期刊文献+
共找到158,021篇文章
< 1 2 250 >
每页显示 20 50 100
Loading System for Full-Scale Heavy-Duty Support Node Test with Multi-Directional Loading Requirements 被引量:3
1
作者 王玉银 龚超 +1 位作者 张素梅 郭海山 《Transactions of Tianjin University》 EI CAS 2011年第3期166-174,共9页
This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy... This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy-duty support node test. Test loads of the support reached 6 567 kN with multi-directional loading requirements, which outrange the capacity of the available loading devices. Through the reinforcement of a large-scale multi-directional inplane loading device, the innovative design of a self-balanced load transferring device, and other arrangement considerations of the loading system, the test was implemented and the loading capacity of the ring was considerably enlarged. Due to the heavy loading requirements, some checking computations of the ring and the load transferring device outranged the limit of the Chinese national code "Code for Design of Steel Structures (GB 50017—2003)", thus elastic-plastic finite element (FE) analysis was carried out on the two devices, and also the real-time monitoring on the whole loading systems during experiments to ensure test safety. FE analysis and test results show that the loading system worked elastically during experiments. 展开更多
关键词 loading system self-balanced design multi-directional loading heavy-duty node
在线阅读 下载PDF
Oblique and Multi-Directional Random Wave Loads on Vertical Breakwaters 被引量:3
2
作者 俞聿修 李本霞 张宁川 《海洋工程:英文版》 2003年第2期189-202,共14页
Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on a... Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on an unit length of a breakwater with wave direction, the longitudinal distribution of wave forces, as well as the longitudinal load reduction are analyzed. Some empirical formulae of the longitudinal distribution coefficient and the longitudinal load reduction factor are presented for practical use. 展开更多
关键词 vertical breakwaters oblique wave multi-directional random wave longitudinal distribution wave forces longitudinal load reduction
在线阅读 下载PDF
Seismic performance of eccentrically-compressed steel pier under multi-directional earthquake loads 被引量:2
3
作者 Luo Wenwei Li Haifeng Cao Bao′an 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第3期771-789,共19页
In this article,the seismic performance of box-shaped steel piers embedded with energy-dissipating shells under a multi-directional seismic load is investigated.A finite element(FE)model was accurately established and... In this article,the seismic performance of box-shaped steel piers embedded with energy-dissipating shells under a multi-directional seismic load is investigated.A finite element(FE)model was accurately established and verified by the quasi-static test results.A parametric analysis of the hysteretic behaviour of a novel box-shaped steel pier under eccentric pressure was carried out on this basis.We discussed the influence of the eccentricity,axial compression ratio,thickness of embedded shell,ratio of slenderness,spacing of transverse stiffening ribs on the embedded shell,and width-to-thickness ratio of wallboard on the anti-seismic performance of a novel box-shaped steel bridge pier.The results revealed that the load carrying capacity and ductility coefficient of the specimen are substantially influenced by the eccentricity,variation in the axial compression ratio,and slenderness ratio.The specimen′s plastic energy dissipation capacity can be effectively improved by increasing the thickness of the embedded shell.The spacing of the transverse stiffening ribs only marginally affects seismic performance.In addition,the width-to-thickness ratio of the wallboard exerts a more considerable influence on the deformability of the square-section specimen.Finally,a formula for calculating the bearing capacity of the novel box-shaped steel piers under cyclic loading is proposed. 展开更多
关键词 multi-directional seismic action eccentric compression box-shaped steel pier seismic performance finite element analysis
在线阅读 下载PDF
Failure mechanisms of electronic detonators subjected to high impact loading in rock drilling and blasting 被引量:2
4
作者 Zhendong Leng Yong Fan +2 位作者 Wenbo Lu Qidong Gao Guangdong Yang 《International Journal of Coal Science & Technology》 2025年第1期214-227,共14页
