期刊文献+
共找到11,072篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing strength and ductility in back extruded WE71 magnesium alloy cylindrical parts by introduction of multi-direction forging process 被引量:14
1
作者 Dehao Bu Ting Li +7 位作者 Xiaolei Han Zhiwei Du Jiawei Yuan Kui Zhang Yongjun Li Yonggang Peng Zheng Pang Chunlei Zhao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第3期462-470,I0006,共10页
Magnesium cylindrical parts have relatively poor mechanical properties and distinct anisotropy of microstructure,which hinder their application as structural components.To improve the performance of WE71 cylindrical p... Magnesium cylindrical parts have relatively poor mechanical properties and distinct anisotropy of microstructure,which hinder their application as structural components.To improve the performance of WE71 cylindrical parts,multi-direction forging(MDF)was introduced before back extrusion,and the microstructure and mechanical properties were investigated.Results of microstructure show that the grain size in the outer of the cylindrical bottom is refined from 30.1 to 27.7μm,the micro structure is more uniform and the dislocation density is higher.The bimodal grain structure is formed in the outer of the cylindrical wall,which is ascribed to the formation of MgsRE phases along grain boundaries.These phases result in the Zener pinning effect on grain boundaries and the reduction of DRX volume fraction.The texture type of the cylindrical bottom is<0001>‖ED and the cylindrical wall is<1010>‖ED,and the maximum pole intensity is 1.986 and 1.664,respectively.Results of the tensile test at room temperature show that combined improved strength and ductility of the cylindrical part is attained after introducing the MDF process.The ultimate tensile strength(UTS),yield strength(YS)and elongation are279 MPa,185 MPa and 12%at the bottom and 299 MPa,212 MPa and 20%at the wall. 展开更多
关键词 WE71 magnesium alloy multi-direction forging Backward extrusion Bimodal grain structure Rare earths
原文传递
Effect of pre-induced twinning on microstructure and tensile ductility in GW92K magnesium alloy during multi-direction forging at decreasing temperature 被引量:9
2
作者 S.Q.Li W.N.Tang +1 位作者 R.S.Chen W.Ke 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第4期287-292,共6页
Effect of pre-induced twinning on the microstructure evolution and mechanical properties of extruded Mg-9.26Gd-2.08Y-0.36Zr(GW92K)alloy have been investigated during multi-direction forging with large strains at decre... Effect of pre-induced twinning on the microstructure evolution and mechanical properties of extruded Mg-9.26Gd-2.08Y-0.36Zr(GW92K)alloy have been investigated during multi-direction forging with large strains at decreasing temperature from 400℃ to 300℃.The results showed that,whether there pre-induced twinning existing in the initial microstructure by pre-deformation or not,a mixed microstructure of residual coarse grains and notably refined grains formed under both conditions,combing with some residual coarse grains with less deformation inside grains and lots of dispersed nano-precipitates distributed along refined grain boundaries.However,a significant improvement with the tensile ductility was obtained by the pre-induced twinning in the former alloy.It was suggested that,the pre-induced twinning largely contributed to the grain refinement and lead to an increase in the ratio of fine grain structure which would be responsible for the better properties.Furthermore,during subsequent forging deformation in the pre-deformed sample,the grain refinement mechanism by gradual grain orientation rotation around the surface section in residual coarse-grains was a little different from that by the macro-shear deformation in the as-extruded condition. 展开更多
关键词 Magnesium alloy Pre-induced twinning multi-directional forging Refined-grain microstructure Tensile ductility
在线阅读 下载PDF
Microstructure evolution and mechanical properties of Mg−Gd−Zn alloy with and without LPSO phase processed by multi-directional forging
3
作者 Jing-yi HUANG Yao-ling LIU +3 位作者 Yu-xiang HAN Ying-chun WAN Chu-ming LIU Zhi-yong CHEN 《Transactions of Nonferrous Metals Society of China》 2025年第4期1075-1091,共17页
