is discussed.Moreover,the review highlights the need for more advanced analytical,semi-analytical,and numerical methods to solve the complex vibration problems ofMDFG nanostructures.It is evident that the continued development of these methods is crucial for the design,optimization,and real-world application of MDFG nanostructures in advanced engineering fields like aerospace,biomedicine,and micro/nanoelectromechanical systems(MEMS/NEMS).This study is a reference for researchers and engineers working in the domain of MDFG nanostructures.展开更多
Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbule...Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.展开更多
The homogenized Mg−5.6Gd−0.8Zn(wt.%)alloys were treated with water cooling and furnace cooling to obtain specimens without and with the 14H long-period stacking ordered(LPSO)phase.Subsequently,multi-directional forgin...The homogenized Mg−5.6Gd−0.8Zn(wt.%)alloys were treated with water cooling and furnace cooling to obtain specimens without and with the 14H long-period stacking ordered(LPSO)phase.Subsequently,multi-directional forging(MDF)experiments were carried out.The microstructure and mechanical properties of different regions(the center,middle and edge regions)in the MDFed alloys were systematically investigated,and the effect of LPSO phase on them was discussed.The results show that the alloys in different regions undergo significant grain refinement during the MDF process.Inhomogeneous microstructures with different degrees of dynamic recrystallization(DRX)are formed,resulting in microhardness heterogeneity.The alloy with the LPSO phase has higher microstructure homogeneity,a higher degree of recrystallization,and better comprehensive mechanical properties than the alloy without the LPSO phase.The furnace-cooled alloy after 18 passes of MDF has the best comprehensive mechanical properties,with an ultimate compressive strength of 488 MPa,yield strength of 258 MPa,and fracture strain of 21.2%.DRX behavior is closely related to the LPSO phase and deformation temperature.The kinked LPSO phase can act as a potential nucleation site for DRX grains,while the fragmented LPSO phase promotes DRX nucleation through the particle-stimulated nucleation mechanism.展开更多
The superplasticity of the Mg−8.59Gd−3.85Y−1.14Zn−0.49Zr alloy was investigated before and after multi-directional forging(MDF)and the mechanisms affecting superplastic deformation were analyzed.The results indicate t...The superplasticity of the Mg−8.59Gd−3.85Y−1.14Zn−0.49Zr alloy was investigated before and after multi-directional forging(MDF)and the mechanisms affecting superplastic deformation were analyzed.The results indicate that after MDF at a temperature of 350℃and strain rates of 0.1 and 0.01 s^(−1)(1-MDFed and 2-MDFed),the superplasticity of the alloy can be significantly improved.The elongations of the MDFed alloys exceed 400%under the strain rate of 6.06×10^(−4)s^(−1)and temperatures of 350,375,and 400℃,and reach the maximum values of 766%(1-MDFed)and 693%(2-MDFed)at 375℃.The grain boundary sliding of the MDFed alloy is sufficient,and the energy barrier of deformation decreases.Theβphase limits the grain growth and promotes dynamic recrystallization,maintaining the stability of the fine-grained structure during superplastic deformation.Several Y-rich phases nucleate in the high-strain region(i.e.,the final fracture region)at high temperatures,accelerating the fracture of the specimen.展开更多
Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The...Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.展开更多
Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-med...Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.展开更多
Space laser communication(SLC)is an emerging technology to support high-throughput data transmissions in space networks.In this paper,to guarantee the reliability of high-speed SLC links,we aim at practical implementa...Space laser communication(SLC)is an emerging technology to support high-throughput data transmissions in space networks.In this paper,to guarantee the reliability of high-speed SLC links,we aim at practical implementation of low-density paritycheck(LDPC)decoding under resource-restricted space platforms.Particularly,due to the supply restriction and cost issues of high-speed on-board devices such as analog-to-digital converters(ADCs),the input of LDPC decoding will be usually constrained by hard-decision channel output.To tackle this challenge,density-evolution-based theoretical analysis is firstly performed to identify the cause of performance degradation in the conventional binaryinitialized iterative decoding(BIID)algorithm.Then,a computation-efficient decoding algorithm named multiary-initialized iterative decoding with early termination(MIID-ET)is proposed,which improves the error-correcting performance and computation efficiency by using a reliability-based initialization method and a threshold-based decoding termination rule.Finally,numerical simulations are conducted on example codes of rates 7/8 and 1/2 to evaluate the performance of different LDPC decoding algorithms,where the proposed MIID-ET outperforms the BIID with a coding gain of 0.38 dB and variable node calculation saving of 37%.With this advantage,the proposed MIID-ET can notably reduce LDPC decoder’s hardware implementation complexity under the same bit error rate performance,which successfully doubles the total throughput to 10 Gbps on a single-chip FPGA.展开更多