In rock drilling and blasting,the misfire of electronic detonators will not only affect the rock fragmentation result but also bring serious potential safety hazards to engineering construction.An accurate and compreh... In rock drilling and blasting,the misfire of electronic detonators will not only affect the rock fragmentation result but also bring serious potential safety hazards to engineering construction.An accurate and comprehensive understanding of the failure mechanisms of electronic detonators subjected to impact loading is of great significance to the reliability design and field safety use of electronic detonators.The spatial distribution characteristics and failure modes of misfired electronic detonators under different application scenarios are statistically analysed.The results show that under high impact loads,electronic detonators will experience failure phenomena such as rupture of the fuse head,fracture of the bridge wire,falling off of the solder joint,chip module damage and insufficient initiation energy after deformation.The lack of impact resistance is the primary cause of misfire of electronic detonators.Combined with the underwater impact resistance test and the impact load test in the adjacent blasthole on site,the formulas of the impact failure probability of the electronic detonator under different stress‒strength distribution curves are deduced.The test and evaluation method of the impact resistance of electronic detonators based on stress‒strength interference theory is proposed.Furthermore,the impact failure model of electronic detonators considering the strength degradation effect under repeated random loads is established.On this basis,the failure mechanism of electronic detonators under different application environments,such as open-pit blasting and underground blasting,is revealed,which provides scientific theory and methods for the reliability analysis,design and type selection of electronic detonators in rock drilling and blasting. 展开更多
关键词 Rock blasting Electronic detonator Impact loading Stress‒strength interference theory Strength degradation effect
在线阅读 下载PDF
Shear behaviors of intermittent joints subjected to shearing cycles under constant normal stiffness conditions:Effects of loading parameters 被引量:1
5
作者 Bin Wang Yujing Jiang +1 位作者 Qiangyong Zhang Hongbin Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2695-2712,共18页
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th... A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior. 展开更多
关键词 Intermittent joint Cyclic shear loading parameter Constant normal stiffness(CNS)
在线阅读 下载PDF
Bi-directional interaction of joint shear strength in non-seismically designed corner RC beam-column connections under seismic loading 被引量:1
6
作者 Mohammad Amir Najafgholipour Negin Ahmadi rad Akanshu Sharma 《Earthquake Engineering and Engineering Vibration》 2025年第1期135-153,共19页
Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the informa... Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well. 展开更多
关键词 beam-column joints joint shear failure bidirectional loading interaction curve finite element study
在线阅读 下载PDF
Mesozoic multi-direction collision tectonic evolution of the Ordos Basin, China: Insights from the detrital zircon and apatite (U-Th)/He analyses 被引量:1
7
作者 Yin Chen Jian-guo Li +1 位作者 Lu-lu Chen Hua-lei Zhao 《China Geology》 2025年第1期141-158,共18页
The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is si... The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is significant to understand the tectonic transformation of the northern margin of the NCC.In this work,the detrital zircon and apatite(U-Th)/He chronological system were analyzed in the northern part of the OB,and have provided new evidence for the regional tectonic evolution.The(U-Th)/He chronological data states the weighted ages of 240‒235 Ma,141 Ma with the peak distribution of 244 Ma,219 Ma,173 Ma,147‒132 Ma.The thermal evolution,geochronological data,and regional unconformities have proved four stages of regional tectonic evolution for the OB and its surroundings in the Mesozoic:(1)The Late Permian-Early Triassic;(2)the Late Triassic-Early Jurassic;(3)the Late Jurassic-Early Cretaceous;(4)the Late Cretaceous-Early Paleogene.It is indicated that the multi-directional convergence from the surrounding tectonic units has controlled the Mesozoic tectonic evolution of the OB.Four-stage tectonic evolution reflected the activation or end of different plate movements and provided new time constraints for the regional tectonic evolution of the NCC in the Mesozoic. 展开更多
关键词 Zircon and Apatite(U-Th)/He Tectonic evolution Geochronology Four stages of regional tectonic Ordos Basin Oil-gas-bearing basin multi-direction collision Oil-gas exploration engineering MESOZOIC North China Craton
在线阅读 下载PDF
Experimental study on failure precursory characteristics and moisture content effect of pre-cracked rocks under graded cyclic loading and unloading 被引量:1
8
