A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
As complex and diverse ecosystems,cities encounter numerous challenges posed by both nature and humanity.Architecture,serving as the framework and texture of the city,has undoubtedly emerged as a crucial guide in addr...As complex and diverse ecosystems,cities encounter numerous challenges posed by both nature and humanity.Architecture,serving as the framework and texture of the city,has undoubtedly emerged as a crucial guide in addressing urban resilience issues.Roof greening and vertical greening of buildings,as ecofriendly urban green infrastructures,hold significant potential for mitigating these challenges.This paper explores the methods and strategies for implementing roof greening and vertical greening as solutions to enhance urban resilience.The objective is to offer valuable insights for sustainable urban development,encourage the widespread adoption of these greening techniques in urban construction,and ultimately strengthen urban resilience.展开更多
The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to inv...The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to investigate the impacts of urbanization on ESV in China.However,a comprehensive and dynamic framework to reveal the relationship between ESV and urbanization processes is lacking.This study adopted multi-source datasets to portray China’s urbanization process by integrating population,land,and economic urbanization,eval-uated the ESV changes of 10 categories by gross ecosystem product(GEP)methods,and explored ESV changes within different urbanization scales and speeds.The results showed rapid urbanization in the population,land,and economic dimensions in China,with a faster process of economic urbanization.The ESV also exhibited an increasing trend,with higher levels in the southeastern coastal regions and lower levels in the northwestern regions.Urbanization had positive impacts on ESV across various research units,but the ESV exhibited heteroge-neous changes across different urbanization scales,speeds,and their interactive effects.The response of ESV to dynamic urbanization processes was influenced by socio-economic,ecological,and policy factors;it is essential to combine targeted measures with general ecological product value realization methods in each unit to maximize social-economic-ecological benefits.展开更多
Enhancing urban ecological resilience(UER)is a new concept for modern tourism-oriented cities to cope with environmental crises.Revealing the impact of the urbanization on UER is critical to the sustainability of urba...Enhancing urban ecological resilience(UER)is a new concept for modern tourism-oriented cities to cope with environmental crises.Revealing the impact of the urbanization on UER is critical to the sustainability of urban ecosystems.Taking Zhangjiajie,a typical tourism-oriented city,as an example,urbanization level(UL)and UER evaluation system were constructed,and the change trend was analyzed.The Granger Causality Test model was used to discuss the relationship between UL and UER.The results showed that:(1)the urbanization rate of Zhangjiajie significantly increased by 0.531 from 2011 to 2020.Cili county has the highest UL,and Wulingyuan district including a large number of scenic spots has the fastest development trend.(2)The ecological restoration was more sensitive in the face of rising pressure,and showed a synchronized change trend with pressure.The high pressure in 2016 had the most significant impact on resistance.This effect continued into 2019,with an average decline in resistance of 0.802.(3)The UL has significantly promoted the improvement of urban ecological restoration.Specially,tourism urbanization was the most significant in scenic spots,while economic and social urbanization played a major role in other regions for the improvement of ecological restoration.展开更多
Dryland regions face complex interactions between urbanization and ecological changes,where effective coordination is essential for enhancing sustainability and resilience.However,most studies concentrate on the natio...Dryland regions face complex interactions between urbanization and ecological changes,where effective coordination is essential for enhancing sustainability and resilience.However,most studies concentrate on the national or provincial scales,with insufficient research on county-level coordination,limiting the ability to provide targeted polifrom a precise perspective.This study addresses this gap by analyzing 39 counties within the Hohhot-Baotou-Ordos-Yulin Urban Agglomeration(HBOYUA),a typical dryland urban cluster in China.We use daytime and nighttime remote sensing images to track the spatio-temporal evolution of urbanization and ecological conditions from 1992 to 2023.A novel quantitative framework based on an improved coupling coordination degree(CCD)is proposed to assess their coordination relationship.The results reveal that:(1)Urbanization and ecological quality both exhibited fluctuating upward trends,with spatial heterogeneity increasing for urbanization and decreasing for the eco-environment.Regions with better ecological conditions had higher urbanization levels.