To improve the decoding performance of quantum error-correcting codes in asymmetric noise channels,a neural network-based decoding algorithm for bias-tailored quantum codes is proposed.The algorithm consists of a bias...To improve the decoding performance of quantum error-correcting codes in asymmetric noise channels,a neural network-based decoding algorithm for bias-tailored quantum codes is proposed.The algorithm consists of a biased noise model,a neural belief propagation decoder,a convolutional optimization layer,and a multi-objective loss function.The biased noise model simulates asymmetric error generation,providing a training dataset for decoding.The neural network,leveraging dynamic weight learning and a multi-objective loss function,mitigates error degeneracy.Additionally,the convolutional optimization layer enhances early-stage convergence efficiency.Numerical results show that for bias-tailored quantum codes,our decoder performs much better than the belief propagation(BP)with ordered statistics decoding(BP+OSD).Our decoder achieves an order of magnitude improvement in the error suppression compared to higher-order BP+OSD.Furthermore,the decoding threshold of our decoder for surface codes reaches a high threshold of 20%.展开更多
Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Althoug...Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC.展开更多
The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinemen...The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.展开更多
This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman codi...This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...展开更多
Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first...Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.展开更多
In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systemati...In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systematically.The results show that after the solutionized sample was multi-forged at 500℃,its grain size can be refined from 292 um to 58 um.As the forging temperature decreased,fine particles precipitated in the matrix.The volume fraction of the particles increased with the forging temperature decreasing,so the nucleation and growth of crystallization were strongly restricted.There was no recrystallization as the forging temperature fell to 410℃,and the severe deformed grains distributed as streamlines perpendicular to the final compression axis.The texture intensity decreased with increasing forging passes.The sample with best ductility was obtained after compressed at 470℃,with an elongation to failure of 21%at room temperature,which is increased by 200%,in comparison with that of the samples in solutionized condition.EBSD results revealed that the mean grain size was 15 um.Refined grains as well as the weakened texture were the key factors to its high ductility.展开更多
Multi-direction impact forging(MDIF)was applied to the as-extruded ZK60 Mg alloy,and the microstructure,texture evolution and yield strength symmetry were investigated in the current study.The results showed that the ...Multi-direction impact forging(MDIF)was applied to the as-extruded ZK60 Mg alloy,and the microstructure,texture evolution and yield strength symmetry were investigated in the current study.The results showed that the average grain size of forged piece was greatly refined to 5.3μm after 120 forging passes,which was ascribed to the segmenting effect of{10–12}twins and the subsequent multiple rounds of dynamic recrystallization(DRX).A great deal of{10–12}twins were activated at the beginning of MDIF process,which played an important role in grain refinement.With forging proceeding,continuous and discontinuous DRX were successively activated,resulting in the fully DRXed microstructure.Meanwhile,the forged piece exhibited a unique four-peak texture,and the initial<10-10>//ED fiber texture component gradually evolved into multiple texture components composed of<0001>//FFD(first forging direction)and<11–20>//FFD texture.The special strain path was the key to the formation of the unique four-peak texture.The{10–12}twinning and basal slip were two dominant factors to the evolution of texture during MDIF process.Grain strengthening and dislocation strengthening were two main strengthening mechanisms of the forged piece.Besides,the symmetry of yield strength was greatly improved by MDIF process.展开更多
The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS ...The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS (personal communications systems). This paper concentrateson channel decoders that exploit the residual redundancy inherent in the enhanced variable ratecodec bitstream. This residual redundancy is quantified by modeling the parameters as first orderMarkov chains and computing the entropy rate based on the relative frequencies of transitions.Moreover, this residual redundancy can be exploited by an appropriately 'tuned' channel decoder toprovide substantial coding gain when compared with the decoders that do not exploit it. Channelcoding schemes include convolutional codes, and iteratively decoded parallel concatenatedconvolutional 'turbo' codes.展开更多
Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rat...Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.展开更多
Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orien...Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orientations, etc. of the three array arrangements, i. e., linear array, T-type array and pentagon array, on the resolution of the directional spreading of waves, are investigated experimentally. This study can be used as a reference in the experimental study and the field measurement of directional waves.展开更多
This work discusses tribological properties of commercial pure (CP) titanium processed by multi-directional forging (MDF) up to six passes at room temperature and 220 ℃. For this purpose, wear test was conducted by d...This work discusses tribological properties of commercial pure (CP) titanium processed by multi-directional forging (MDF) up to six passes at room temperature and 220 ℃. For this purpose, wear test was conducted by dry sliding pin-on-disk method on the initial and ultrafine grained samples using different stress magnitudes of 1, 1.5 and 2 MPa. The results showed that wear resistance of CP titanium increases after the first pass of MDF in comparison with the initial condition, irrespective of the applied normal stress. For example, the average wear rate of MDFed samples was decreased about 30% and 24%, after first pass at room temperature and 220 ℃, respectively. However, average wear rate of the samples processed by six MDF passes was reduced about 40% at lower normal loads;it was increased about 9% at higher ones as compared to the initial condition. It was also found that the dominated wear mechanisms were abrasive and delaminated at the lower stresses, while the delamination mechanism was intensified and a slight adhesion was observed during the higher applied normal loads.展开更多
Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BC...Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that the proposed scheme exactly performs maximum-likelihood( ML) decoding,which means the decoding performance is optimal. Moreover,an efficient implementation method of the proposed scheme is designed based on Viterbi algorithm. Simulation results show that the performance of the proposed soft-decision ML decoding scheme is significantly improved compared with the traditional hard-decision decoding method at the expense of moderate complexity increase.展开更多
文摘This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functionally graded(FG)materials such as conventional,axial,bi-directional,and tri-directional,and the material distribution models like power-law,exponential,trigonometric,polynomial functions,etc.It also discusses the application of advanced size-dependent theories like Eringen’s nonlocal elasticity,nonlocal strain gradient,modified couple stress,and consistent couple stress theories,which are essential to predict the behavior of structures at small scales.The review covers the mechanical analysis of MDFG nanostructures in nanobeams,nanopipes,nanoplates,and nanoshells and their dynamic and static responses under different loading conditions.The effect of multi-directional material gradation on stiffness,stability and vibration is discussed.Moreover,the review highlights the need for more advanced analytical,semi-analytical,and numerical methods to solve the complex vibration problems ofMDFG nanostructures.It is evident that the continued development of these methods is crucial for the design,optimization,and real-world application of MDFG nanostructures in advanced engineering fields like aerospace,biomedicine,and micro/nanoelectromechanical systems(MEMS/NEMS).This study is a reference for researchers and engineers working in the domain of MDFG nanostructures.
基金supported by the National Natural Science Foundation of China(No.12104141).
文摘Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.
基金the financial supports from the Key Research and Development Program of Hunan Province,China(No.2023GK2020)。
文摘The homogenized Mg−5.6Gd−0.8Zn(wt.%)alloys were treated with water cooling and furnace cooling to obtain specimens without and with the 14H long-period stacking ordered(LPSO)phase.Subsequently,multi-directional forging(MDF)experiments were carried out.The microstructure and mechanical properties of different regions(the center,middle and edge regions)in the MDFed alloys were systematically investigated,and the effect of LPSO phase on them was discussed.The results show that the alloys in different regions undergo significant grain refinement during the MDF process.Inhomogeneous microstructures with different degrees of dynamic recrystallization(DRX)are formed,resulting in microhardness heterogeneity.The alloy with the LPSO phase has higher microstructure homogeneity,a higher degree of recrystallization,and better comprehensive mechanical properties than the alloy without the LPSO phase.The furnace-cooled alloy after 18 passes of MDF has the best comprehensive mechanical properties,with an ultimate compressive strength of 488 MPa,yield strength of 258 MPa,and fracture strain of 21.2%.DRX behavior is closely related to the LPSO phase and deformation temperature.The kinked LPSO phase can act as a potential nucleation site for DRX grains,while the fragmented LPSO phase promotes DRX nucleation through the particle-stimulated nucleation mechanism.