The homogenized Mg−5.6Gd−0.8Zn(wt.%)alloys were treated with water cooling and furnace cooling to obtain specimens without and with the 14H long-period stacking ordered(LPSO)phase.Subsequently,multi-directional forgin... The homogenized Mg−5.6Gd−0.8Zn(wt.%)alloys were treated with water cooling and furnace cooling to obtain specimens without and with the 14H long-period stacking ordered(LPSO)phase.Subsequently,multi-directional forging(MDF)experiments were carried out.The microstructure and mechanical properties of different regions(the center,middle and edge regions)in the MDFed alloys were systematically investigated,and the effect of LPSO phase on them was discussed.The results show that the alloys in different regions undergo significant grain refinement during the MDF process.Inhomogeneous microstructures with different degrees of dynamic recrystallization(DRX)are formed,resulting in microhardness heterogeneity.The alloy with the LPSO phase has higher microstructure homogeneity,a higher degree of recrystallization,and better comprehensive mechanical properties than the alloy without the LPSO phase.The furnace-cooled alloy after 18 passes of MDF has the best comprehensive mechanical properties,with an ultimate compressive strength of 488 MPa,yield strength of 258 MPa,and fracture strain of 21.2%.DRX behavior is closely related to the LPSO phase and deformation temperature.The kinked LPSO phase can act as a potential nucleation site for DRX grains,while the fragmented LPSO phase promotes DRX nucleation through the particle-stimulated nucleation mechanism. 展开更多
关键词 Mg−Gd−Zn alloy multi-directional forging LPSO phase twinning kink dynamic recrystallization
在线阅读 下载PDF
Superplasticity of fine-grained Mg−Gd−Y−Zn−Zr alloy prepared via multi-directional forging
4
作者 Jing-qi ZHAO Ze-zheng WANG +3 位作者 Chun KE Qiang MENG Chun-xiang ZHANG Jun-ting LUO 《Transactions of Nonferrous Metals Society of China》 2025年第8期2553-2571,共19页
The superplasticity of the Mg−8.59Gd−3.85Y−1.14Zn−0.49Zr alloy was investigated before and after multi-directional forging(MDF)and the mechanisms affecting superplastic deformation were analyzed.The results indicate t... The superplasticity of the Mg−8.59Gd−3.85Y−1.14Zn−0.49Zr alloy was investigated before and after multi-directional forging(MDF)and the mechanisms affecting superplastic deformation were analyzed.The results indicate that after MDF at a temperature of 350℃and strain rates of 0.1 and 0.01 s^(−1)(1-MDFed and 2-MDFed),the superplasticity of the alloy can be significantly improved.The elongations of the MDFed alloys exceed 400%under the strain rate of 6.06×10^(−4)s^(−1)and temperatures of 350,375,and 400℃,and reach the maximum values of 766%(1-MDFed)and 693%(2-MDFed)at 375℃.The grain boundary sliding of the MDFed alloy is sufficient,and the energy barrier of deformation decreases.Theβphase limits the grain growth and promotes dynamic recrystallization,maintaining the stability of the fine-grained structure during superplastic deformation.Several Y-rich phases nucleate in the high-strain region(i.e.,the final fracture region)at high temperatures,accelerating the fracture of the specimen. 展开更多
关键词 Mg−Gd−Y−Zn−Zr SUPERPLASTICITY multi-directional forging fracture morphology Y-rich phase
在线阅读 下载PDF
Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature 被引量:7
5
作者 朱庆丰 李磊 +3 位作者 班春燕 赵志浩 左玉波 崔建忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1301-1306,共6页
The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinemen... The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24. 展开更多
关键词 multi-directional forging high purity aluminum structure uniformity grain refinement
在线阅读 下载PDF
Microstructure,Texture,Mechanical Properties,and Corrosion Behavior of Biodegradable Zn‑0.2Mg Alloy Processed by Multi‑Directional Forging
6
作者 Nafiseh Mollaei Seyed Mahmood Fatemi +2 位作者 Mohammad Reza Aboutalebi Seyed Hossein Razavi Wiktor Bednarczyk 《Acta Metallurgica Sinica(English Letters)》 2025年第3期507-525,共19页