作者 Wei Zhang Dongxiao Zhang +1 位作者 Weiyao Guo Baoliang Zhang 《International Journal of Mining Science and Technology》 2025年第2期249-264,共16页
It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and ... It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces. 展开更多
关键词 Damage mechanisms Pre-cracked rocks Crack propagation Water-rock interaction Graded cyclic loading and unloading
在线阅读 下载PDF
High Fe‑Loading Single‑Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy
9
作者 Si Chen Fang Huang +5 位作者 Lijie Mao Zhimin Zhang Han Lin Qixin Yan Xiangyu Lu Jianlin Shi 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期187-203,共17页
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ... The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections. 展开更多
关键词 Nanocatalytic medicine Single-atom catalysts Reactive oxygen species(ROS) High metal loading Oxidase catalysis
在线阅读 下载PDF
Advanced Computational Modeling and Mechanical Behavior Analysis of Multi-Directional Functionally Graded Nanostructures:A Comprehensive Review
10
作者 Akash Kumar Gartia S.Chakraverty 《Computer Modeling in Engineering & Sciences》 2025年第3期2405-2455,共51页
This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functio... This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functionally graded(FG)materials such as conventional,axial,bi-directional,and tri-directional,and the material distribution models like power-law,exponential,trigonometric,polynomial functions,etc.It also discusses the application of advanced size-dependent theories like Eringen’s nonlocal elasticity,nonlocal strain gradient,modified couple stress,and consistent couple stress theories,which are essential to predict the behavior of structures at small scales.The review covers the mechanical analysis of MDFG nanostructures in nanobeams,nanopipes,nanoplates,and nanoshells and their dynamic and static responses under different loading conditions.The effect of multi-directional material gradation on stiffness,stability and vibration is discussed.Moreover,the review highlights the need for more advanced analytical,semi-analytical,and numerical methods to solve the complex vibration problems ofMDFG nanostructures.It is evident that the continued development of these methods is crucial for the design,optimization,and real-world application of MDFG nanostructures in advanced engineering fields like aerospace,biomedicine,and micro/nanoelectromechanical systems(MEMS/NEMS).This study is a reference for researchers and engineers working in the domain of MDFG nanostructures. 展开更多
关键词 Functionally graded multi-directional nano SIZE-DEPENDENT VIBRATION
在线阅读 下载PDF
A Review on Modeling Environmental Loading Effects and Their Contributions to Nonlinear Variations of Global Navigation Satellite System Coordinate Time Series 被引量:1
11
作者 Zhao Li Weiping Jiang +3 位作者 Tonie van Dam Xiaowei Zou Qusen Chen Hua Chen 《Engineering》 2025年第4期26-37,共12页
Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including at... Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050. 展开更多
关键词 Environmental loading Global navigation satellite system Nonlinear variations Time series analysis Surface mass distribution Green’s function Spherical harmonic function
在线阅读 下载PDF
A 3-Dimensional Cargo Loading Algorithm for the Conveyor-Type Loading System
12
作者 Hyeonbin Jeong Young Tae Ryu +1 位作者 Byung Duk Song Sang-Duck Lee 《Computer Modeling in Engineering & Sciences》 2025年第3期2739-2769,共31页
This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discre... This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management. 展开更多
关键词 3-dimensional loading automated loading system B2C logistics cargo loading algorithm conveyortype loading
在线阅读 下载PDF
Effect of loading rate on the mechanical response and energy evolution of skarn rock subjected to constant-amplitude cyclic loading
13
作者 WU Yun-feng WANG Yu +5 位作者 LI Chang-hong ZHOU Bao-kun LI Peng CAI Mei-feng SUN Chang-kun TIAN Zi-cheng 《Journal of Central South University》 2025年第3期1117-1140,共24页
This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain... This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies. 展开更多
关键词 cyclic loading loading rate constant amplitude deformation characteristics energy dissipation
在线阅读 下载PDF
Microstructure evolution and mechanical properties of Mg−Gd−Zn alloy with and without LPSO phase processed by multi-directional forging
14
作者 Jing-yi HUANG Yao-ling LIU +3 位作者 Yu-xiang HAN Ying-chun WAN Chu-ming LIU Zhi-yong CHEN 《Transactions of Nonferrous Metals Society of China》 2025年第4期1075-1091,共17页