(2)The overall coordinated level improved from imbalance(0.36)to low-level coordination(0.55),although its spatial distribution remained uneven,with central urban areas showing higher CCD than surrounding counties.(3)Socioeconomic factors exerted greater effects on CCD than natural factors,with GDP and land surface temperature(LST)playing a significant role in interaction analysis.(4)In western arid regions,urbanization did not necessarily harm ecosystems;instead,ecological conditions improved alongside urbanization.This research offers targeted and valuable references for county and city governments in resource allocation and sustainable development.The proposed methodology is also adaptable for urban resilience studies in other regions.展开更多
The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed...The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.展开更多
Urbanization’s impact on pre-monsoon extreme rainfall in the Greater Bay Area(GBA),coastal South China(SC),and its relation to different synoptic systems remains understudied.This research investigates urbanization e...Urbanization’s impact on pre-monsoon extreme rainfall in the Greater Bay Area(GBA),coastal South China(SC),and its relation to different synoptic systems remains understudied.This research investigates urbanization effects on premonsoon rainfall using hourly station observations and Weather Research and Forecasting model with the Single Layer Urban Canopy Model(WRF-SLUCM)simulations.Observations show stronger pre-monsoon extreme rainfall in GBA cities than surrounding rural areas,with the urban heat island(UHI)intensifying the urban rainfall intensity and probability.Extreme cases were classified into frontal and shear-line warm-sector types.Enhanced urban rainfall due to UHI was more pronounced under shear-line and warm-sector systems.Four frontal and four shear-line cases were dynamically downscaled using WRF-SLUCM,and four parallel experiments were conducted:“Nourban”(urban areas replaced by cropland),“AH0”,“AH100”,and“AH300”[normal land use,with the diurnal maximum anthropogenic heat(AH)set to 0,100,and 300 W m^(−2)in SLUCM,respectively].In frontal cases,significantly reduced urban rainfall in AH0 is due to decreased(enhanced)surface evaporation(wind divergence)in cities compared to cropland.Strong northerly winds and cold-air intrusion suppress the UHI in AH0 and AH100 during the rainfall process;enhanced urban rainfall occurs only in AH300.In contrast,for shear-line cases,urban friction and UHI promote local convection and wind convergence,increasing urban rainfall significantly in all urban experiments compared to Nourban.Overall,urbanization’s influence on SC’s premonsoon extreme rainfall is highly sensitive to the type of synoptic systems,necessitating further investigation of urban rainfall in this season.展开更多
Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial...Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.展开更多
In sharp contrast to Western urbanization models, the distinctive feature of China's rapid urbanization lies in the production of space. This is not only a crucial entry point for comprehending China's urbaniz...In sharp contrast to Western urbanization models, the distinctive feature of China's rapid urbanization lies in the production of space. This is not only a crucial entry point for comprehending China's urbanization path but also provides a new orientation for global urban studies.展开更多
This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses ...This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.展开更多
A comprehensive understanding of urbanization impacts on landscape dynamics,eco-environmental consequences,and advancements in human habitation is paramount for effectively advancing urbanization-related sustainable d...A comprehensive understanding of urbanization impacts on landscape dynamics,eco-environmental consequences,and advancements in human habitation is paramount for effectively advancing urbanization-related sustainable development goals.This study predicted the urbanization process within the Hohhot-Baotou-Ordos-Ulanqab(HBOU)region and its projected implications for ecology,human settlement,and energy consumption in 2020–2050 using multi-source data and models under Shared Socioeconomic Pathways(SSPs).The results revealed that the HBOU region's urban area grew by 624.66 km~2 between 1990 and 2020.By 2050,it is expected to reach 1793.49±169.30 km~2,mainly expanding into cropland(58.95%)and natural ecological land(31.79%).Urban greening is projected to enhance,with the highest urban green space(UGS)predicted under SSP1(32.42%).Under this scenario,the per capita urban area(PCUA)and per capita urban green space area(PCUGA)are projected to reach 172.66 and 55.63 m~2/person in 2050,respectively.Furthermore,the ecological and energy utilization impacts are anticipated to decrease by 3.99%to 37.52%relative to alternative scenarios.Our projections suggest that limiting urbanization area in the HBOU region to 1500–1600 km~2 would significantly enhance the settlement environment and mitigate ecological and energy consumption effects.These results guide urban strategies balancing ecology,energy use,and habitation in arid regions.展开更多