This study systematically investigated the microstructure,mechanical properties,and corrosion behavior of an extruded Zn-0.2Mg alloy processed by multi-directional forging(MDF)at 100℃.The mean grain size was remarkab... This study systematically investigated the microstructure,mechanical properties,and corrosion behavior of an extruded Zn-0.2Mg alloy processed by multi-directional forging(MDF)at 100℃.The mean grain size was remarkably decreased from 17.2±0.5µm to 1.9±0.3µm,and 84.4%of the microstructure was occupied by grains of below 1µm in size after applying three MDF passes.Electron backscattered difraction examinations revealed that continuous dynamic recrystallization,progressive lattice rotation,and particle-stimulated nucleation mechanisms were recognized as contributing to microstructural evolution.Furthermore,transmission electron microscopy results showed that nanoparticles of Mg/Zn dynamically formed under high strain MDF,while the initial extrusion fber texture was altered to be<0001>parallel to the fnal forging axis.A synergistic efect of grain refnement,texture evolution,second-phase precipitates,and dislocation strengthening resulted in an increased ultimate tensile strength of 232±5 MPa after three MDF passes.However,this was accompanied by a reduction in the elongation(8±2.1%).Additionally,a high corrosion rate of 0.59 mm/year was measured for the experimental alloy fabricated by 3 MDF passes.In agreement with the latter,electrochemical impedance spectroscopy results indicated that the grain refnement improved the passivation kinetics of the oxide layer. 展开更多
关键词 Zinc-based bioalloy multi-directional forging(MDF) MICROSTRUCTURE RECRYSTALLIZATION Mechanical properties Corrosion properties
原文传递
Mesozoic multi-direction collision tectonic evolution of the Ordos Basin, China: Insights from the detrital zircon and apatite (U-Th)/He analyses 被引量:1
7
作者 Yin Chen Jian-guo Li +1 位作者 Lu-lu Chen Hua-lei Zhao 《China Geology》 2025年第1期141-158,共18页
The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is si... The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is significant to understand the tectonic transformation of the northern margin of the NCC.In this work,the detrital zircon and apatite(U-Th)/He chronological system were analyzed in the northern part of the OB,and have provided new evidence for the regional tectonic evolution.The(U-Th)/He chronological data states the weighted ages of 240‒235 Ma,141 Ma with the peak distribution of 244 Ma,219 Ma,173 Ma,147‒132 Ma.The thermal evolution,geochronological data,and regional unconformities have proved four stages of regional tectonic evolution for the OB and its surroundings in the Mesozoic:(1)The Late Permian-Early Triassic;(2)the Late Triassic-Early Jurassic;(3)the Late Jurassic-Early Cretaceous;(4)the Late Cretaceous-Early Paleogene.It is indicated that the multi-directional convergence from the surrounding tectonic units has controlled the Mesozoic tectonic evolution of the OB.Four-stage tectonic evolution reflected the activation or end of different plate movements and provided new time constraints for the regional tectonic evolution of the NCC in the Mesozoic. 展开更多
关键词 Zircon and Apatite(U-Th)/He Tectonic evolution Geochronology Four stages of regional tectonic Ordos Basin Oil-gas-bearing basin multi-direction collision Oil-gas exploration engineering MESOZOIC North China Craton
在线阅读 下载PDF
Advanced Computational Modeling and Mechanical Behavior Analysis of Multi-Directional Functionally Graded Nanostructures:A Comprehensive Review
8
作者 Akash Kumar Gartia S.Chakraverty 《Computer Modeling in Engineering & Sciences》 2025年第3期2405-2455,共51页
This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functio... This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functionally graded(FG)materials such as conventional,axial,bi-directional,and tri-directional,and the material distribution models like power-law,exponential,trigonometric,polynomial functions,etc.It also discusses the application of advanced size-dependent theories like Eringen’s nonlocal elasticity,nonlocal strain gradient,modified couple stress,and consistent couple stress theories,which are essential to predict the behavior of structures at small scales.The review covers the mechanical analysis of MDFG nanostructures in nanobeams,nanopipes,nanoplates,and nanoshells and their dynamic and static responses under different loading conditions.The effect of multi-directional material gradation on stiffness,stability and vibration is discussed.Moreover,the review highlights the need for more advanced analytical,semi-analytical,and numerical methods to solve the complex vibration problems ofMDFG nanostructures.It is evident that the continued development of these methods is crucial for the design,optimization,and real-world application of MDFG nanostructures in advanced engineering fields like aerospace,biomedicine,and micro/nanoelectromechanical systems(MEMS/NEMS).This study is a reference for researchers and engineers working in the domain of MDFG nanostructures. 展开更多