基金supported by the National Natural Science Foundation of China(No.52127808)。
文摘The superplasticity of the Mg−8.59Gd−3.85Y−1.14Zn−0.49Zr alloy was investigated before and after multi-directional forging(MDF)and the mechanisms affecting superplastic deformation were analyzed.The results indicate that after MDF at a temperature of 350℃and strain rates of 0.1 and 0.01 s^(−1)(1-MDFed and 2-MDFed),the superplasticity of the alloy can be significantly improved.The elongations of the MDFed alloys exceed 400%under the strain rate of 6.06×10^(−4)s^(−1)and temperatures of 350,375,and 400℃,and reach the maximum values of 766%(1-MDFed)and 693%(2-MDFed)at 375℃.The grain boundary sliding of the MDFed alloy is sufficient,and the energy barrier of deformation decreases.Theβphase limits the grain growth and promotes dynamic recrystallization,maintaining the stability of the fine-grained structure during superplastic deformation.Several Y-rich phases nucleate in the high-strain region(i.e.,the final fracture region)at high temperatures,accelerating the fracture of the specimen.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LL.Z012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901).
文摘Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.
基金supported by the National Natural Science Foundation of China(NSFC)with project ID 62071498the Guangdong National Science Foundation(GDNSF)with project ID 2024A1515010213.
文摘Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1005000)the National Natural Science Foundation of China(Grant No.62101308 and 62025110).
文摘Space laser communication(SLC)is an emerging technology to support high-throughput data transmissions in space networks.In this paper,to guarantee the reliability of high-speed SLC links,we aim at practical implementation of low-density paritycheck(LDPC)decoding under resource-restricted space platforms.Particularly,due to the supply restriction and cost issues of high-speed on-board devices such as analog-to-digital converters(ADCs),the input of LDPC decoding will be usually constrained by hard-decision channel output.To tackle this challenge,density-evolution-based theoretical analysis is firstly performed to identify the cause of performance degradation in the conventional binaryinitialized iterative decoding(BIID)algorithm.Then,a computation-efficient decoding algorithm named multiary-initialized iterative decoding with early termination(MIID-ET)is proposed,which improves the error-correcting performance and computation efficiency by using a reliability-based initialization method and a threshold-based decoding termination rule.Finally,numerical simulations are conducted on example codes of rates 7/8 and 1/2 to evaluate the performance of different LDPC decoding algorithms,where the proposed MIID-ET outperforms the BIID with a coding gain of 0.38 dB and variable node calculation saving of 37%.With this advantage,the proposed MIID-ET can notably reduce LDPC decoder’s hardware implementation complexity under the same bit error rate performance,which successfully doubles the total throughput to 10 Gbps on a single-chip FPGA.
基金supported by the National Natural Science Foundation of China(Grant Nos.62371240,61802175,62401266,and 12201300)the National Key R&D Program of China(Grant No.2022YFB3103800)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20241452)the Fundamental Research Funds for the Central Universities(Grant No.30923011014)the fund of Laboratory for Advanced Computing and Intelligence Engineering(Grant No.2023-LYJJ-01-009)。
文摘To improve the decoding performance of quantum error-correcting codes in asymmetric noise channels,a neural network-based decoding algorithm for bias-tailored quantum codes is proposed.The algorithm consists of a biased noise model,a neural belief propagation decoder,a convolutional optimization layer,and a multi-objective loss function.The biased noise model simulates asymmetric error generation,providing a training dataset for decoding.The neural network,leveraging dynamic weight learning and a multi-objective loss function,mitigates error degeneracy.Additionally,the convolutional optimization layer enhances early-stage convergence efficiency.Numerical results show that for bias-tailored quantum codes,our decoder performs much better than the belief propagation(BP)with ordered statistics decoding(BP+OSD).Our decoder achieves an order of magnitude improvement in the error suppression compared to higher-order BP+OSD.Furthermore,the decoding threshold of our decoder for surface codes reaches a high threshold of 20%.
基金supported by Key Laboratory of Cyberspace Security,Ministry of Education,China。
文摘Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC.
基金Projects(51204053,51074048,51204048)supported by the National Natural Science Foundation of ChinaProject(20110491518)supported by China Postdoctoral Science FoundationProject(2012CB619506)supported by the National Basic Research Program of China
文摘The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.
文摘This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...
基金The National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.
基金Project supported by the National Foundation of Natural Science(No.51105350 and No.51301173)project 973(No.2013CB632202)of National Ministry of Science and Technology+1 种基金This work was funded by the National Basic Research Program of China(973 Program)through project No.2013CB632202National Natural Science Foundation of China(NSFC)through projects No.51105350 and No.51301173,respectively.