The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse...The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.展开更多
At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of Chi...At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of China's urban transformation.As one of the most populous and dynamically urbanizing nations,China serves as a compelling case for understanding the broader global implications of spatial restructuring.展开更多
During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for culti...During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.展开更多
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with...This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.展开更多
This study examines the spatial and temporal patterns of wetland degradation in Delhi from 1991 to 2021 using remote sensing and GIS techniques.The Automated Water Extraction Index(AWEI)was applied to pre-monsoon Land...This study examines the spatial and temporal patterns of wetland degradation in Delhi from 1991 to 2021 using remote sensing and GIS techniques.The Automated Water Extraction Index(AWEI)was applied to pre-monsoon Landsat imagery to delineate surface water bodies over the past 30 years accurately.Supervised classification was employed to generate land use maps,while census data was utilized to analyze urbanization trends across the region.Classification accuracy was assessed using Google Earth reference data through a confusion matrix,ensuring the reliability of the land cover analysis.Results reveal a significant decline in wetland extent,especially in densely populated and rapidly urbanizing districts such as North West,South,and East Delhi.During this time,the urban population increased from 52.7% to 97.4%,accompanied by a 70.2% expansion of built-up areas,while wetlands contracted from 32.9 km^(2) to 30.2 km^(2).South Delhi experienced the most severe wetland loss,with water body coverage dropping from 0.800% to 0.025%,whereas North East and Central Delhi maintained higher wetland coverage due to the influence of the Yamuna River and targeted conservation efforts.The study highlights the strong linkage between urban growth and wetland decline,which threatens biodiversity,groundwater recharge,and ecological stability.These findings emphasize the urgent need for integrated urban planning and conservation policies to safeguard wetlands,thereby promoting sustainability and water security in the National Capital Region.展开更多
Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)feat...Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.展开更多
Understanding the complex interactions between urbanization and ecosystem services(ESs)is crucial for optimiz ing planning policies and achieving sustainable urban management.While previous research has largely focuse...Understanding the complex interactions between urbanization and ecosystem services(ESs)is crucial for optimiz ing planning policies and achieving sustainable urban management.While previous research has largely focused on highly urbanized areas,little attention has been given to the phased effect of progressive urbanization on ES networks.This study proposes a conceptual framework that utilizes the network method and space-time replace ment to examine the effect of urbanization on the complex relationships among ESs at different stages,with a particular emphasis on the progressive evolution of the process.We apply this framework to the Horqin area,a typical eco-fragile area in China.Results demonstrate that the connectivity of the ES synergy network exhibits a non-stationary characteristic,initially increasing,then decreasing,and subsequently strengthening.Meanwhile,its modularity shows a rising trend during periods of accelerated urbanization.The performance of the trade off network displays the opposite pattern.Additionally,we observe a gradual replacement of provisioning and regulation services by cultural services in terms of dominance in the synergy network as urbanization advances.By providing guidance for identifying key planning initiatives and implementing ecological protection policies at different stages of development,this study contributes a pathway that can inform development strategies in other regions undergoing progressive urbanization.展开更多