关键词 Functionally graded multi-directional nano SIZE-DEPENDENT VIBRATION
在线阅读 下载PDF
Forming mechanism and performance analysis of Ti–6Al–4V alloy under hammer forging and press forging
9
作者 Hui-hui Xu Xiu-rong Fang +1 位作者 Xin-le Liu Fu-qiang Yang 《Journal of Iron and Steel Research International》 2025年第10期3426-3439,共14页
The differences in damage values,residual stresses,microstructure and mechanical properties of Ti–6Al–4V alloy under hammer forging and press forging were explored through physical experiments and numerical simulati... The differences in damage values,residual stresses,microstructure and mechanical properties of Ti–6Al–4V alloy under hammer forging and press forging were explored through physical experiments and numerical simulations.The results showed that the temperature field and equivalent strain field of forgings under the hammer forging process were more uniformly distributed,resulting in smaller surface cracks and better residual stress distribution.The impact dynamic loading of hammer forging leads to forgings with higher dislocation densities,while the stabilized strain rate of press forging results in forgings exhibiting finer grain sizes.In this context,the yield strength enhancement of forgings by both processes was nearly identical,while the forgings demonstrated more excellent elongation under the hammer forging process.Additionally,increasing the number of blows in the hammer forging process or enhancing the loading rate in the press forging process can optimize the residual stress distribution of the forgings while simultaneously promoting dislocation multiplication and grain refinement. 展开更多
关键词 Hammer forging Press forging Ti-6Al-4V alloy MICROSTRUCTURE Strengthening mechanism
原文传递
Digital model for rapid prediction and autonomous control of die forging force for aluminum alloy aviation components
10
作者 Hao Hu Fan Zhao +5 位作者 Daoxiang Wu Zhengan Wang Zhilei Wang Zhihao Zhang Weidong Li Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2189-2199,共11页
Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study... Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study,a machine-learning-assisted method for di-gital modeling of the forging force and autonomous control in response to forging parameter disturbances was proposed.First,finite ele-ment simulations of the forging processes were conducted under varying friction factors,die temperatures,billet temperatures,and for-ging velocities,and the sample data,including process parameters and forging force under different forging strokes,were gathered.Pre-diction models for the forging force were established using the support vector regression algorithm.The prediction error of F_(f),that is,the forging force required to fill the die cavity fully,was as low as 4.1%.To further improve the prediction accuracy of the model for the ac-tual F_(f),two rounds of iterative forging experiments were conducted using the Bayesian optimization algorithm,and the prediction error of F_(f) in the forging experiments was reduced from 6.0%to 1.5%.Finally,the prediction model of F_(f) combined with a genetic algorithm was used to establish an autonomous optimization strategy for the forging velocity at each stage of the forging stroke,when the billet and die temperatures were disturbed,which realized the autonomous control in response to disturbances.In cases of−20 or−40℃ reductions in the die and billet temperatures,forging experiments conducted with the autonomous optimization strategy maintained the measured F_(f) around the target value of 180 t,with the relative error ranging from−1.3%to+3.1%.This work provides a reference for the study of di-gital modeling and autonomous optimization control of quality factors in the forging process. 展开更多
关键词 aluminum alloy forging force prediction model machine learning intelligent control
在线阅读 下载PDF
Microstructure and mechanical properties of ZK61 magnesium alloy thin-walled cylindrical component processed by two-step forging
11