The homogenized Mg−5.6Gd−0.8Zn(wt.%)alloys were treated with water cooling and furnace cooling to obtain specimens without and with the 14H long-period stacking ordered(LPSO)phase.Subsequently,multi-directional forgin... The homogenized Mg−5.6Gd−0.8Zn(wt.%)alloys were treated with water cooling and furnace cooling to obtain specimens without and with the 14H long-period stacking ordered(LPSO)phase.Subsequently,multi-directional forging(MDF)experiments were carried out.The microstructure and mechanical properties of different regions(the center,middle and edge regions)in the MDFed alloys were systematically investigated,and the effect of LPSO phase on them was discussed.The results show that the alloys in different regions undergo significant grain refinement during the MDF process.Inhomogeneous microstructures with different degrees of dynamic recrystallization(DRX)are formed,resulting in microhardness heterogeneity.The alloy with the LPSO phase has higher microstructure homogeneity,a higher degree of recrystallization,and better comprehensive mechanical properties than the alloy without the LPSO phase.The furnace-cooled alloy after 18 passes of MDF has the best comprehensive mechanical properties,with an ultimate compressive strength of 488 MPa,yield strength of 258 MPa,and fracture strain of 21.2%.DRX behavior is closely related to the LPSO phase and deformation temperature.The kinked LPSO phase can act as a potential nucleation site for DRX grains,while the fragmented LPSO phase promotes DRX nucleation through the particle-stimulated nucleation mechanism. 展开更多
关键词 Mg−Gd−Zn alloy multi-directional forging LPSO phase twinning kink dynamic recrystallization
在线阅读 下载PDF
Superplasticity of fine-grained Mg−Gd−Y−Zn−Zr alloy prepared via multi-directional forging
15
作者 Jing-qi ZHAO Ze-zheng WANG +3 位作者 Chun KE Qiang MENG Chun-xiang ZHANG Jun-ting LUO 《Transactions of Nonferrous Metals Society of China》 2025年第8期2553-2571,共19页
The superplasticity of the Mg−8.59Gd−3.85Y−1.14Zn−0.49Zr alloy was investigated before and after multi-directional forging(MDF)and the mechanisms affecting superplastic deformation were analyzed.The results indicate t... The superplasticity of the Mg−8.59Gd−3.85Y−1.14Zn−0.49Zr alloy was investigated before and after multi-directional forging(MDF)and the mechanisms affecting superplastic deformation were analyzed.The results indicate that after MDF at a temperature of 350℃and strain rates of 0.1 and 0.01 s^(−1)(1-MDFed and 2-MDFed),the superplasticity of the alloy can be significantly improved.The elongations of the MDFed alloys exceed 400%under the strain rate of 6.06×10^(−4)s^(−1)and temperatures of 350,375,and 400℃,and reach the maximum values of 766%(1-MDFed)and 693%(2-MDFed)at 375℃.The grain boundary sliding of the MDFed alloy is sufficient,and the energy barrier of deformation decreases.Theβphase limits the grain growth and promotes dynamic recrystallization,maintaining the stability of the fine-grained structure during superplastic deformation.Several Y-rich phases nucleate in the high-strain region(i.e.,the final fracture region)at high temperatures,accelerating the fracture of the specimen. 展开更多
关键词 Mg−Gd−Y−Zn−Zr SUPERPLASTICITY multi-directional forging fracture morphology Y-rich phase
在线阅读 下载PDF
Damage evolution and failure behavior of coal-rock combination subjected to different cyclic loading paths and loading rates: Insights from energy-driven effects
16
作者 WANG Kai ZUO Xiao-huan +4 位作者 DU Feng SUN Jia-zhi JU Yang SHU Long-yong CAI Yong-bo 《Journal of Central South University》 2025年第9期3447-3469,共23页
In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior... In this study,a uniaxial cyclic compression test is conducted on coal-rock composite structures under two cyclic loads using MTSE45.104 testing apparatus to investigate the macro-mesoscopic deformation,damage behavior,and energy evolution characteristics of these structures under different cyclic stress disturbances.Three loading and unloading rates(LURs)are tested to examine the damage behaviors and energy-driven characteristics of the composites.The findings reveal that the energy-driven behavior,mechanical properties,and macro-micro degradation characteristics of the composites are significantly influenced by the loading rate.Under the gradual cyclic loading and unloading(CLU)path with a constant lower limit(path I)and the CLU path with variable upper and lower boundaries(path II),an increase in LURs from 0.05 to 0.15 mm/min reduces the average loading time by 32.39%and 48.60%,respectively.Consequently,the total number of cracks in the samples increases by 1.66-fold for path I and 1.41-fold for path II.As LURs further increase,the energy storage limit of samples expands,leading to a higher proportion of transmatrix and shear cracks.Under both cyclic loading conditions,a broader cyclic stress range promotes energy dissipation and the formation of internal fractures.Notably,at higher loading rates,cracks tend to propagate along primary weak surfaces,leading to an increased incidence of intermatrix fractures.This behavior indicates a microscopic feature of the failure mechanisms in composite structures.These results provide a theoretical basis for elucidating the damage and failure characteristics of coal-rock composite structures under cyclic stress disturbances. 展开更多