South Florida’s natural forest ecosystems,including pine rocklands and hardwood hammocks,are threatened by land use change and urbanization,invasive species,and climate change.It is critical to understand the respons...South Florida’s natural forest ecosystems,including pine rocklands and hardwood hammocks,are threatened by land use change and urbanization,invasive species,and climate change.It is critical to understand the responses of these ecosystems to anthropogenic disturbances to conserve the remnants of the USA natural subtropical forests.Using dendrochronology,long-term growth patterns were characterized in three dominant native tree species:Bursera simaruba,Swietenia mahagoni,and Pinus elliottii.Core samples were collected from>30 individuals of each species in hardwood hammocks(B.simaruba and S.mahagoni)and pine rocklands(P.elliottii)to examine growth patterns.Relationships between annual tree growth rates and climatic variables were assessed to address three questions:(1)What are the climatic drivers of growth in these three South Florida tree species?(2)Are their growth rates stable or changing through time?and(3)Are tree growth rates affected by urbanization?Standardized growth rates of the three species have changed through time,with small young trees showing accelerated growth through time,whereas larger,older trees showed declining growth rates.S.mahagoni and B.simaruba grew faster in urbanized parks than in more natural parks,whereas P.elliottii grew slower in urban parks.There were positive correlations between tree growth and the current year’s fall precipitation and no discernable effects of the current year’s monthly temperatures on growth rates of any of the species.These results suggest that the foundational tree species of the southern USA endangered pine rocklands and hardwood hammocks may be vulnerable to ongoing changes in precipitation and temperature as well as other environmental effects associated with urbanization.展开更多
Wetlands are unique ecological environments capable of harboring high biodiversity.However,urbanization can degrade,eliminate,or transformthese habitats.Although amphibians utilize habitats created by humans in urban ...Wetlands are unique ecological environments capable of harboring high biodiversity.However,urbanization can degrade,eliminate,or transformthese habitats.Although amphibians utilize habitats created by humans in urban landscapes,few studies have investigated the infuence of thehabitat quality on the life history of anurans.We assessed life history traits such as snout-vent length(SVL),body condition,and reproductiveinvestment in the South American common toad Rhinella arenarum,to determine whether urbanization is harmful or benefcial to this species.We sampled wetlands with different levels of urbanization in Río Cuarto city,Córdoba,Argentina.We recorded males with lower SVL in mediumurbanized wetlands and those with the highest SVL in both low and high urbanization categories,similar to what was found for body conditionswith males with low body conditions inhabiting wetlands with a medium degree of urbanization.In females,lower SVL was recorded in mediumurbanization and highest SVL in high and low urbanization.It is observed that females recorded in highly urbanized wetlands have a very lowbody condition.The reproductive investment parameters were not signifcantly different,but we observed an association between a greaternumber of eggs and clutch size with wetlands of low urbanization.These results show a variability of responses of R.arenarum to urbanization,which could be due to phenotypic plasticity in its life history parameters,allowing it to inhabit urban areas.Continuous monitoring of the speciesin these wetlands is needed to determine if these biological responses are temporary or persistent.展开更多
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
文摘As complex and diverse ecosystems,cities encounter numerous challenges posed by both nature and humanity.Architecture,serving as the framework and texture of the city,has undoubtedly emerged as a crucial guide in addressing urban resilience issues.Roof greening and vertical greening of buildings,as ecofriendly urban green infrastructures,hold significant potential for mitigating these challenges.This paper explores the methods and strategies for implementing roof greening and vertical greening as solutions to enhance urban resilience.The objective is to offer valuable insights for sustainable urban development,encourage the widespread adoption of these greening techniques in urban construction,and ultimately strengthen urban resilience.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.41931293)the National Natural Science Foundation of China(Grant No.42271275).