作者 Fang Chai Jianqiang Feng +6 位作者 Xinghui Han Wuhao Zhuang Yizhe Chen Zhili Hu Xuan Hu Fangyan Zheng Lin Hua 《Journal of Magnesium and Alloys》 2025年第5期2416-2432,共17页
Magnesium alloy thin-walled cylindrical components with the advantages of high specific stiffness and strength present broad prospect for the lightweight of aerospace components.However,poor formability resulting from... Magnesium alloy thin-walled cylindrical components with the advantages of high specific stiffness and strength present broad prospect for the lightweight of aerospace components.However,poor formability resulting from the hexagonal close-packed crystal structure in magnesium alloy puts forwards a great challenge for thin-walled cylindrical components fabrication,especially for extreme structure with the thicknesschanging web and the high thin-wall.In this research,an ZK61 magnesium alloy thin-walled cylindrical component was successfully fabricated by two-step forging,i.e.,the pre-forging and final-forging is mainly used for wed and thin-wall formation,respectively.Microstructure and mechanical properties at the core,middle and margin of the web and the thin-wall of the pre-forged and final-forged components are studied in detail.Due to the large strain-effectiveness and metal flow along the radial direction(RD),the grains of the web are all elongated along RD for the pre-forged component,where an increasingly elongated trend is found from the core to the margin of the wed.A relatively low recrystallized degree occurs during pre-forging,and the web at different positions are all with prismatic and pyramid textures.During finalforging,the microstructures of the web and the thin-wall are almost equiaxed due to the remarkable occurrence of dynamic recrystallization.Similarity,except for few basal texture of the thin-wall,only prismatic and pyramid textures are found for the final-forged component.Compared with the initial billet,an obviously improved mechanical isotropy is achieved during pre-forging,which is well-maintained during final-forging. 展开更多
关键词 Magnesium alloy Thin-walled cylindrical component Two-step forging Microstructure Mechanical properties
在线阅读 下载PDF
Effect of tempering temperature on microstructure and mechanical properties of flange forgings for high-pressure hydrogen storage vessels
12
作者 Xin-jun Sun Kang-feng Zhu +5 位作者 Hai-dong Jia Bo Zhang Ba Li Wan-bo Dou Xiao-kai Liang Cai-fu Yang 《Journal of Iron and Steel Research International》 2025年第9期2893-2906,共14页
The mechanical properties,microstructure and second phase precipitation behavior of flange forgings for high-pressure hydrogen storage vessels at different tempering temperatures(620–700℃)were studied.The results sh... The mechanical properties,microstructure and second phase precipitation behavior of flange forgings for high-pressure hydrogen storage vessels at different tempering temperatures(620–700℃)were studied.The results showed that when tempered at 620–680°C,the main microstructure of the test steel was tempered sorbite,and the main microstructure of tempered steel changed to martensite at 700℃.At 700℃,the dislocation density increased and some retained austenite existed.With the tempering temperature increasing,the yield strength showed a decreasing trend,the formation of fresh martensite made the tensile strength first decrease and then increase slightly,the impact energy at−40℃increased first and then decreased,and the impact energy at 660℃had the maximum value.The precipitates of MC type were mainly(Mo,V,Ti)C.The test steel had excellent strength and toughness matching at 660℃tempering,the tensile strength at different cross section locations was above 750 MPa,the impact energy was above 200 J at−40℃,and the relative percentage reduction of area(ZH2/ZN2)was above 75%at hydrogen environment of 6.3 MPa. 展开更多
关键词 forging Hydrogen storage pressure vessel Tempering temperature MICROSTRUCTURE Mechanical property
原文传递
Cryogenic forging effects and mechanisms on surface coarse grain microstructure in H-shaped 7050 aluminum forgings
13
作者 ZHAO Zi-han YI You-ping +2 位作者 HU Jian-liang HUANG Shi-quan HE Hai-lin 《Journal of Central South University》 2025年第6期2009-2021,共13页