文摘In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systematically.The results show that after the solutionized sample was multi-forged at 500℃,its grain size can be refined from 292 um to 58 um.As the forging temperature decreased,fine particles precipitated in the matrix.The volume fraction of the particles increased with the forging temperature decreasing,so the nucleation and growth of crystallization were strongly restricted.There was no recrystallization as the forging temperature fell to 410℃,and the severe deformed grains distributed as streamlines perpendicular to the final compression axis.The texture intensity decreased with increasing forging passes.The sample with best ductility was obtained after compressed at 470℃,with an elongation to failure of 21%at room temperature,which is increased by 200%,in comparison with that of the samples in solutionized condition.EBSD results revealed that the mean grain size was 15 um.Refined grains as well as the weakened texture were the key factors to its high ductility.
基金supported by National Natural Science Foundation of China(Grant No.51975146)Key Research and Development Plan in Shandong Province(Grant No.2018JMRH0412,2019JZZY010364)National Defense Basic Scientific Research of China(Grant no.JCK2018603C017)。
文摘Multi-direction impact forging(MDIF)was applied to the as-extruded ZK60 Mg alloy,and the microstructure,texture evolution and yield strength symmetry were investigated in the current study.The results showed that the average grain size of forged piece was greatly refined to 5.3μm after 120 forging passes,which was ascribed to the segmenting effect of{10–12}twins and the subsequent multiple rounds of dynamic recrystallization(DRX).A great deal of{10–12}twins were activated at the beginning of MDIF process,which played an important role in grain refinement.With forging proceeding,continuous and discontinuous DRX were successively activated,resulting in the fully DRXed microstructure.Meanwhile,the forged piece exhibited a unique four-peak texture,and the initial<10-10>//ED fiber texture component gradually evolved into multiple texture components composed of<0001>//FFD(first forging direction)and<11–20>//FFD texture.The special strain path was the key to the formation of the unique four-peak texture.The{10–12}twinning and basal slip were two dominant factors to the evolution of texture during MDIF process.Grain strengthening and dislocation strengthening were two main strengthening mechanisms of the forged piece.Besides,the symmetry of yield strength was greatly improved by MDIF process.
文摘The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS (personal communications systems). This paper concentrateson channel decoders that exploit the residual redundancy inherent in the enhanced variable ratecodec bitstream. This residual redundancy is quantified by modeling the parameters as first orderMarkov chains and computing the entropy rate based on the relative frequencies of transitions.Moreover, this residual redundancy can be exploited by an appropriately 'tuned' channel decoder toprovide substantial coding gain when compared with the decoders that do not exploit it. Channelcoding schemes include convolutional codes, and iteratively decoded parallel concatenatedconvolutional 'turbo' codes.
基金This work was supported in part by National Natural Science Foundation of China(No.61671324)the Director’s Funding from Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM201712).
文摘Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.
文摘Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orientations, etc. of the three array arrangements, i. e., linear array, T-type array and pentagon array, on the resolution of the directional spreading of waves, are investigated experimentally. This study can be used as a reference in the experimental study and the field measurement of directional waves.
基金supported financially by the Iran National Science Foundation (No.94809610)the Czech Science Foundation Project (No.GB 14-36566G)
文摘This work discusses tribological properties of commercial pure (CP) titanium processed by multi-directional forging (MDF) up to six passes at room temperature and 220 ℃. For this purpose, wear test was conducted by dry sliding pin-on-disk method on the initial and ultrafine grained samples using different stress magnitudes of 1, 1.5 and 2 MPa. The results showed that wear resistance of CP titanium increases after the first pass of MDF in comparison with the initial condition, irrespective of the applied normal stress. For example, the average wear rate of MDFed samples was decreased about 30% and 24%, after first pass at room temperature and 220 ℃, respectively. However, average wear rate of the samples processed by six MDF passes was reduced about 40% at lower normal loads;it was increased about 9% at higher ones as compared to the initial condition. It was also found that the dominated wear mechanisms were abrasive and delaminated at the lower stresses, while the delamination mechanism was intensified and a slight adhesion was observed during the higher applied normal loads.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61271423)
文摘Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that the proposed scheme exactly performs maximum-likelihood( ML) decoding,which means the decoding performance is optimal. Moreover,an efficient implementation method of the proposed scheme is designed based on Viterbi algorithm. Simulation results show that the performance of the proposed soft-decision ML decoding scheme is significantly improved compared with the traditional hard-decision decoding method at the expense of moderate complexity increase.