文摘The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to investigate the impacts of urbanization on ESV in China.However,a comprehensive and dynamic framework to reveal the relationship between ESV and urbanization processes is lacking.This study adopted multi-source datasets to portray China’s urbanization process by integrating population,land,and economic urbanization,eval-uated the ESV changes of 10 categories by gross ecosystem product(GEP)methods,and explored ESV changes within different urbanization scales and speeds.The results showed rapid urbanization in the population,land,and economic dimensions in China,with a faster process of economic urbanization.The ESV also exhibited an increasing trend,with higher levels in the southeastern coastal regions and lower levels in the northwestern regions.Urbanization had positive impacts on ESV across various research units,but the ESV exhibited heteroge-neous changes across different urbanization scales,speeds,and their interactive effects.The response of ESV to dynamic urbanization processes was influenced by socio-economic,ecological,and policy factors;it is essential to combine targeted measures with general ecological product value realization methods in each unit to maximize social-economic-ecological benefits.
基金The National Key Research and Development Project,No.2022YFF1303204。
文摘Enhancing urban ecological resilience(UER)is a new concept for modern tourism-oriented cities to cope with environmental crises.Revealing the impact of the urbanization on UER is critical to the sustainability of urban ecosystems.Taking Zhangjiajie,a typical tourism-oriented city,as an example,urbanization level(UL)and UER evaluation system were constructed,and the change trend was analyzed.The Granger Causality Test model was used to discuss the relationship between UL and UER.The results showed that:(1)the urbanization rate of Zhangjiajie significantly increased by 0.531 from 2011 to 2020.Cili county has the highest UL,and Wulingyuan district including a large number of scenic spots has the fastest development trend.(2)The ecological restoration was more sensitive in the face of rising pressure,and showed a synchronized change trend with pressure.The high pressure in 2016 had the most significant impact on resistance.This effect continued into 2019,with an average decline in resistance of 0.802.(3)The UL has significantly promoted the improvement of urban ecological restoration.Specially,tourism urbanization was the most significant in scenic spots,while economic and social urbanization played a major role in other regions for the improvement of ecological restoration.
基金National Natural Science Foundation of China,No.42330106。
文摘Dryland regions face complex interactions between urbanization and ecological changes,where effective coordination is essential for enhancing sustainability and resilience.However,most studies concentrate on the national or provincial scales,with insufficient research on county-level coordination,limiting the ability to provide targeted polifrom a precise perspective.This study addresses this gap by analyzing 39 counties within the Hohhot-Baotou-Ordos-Yulin Urban Agglomeration(HBOYUA),a typical dryland urban cluster in China.We use daytime and nighttime remote sensing images to track the spatio-temporal evolution of urbanization and ecological conditions from 1992 to 2023.A novel quantitative framework based on an improved coupling coordination degree(CCD)is proposed to assess their coordination relationship.The results reveal that:(1)Urbanization and ecological quality both exhibited fluctuating upward trends,with spatial heterogeneity increasing for urbanization and decreasing for the eco-environment.Regions with better ecological conditions had higher urbanization levels.(2)The overall coordinated level improved from imbalance(0.36)to low-level coordination(0.55),although its spatial distribution remained uneven,with central urban areas showing higher CCD than surrounding counties.(3)Socioeconomic factors exerted greater effects on CCD than natural factors,with GDP and land surface temperature(LST)playing a significant role in interaction analysis.(4)In western arid regions,urbanization did not necessarily harm ecosystems;instead,ecological conditions improved alongside urbanization.This research offers targeted and valuable references for county and city governments in resource allocation and sustainable development.The proposed methodology is also adaptable for urban resilience studies in other regions.
文摘The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.
基金supported by CUHK Strategic Impact Enhancement Fund(project no.3135536)Guangdong Basic and Applied Basic Research Foundation(2023B1515020029).