This study investigates the differences in microstructural control between cryogenic forging combined with pre-deformation(PCF)and traditional thermal forging(TTF)for 7050 aluminum forgings intended for aerospace appl... This study investigates the differences in microstructural control between cryogenic forging combined with pre-deformation(PCF)and traditional thermal forging(TTF)for 7050 aluminum forgings intended for aerospace applications.The PCF process,utilizing cryogenic deformation,significantly refines the coarse grains at the surface of the forgings,resulting in a finer and more uniform microstructure,thereby effectively addressing the issue of surface coarse grains associated with traditional methods.The findings indicate that the PCF process can accumulate higher stored energy,facilitating static recrystallization(SRX)during subsequent heat treatment and enhancing the microstructural uniformity.Utilizing various analytical techniques,including optical microscopy(OM),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM).This study reveals the superiority of the PCF process in terms of strain accumulation,dislocation density,and grain refinement.In conclusion,this method offers advantages in enhancing the performance and microstructural uniformity of 7050 aluminum forgings,presenting new opportunities for applications in the aluminum forging industry. 展开更多
关键词 7050 aluminum alloy cryogenic forging coarse grains dislocation density stored energy
在线阅读 下载PDF
International AI standards:Forging trust and fueling innovation
14
作者 Sung Hwan Cho 《China Standardization》 2025年第5期20-21,共2页
Today,I want to share how international standards can forge trust and fuel innovation,laying the foundation for a future where AI benefits everyone,everywhere.First,AI standards,developed jointly by ISO and IEC-the In... Today,I want to share how international standards can forge trust and fuel innovation,laying the foundation for a future where AI benefits everyone,everywhere.First,AI standards,developed jointly by ISO and IEC-the International Electrotechnical Commission-help build global trust and enable responsible innovation by bringing clarity and coherence to an ever-changing AI landscape.As developments in AI continue to emerge at speed,regulation is struggling to keep up and the proliferation of competing standards has created confusion rather than clarity.ISO and our partner IEC are addressing this challenge through the work of our expert committee on AI,SC 42,which takes a holistic,cohesive approach to AI standardization. 展开更多
关键词 international standards build global trust ISO IEC responsible innovation clarity coherence AI standardization forge trust
原文传递
Microstructural optimization and strengthening mechanisms of in-situ TiB_(2)/Al–Cu composite after multidirectional forging for six passes
15
作者 Sen Yang Zhiren Sun +4 位作者 Zipeng Wang Shuhui Zhao Kaikun Wang Dun Li Xiaokai Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1703-1718,共16页
In-situ TiB_(2)/Al–Cu composite was processed by multidirectional forging(MDF)for six passes.The microstructure evolution of the forged workpiece was examined across various regions.The mechanical properties of the a... In-situ TiB_(2)/Al–Cu composite was processed by multidirectional forging(MDF)for six passes.The microstructure evolution of the forged workpiece was examined across various regions.The mechanical properties of the as-cast and MDFed composites were compared,and their strengthening mechanisms were analyzed.Results indicate that the grain refinement achieved through the MDF process is mainly due to the subdivision of the original grains through mechanical geometric fragmentation and the occurrence of dynamic recrystallization(DRX).DRX grains are formed through discontinuous DRX,continuous DRX,and recrystallization induced by particle-stimulated nucleation.A rise in accumulated equivalent strain(Σ?ε)results in finerα-Al grains and a more uniform distribution of TiB_(2)particles,which enhance the Vickers hardness of the composite.In addition,the tensile properties of the MDFed composite significantly improve compared with those of the as-cast composites,with ultimate tensile strength and yield strength increasing by 51.2%and 54%,respectively.This enhancement is primarily due to grain refinement strengthening and dislocation strengthening achieved by the MDF process. 展开更多
关键词 in-situ TiB_(2)/Al-Cu composite multidirectional forging grain refinement dynamic recrystallization tensile properties