关键词 coal-rock composite samples cyclic loading loading and unloading rates RA-AF correlation macro-micro damage features failure behavior
在线阅读 下载PDF
Strontium–Alix interaction enhances exosomal miRNA selectively loading in synovial MSCs for temporomandibular joint osteoarthritis treatment
17
作者 Wenxiu Yuan Jiaqi Liu +10 位作者 Zhenzhen Zhang Chengxinyue Ye Xueman Zhou Yating Yi Yange Wu Yijun Li Qinlanhui Zhang Xin Xiong Hengyi Xiao Jin Liu Jun Wang 《International Journal of Oral Science》 2025年第1期66-81,共16页
The ambiguity of etiology makes temporomandibular joint osteoarthritis(TMJOA)“difficult-to-treat”.Emerging evidence underscores the therapeutic promise of exosomes in osteoarthritis management.Nonetheless,challenges... The ambiguity of etiology makes temporomandibular joint osteoarthritis(TMJOA)“difficult-to-treat”.Emerging evidence underscores the therapeutic promise of exosomes in osteoarthritis management.Nonetheless,challenges such as low yields and insignificant efficacy of current exosome therapies necessitate significant advances.Addressing lower strontium(Sr)levels in arthritic synovial microenvironment,we studied the effect of Sr element on exosomes and miRNA selectively loading in synovial mesenchymal stem cells(SMSCs).Here,we developed an optimized system that boosts the yield of SMSC-derived exosomes(SMSCEXOs)and improves their miRNA profiles with an elevated proportion of beneficial miRNAs,while reducing harmful ones by pretreating SMSCs with Sr.Compared to untreated SMSC-EXOs,Sr-pretreated SMSC-derived exosomes(Sr-SMSC-EXOs)demonstrated superior therapeutic efficacy by mitigating chondrocyte ferroptosis and reducing osteoclast-mediated joint pain in TMJOA.Our results illustrate Alix’s crucial role in Sr-triggered miRNA loading,identifying miR-143-3p as a key anti-TMJOA exosomal component.Interestingly,this system is specifically oriented towards synovium-derived stem cells.The insight into trace elementdriven,site-specific miRNA selectively loading in SMSC-EXOs proposes a promising therapeutic enhancement strategy for TMJOA. 展开更多
关键词 OSTEOARTHRITIS ELEVATED loading
暂未订购
Research on the refinement algorithm of surface loading deformation based on Green's function
18
作者 Chenfeng Li Tengxu Zhang +3 位作者 Peibing Yang Lin He Yu Xia Wei Luan 《Geodesy and Geodynamics》 2025年第2期230-239,共10页
Surface deformation calculations due to environmental loading typically rely on the Preliminary Reference Earth Model(PREM),which assumes a homogeneous and isotropic Earth structure,leading to noticeable errors.To enh... Surface deformation calculations due to environmental loading typically rely on the Preliminary Reference Earth Model(PREM),which assumes a homogeneous and isotropic Earth structure,leading to noticeable errors.To enhance accuracy,the high-precision crustal model CRUST 1.0 is used to refine calculations of regional surface deformation caused by hydrological and non-tidal atmospheric loading.The improved model is applied to 27 Global Navigation Satellite System(GNSS)reference stations in the first phase of the Crustal Movement Observation Network of China(CMONOC),considering their geographical locations.Green's functions are employed to compute surface deformation at each site.Results indicate relative discrepancies of 11.78%and 14.14%for non-tidal atmospheric and hydrological loading compared to PREM,with vertical deformation differences reaching an average of 18.95%.Additionally,the distinct spatial distribution characteristics of the relative differences in each direction indicate that the improved RPREM model is more responsive to the mass variations derived from Gravity Recovery and Climate Experiment(GRACE).The results suggest that the improved PRREM model demonstrates higher sensitivity to loading variations than the PREM model.Utilizing the enhanced method of calculating surface deformation through the utilization of Green's function at the site could effectively reduce the calculation error caused by regional structure,leading to enhanced uniformity and isotropy of PREM. 展开更多
关键词 loading deformation GNSS Green's function PREM GRACE
原文传递
Managing lower extremity loading in distance running by altering sagittal plane trunk leaning
19
作者 Luca Braun Patrick Mai +6 位作者 Markus Hipper Yannick Denis Janina Helwig Bastian Anedda Burkay Utku Dominic Gehring Steffen Willwacher 《Journal of Sport and Health Science》 2025年第2期35-45,共11页
Background:Trunk lean angle is an underrepre sented biomechanical variable for modulating and redistributing lower extremity joint loading and potentially reducing the risk of running-related overuse injuries.The purp... Background:Trunk lean angle is an underrepre sented biomechanical variable for modulating and redistributing lower extremity joint loading and potentially reducing the risk of running-related overuse injuries.The purpose of this study was to systematically alter the trunk lean angle in distance running using an auditory real-time feedback approach and to derive dose-response relationships between sagittal plane trunk lean angle and lower extremity(cumulative)joint loading to guide overuse load management in clinical practice.Methods:Thirty recreational runners(15 males and 15 females)ran at a constant speed of 2.5 m/s at 5 systematically varied trunk lean conditions on a force-instrumented treadmill while kinematic and kinetic data were captured.Results:A change in trunk lean angle from-2°(extension)to 28°(flexion)resulted in a systematic increase in stance phase angular impulse,cumulative impulse,and peak moment at the hip joint in the sagittal and transversal plane.In contrast,a systematic decrease in these parameters at the knee j oint in the sagittal plane and the hip joint in the frontal plane was found(p<0.001).Linear fitting revealed that with every degree of anterior trunk leaning,the cumulative hip joint extension loading increases by 3.26 Nm·s/kg/1000 m,while simultaneously decreasing knee joint extension loading by 1.08 Nm·s/kg/1000 m.Conclusion:Trunk leaning can reduce knee joint loading and hip joint abduction loading,at the cost of hip joint loading in the sagittal and transversal planes during distance running.Modulating lower extremity joint loading by altering trunk lean angle is an effective strategy to redistribute joint load between/within the knee and hip joints.When implementing anterior trunk leaning in clinical practice,the increased demands on the hip musculature,dynamic stability,and the potential trade-off with running economy should be considered. 展开更多
关键词 Cumulative loading Overuse injuries Trunk orientation Locomotion
在线阅读 下载PDF
High-loading inducing Fe-dimer on carbon nitride promotes the generation of·O_(2)^(-)
20
作者 Xinran Zheng Yuchao Wang +10 位作者 Jianping Guan Xu Liu Yu Bai Yingbi Chen Peiyao Yang Jing Zhang Houzheng Ou Meng Wang Yu Xiong Haozhi Wang Yongpeng Lei 《Advanced Powder Materials》 2025年第5期1-9,共9页
The research on metal dimer clusters is of great importance,owing to the potential in modulating the adsorption behavior towards reaction intermediates.Here,we develop a loading heightening strategy to obtain a 32.5wt... The research on metal dimer clusters is of great importance,owing to the potential in modulating the adsorption behavior towards reaction intermediates.Here,we develop a loading heightening strategy to obtain a 32.5wt%Fe-dimer catalyst(Fe-32.5).The co-anchoring of two Fe atoms in a single triazine ring of carbon nitride with an atomic spacing of∼0.23nm is proved.Fe atoms occupy the pores of the triazine ring in the lower iron content sample(Fe-12.9 and Fe-17.1).However,with the increase of iron content to 32.5wt%,two Fe atoms simultaneously occupy one triazine ring.For Fe-32.5,besides the main peak located at∼1.5Åcorresponding to the Fe–N interaction,a peak attributed to Fe–Fe bonding is observed at∼2.2Åin Fourier-transformed k3-weithted extended X-ray absorption fine structure.Density functional theoretical calculations reveal that Fe-dimer in Fe-32.5 induces a charge redistribution compared with that in Fe-12.9 and Fe-17.1.H_(2)O^(∗)is adsorbed on O^(∗)via hydrogen bonding in Fe-12.9 and Fe-17.1.However,H_(2)O^(∗)and O^(∗)in Fe-32.5 are adsorbed on Fe–Fe dimer,resulting in a decrease in the total energy of the reaction process.For the two former,O_(2)^(-)∗adsorbs on individual Fe atoms.Fe-dimer in Fe-32.5 adsorbs O_(2)^(-)∗in the form of bridge bonds,which facilitates the·O_(2)^(-)release.Furthermore,an enhanced affinity for the substrate 3,3′,5,5′-tetramethylbenzidine and higher peroxidase-like activity were displayed.This work provides an effective mean to synthesize metal dimer clusters through high loading. 展开更多
关键词 Single atom catalysts High loading DIMER Adsorption strength INTERMEDIATE
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部