在线阅读 下载PDF
Effect of cross-section change on microstructure and properties of quasi β forging of Ti-55511 alloy large-scale components
16
作者 Heng-jun LUO Hao DENG +6 位作者 Wu-hua YUAN Wei XIANG Chang-min LI Wei-dong YIN Hui YIN Zou-yuan XU Sheng CAO 《Transactions of Nonferrous Metals Society of China》 2025年第9期2935-2953,共19页
The microstructure and mechanical properties of the Ti-5Al-5Mo-5V-1Cr-1Fe(Ti-55511)alloy under different strains were investigated through the design of step-shaped die forging.The results indicate that continuous dyn... The microstructure and mechanical properties of the Ti-5Al-5Mo-5V-1Cr-1Fe(Ti-55511)alloy under different strains were investigated through the design of step-shaped die forging.The results indicate that continuous dynamic recrystallization(CDRX)and discontinuous dynamic recrystallization(DDRX)occur in the high strain region.The orientation of the grains produced by CDRX is random and does not weaken the fiber texture.<100>-oriented grains expand gradually with increasing strain,thereby enhancing the strength of{100}texture.Significant anisotropic mechanical properties are observed in the large strain region and analyzed through in-situ tensile experiments.When the loading direction is parallel to the longitudinal(L)direction,strain concentration is observed near the dynamically recrystallized(DRXed)grains and inside grains oriented along<100>,leading to crack initiation.Furthermore,the small angle between the loading direction and the c-axis hinders the activation of prismatic and basal slip,thereby enhancing the strength.When the loading direction is parallel to the short transverse(ST)direction,cracks are initiated not only within grains oriented along<100>,but also at the grain boundaries.Regarding impact toughness,the elongatedβgrains in the L direction enhance the resistance to crack propagation. 展开更多
关键词 Ti-5Al-5Mo-5V-1Cr-1Fe alloy step-shaped die forgings strain distribution deformation mechanism mechanical properties
在线阅读 下载PDF
Ductility enhancement of EW75 alloy by multi-directional forging 被引量:7
17
作者 M.Hong D.Wu +1 位作者 R.S.Chen X.H.Du 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第4期317-324,共8页
In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systemati... In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systematically.The results show that after the solutionized sample was multi-forged at 500℃,its grain size can be refined from 292 um to 58 um.As the forging temperature decreased,fine particles precipitated in the matrix.The volume fraction of the particles increased with the forging temperature decreasing,so the nucleation and growth of crystallization were strongly restricted.There was no recrystallization as the forging temperature fell to 410℃,and the severe deformed grains distributed as streamlines perpendicular to the final compression axis.The texture intensity decreased with increasing forging passes.The sample with best ductility was obtained after compressed at 470℃,with an elongation to failure of 21%at room temperature,which is increased by 200%,in comparison with that of the samples in solutionized condition.EBSD results revealed that the mean grain size was 15 um.Refined grains as well as the weakened texture were the key factors to its high ductility. 展开更多
关键词 Mg alloys DUCTILITY multi-directional forging DRX PRECIPITATES
在线阅读 下载PDF
Microstructure,texture evolution and yield strength symmetry improvement of as-extruded ZK60 Mg alloy via multi-directional impact forging 被引量:7
18
作者 Chao Cui Wencong Zhang +3 位作者 Wenzhen Chen Jian He Xuemin Chen Jiabin Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2745-2760,共16页
Multi-direction impact forging(MDIF)was applied to the as-extruded ZK60 Mg alloy,and the microstructure,texture evolution and yield strength symmetry were investigated in the current study.The results showed that the ... Multi-direction impact forging(MDIF)was applied to the as-extruded ZK60 Mg alloy,and the microstructure,texture evolution and yield strength symmetry were investigated in the current study.The results showed that the average grain size of forged piece was greatly refined to 5.3μm after 120 forging passes,which was ascribed to the segmenting effect of{10–12}twins and the subsequent multiple rounds of dynamic recrystallization(DRX).A great deal of{10–12}twins were activated at the beginning of MDIF process,which played an important role in grain refinement.With forging proceeding,continuous and discontinuous DRX were successively activated,resulting in the fully DRXed microstructure.Meanwhile,the forged piece exhibited a unique four-peak texture,and the initial<10-10>//ED fiber texture component gradually evolved into multiple texture components composed of<0001>//FFD(first forging direction)and<11–20>//FFD texture.The special strain path was the key to the formation of the unique four-peak texture.The{10–12}twinning and basal slip were two dominant factors to the evolution of texture during MDIF process.Grain strengthening and dislocation strengthening were two main strengthening mechanisms of the forged piece.Besides,the symmetry of yield strength was greatly improved by MDIF process. 展开更多
关键词 multi-directional impact forging Twinning Dynamic recrystallization Texture Yield strength symmetry
在线阅读 下载PDF
Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging 被引量:3
19
作者 L.B.Tong J.H.Chu +4 位作者 D.N.Zou Q.Sun S.Kamado H.G.Brokmeier M.Y.Zheng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第2期265-277,共13页
In this study,the mechanical properties and damping capacities of cast Mg-5.5 Zn-0.6 Zr(weight percent,ZK60)alloys have been simultaneously improved by a facile multi-directional forging(MDF)processing,and the mechani... In this study,the mechanical properties and damping capacities of cast Mg-5.5 Zn-0.6 Zr(weight percent,ZK60)alloys have been simultaneously improved by a facile multi-directional forging(MDF)processing,and the mechanisms of microstructure evolution and texture modification are systematically investigated.The activation of tension twinning occurs during the initial MDF stage,due to the coarse-grained structure of the as-cast alloy.With increasing MDF passes,the continuous dynamic recrystallization(CDRX)results in a fine equiaxed-grain structure.The typical non-basal texture is formed in the as-MDFed alloy for 6 passes,with the(0001)planes inclined 60°–70°to forged direction and 10°–20°to transverse direction,respectively.A good balance between the strength(~194.9 MPa)and ductility(~24.9%)has been achieved,which can be ascribed to the grain refinement,non-basal texture and fine precipitate particles.The damping capacity is remarkably improved after MDF processing,because the severe deformation increases the dislocation density,which effectively enlarges the sweep areas of mobile dislocations. 展开更多
关键词 Mg alloy multi-directional forging Microstructure Texture evolution Mechanical properties DAMPING capacity
原文传递
Tribological Characterization of Commercial Pure Titanium Processed by Multi-Directional Forging 被引量:4
20
作者 I. Ansarian M. H. Shaeri +1 位作者 M. Ebrahimi P. Minarik 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第7期857-868,共12页
This work discusses tribological properties of commercial pure (CP) titanium processed by multi-directional forging (MDF) up to six passes at room temperature and 220 ℃. For this purpose, wear test was conducted by d... This work discusses tribological properties of commercial pure (CP) titanium processed by multi-directional forging (MDF) up to six passes at room temperature and 220 ℃. For this purpose, wear test was conducted by dry sliding pin-on-disk method on the initial and ultrafine grained samples using different stress magnitudes of 1, 1.5 and 2 MPa. The results showed that wear resistance of CP titanium increases after the first pass of MDF in comparison with the initial condition, irrespective of the applied normal stress. For example, the average wear rate of MDFed samples was decreased about 30% and 24%, after first pass at room temperature and 220 ℃, respectively. However, average wear rate of the samples processed by six MDF passes was reduced about 40% at lower normal loads;it was increased about 9% at higher ones as compared to the initial condition. It was also found that the dominated wear mechanisms were abrasive and delaminated at the lower stresses, while the delamination mechanism was intensified and a slight adhesion was observed during the higher applied normal loads. 展开更多
关键词 multi-directional forging COMMERCIAL PURE titanium TRIBOLOGICAL behavior Wear mechanisms
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部