文摘Urbanization’s impact on pre-monsoon extreme rainfall in the Greater Bay Area(GBA),coastal South China(SC),and its relation to different synoptic systems remains understudied.This research investigates urbanization effects on premonsoon rainfall using hourly station observations and Weather Research and Forecasting model with the Single Layer Urban Canopy Model(WRF-SLUCM)simulations.Observations show stronger pre-monsoon extreme rainfall in GBA cities than surrounding rural areas,with the urban heat island(UHI)intensifying the urban rainfall intensity and probability.Extreme cases were classified into frontal and shear-line warm-sector types.Enhanced urban rainfall due to UHI was more pronounced under shear-line and warm-sector systems.Four frontal and four shear-line cases were dynamically downscaled using WRF-SLUCM,and four parallel experiments were conducted:“Nourban”(urban areas replaced by cropland),“AH0”,“AH100”,and“AH300”[normal land use,with the diurnal maximum anthropogenic heat(AH)set to 0,100,and 300 W m^(−2)in SLUCM,respectively].In frontal cases,significantly reduced urban rainfall in AH0 is due to decreased(enhanced)surface evaporation(wind divergence)in cities compared to cropland.Strong northerly winds and cold-air intrusion suppress the UHI in AH0 and AH100 during the rainfall process;enhanced urban rainfall occurs only in AH300.In contrast,for shear-line cases,urban friction and UHI promote local convection and wind convergence,increasing urban rainfall significantly in all urban experiments compared to Nourban.Overall,urbanization’s influence on SC’s premonsoon extreme rainfall is highly sensitive to the type of synoptic systems,necessitating further investigation of urban rainfall in this season.
基金the financial support from the Guangxi Natural Science Foundation(grant no.2021GXNSFDA075012,2023GXNSFGA026002)National Natural Science Foundation of China(52104298,22075073,52362027,52462029)Fundamental Research Funds for the Central Universities(531107051077).
文摘Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.
文摘In sharp contrast to Western urbanization models, the distinctive feature of China's rapid urbanization lies in the production of space. This is not only a crucial entry point for comprehending China's urbanization path but also provides a new orientation for global urban studies.
文摘This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.
基金Natural Resources Department of Inner Mongolia Autonomous Region,No.CHZX-2023-45The Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA23100201+2 种基金National Natural Science Foundation of China,No.42261144746Graduate Students’Research&Innovation Fund of Inner Mongolia Normal University,No.CXJJB22012Fundamental Research Funds for the Inner Mongolia Normal University,No.2022JBXC017。
文摘A comprehensive understanding of urbanization impacts on landscape dynamics,eco-environmental consequences,and advancements in human habitation is paramount for effectively advancing urbanization-related sustainable development goals.This study predicted the urbanization process within the Hohhot-Baotou-Ordos-Ulanqab(HBOU)region and its projected implications for ecology,human settlement,and energy consumption in 2020–2050 using multi-source data and models under Shared Socioeconomic Pathways(SSPs).The results revealed that the HBOU region's urban area grew by 624.66 km~2 between 1990 and 2020.By 2050,it is expected to reach 1793.49±169.30 km~2,mainly expanding into cropland(58.95%)and natural ecological land(31.79%).Urban greening is projected to enhance,with the highest urban green space(UGS)predicted under SSP1(32.42%).Under this scenario,the per capita urban area(PCUA)and per capita urban green space area(PCUGA)are projected to reach 172.66 and 55.63 m~2/person in 2050,respectively.Furthermore,the ecological and energy utilization impacts are anticipated to decrease by 3.99%to 37.52%relative to alternative scenarios.Our projections suggest that limiting urbanization area in the HBOU region to 1500–1600 km~2 would significantly enhance the settlement environment and mitigate ecological and energy consumption effects.These results guide urban strategies balancing ecology,energy use,and habitation in arid regions.
文摘The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.
文摘At its core,Urbanization and Production of Space provides a comprehensive analysis of the intricate relationship between urbanization and the production of space,particularly within the rapidly evolving context of China's urban transformation.As one of the most populous and dynamically urbanizing nations,China serves as a compelling case for understanding the broader global implications of spatial restructuring.
基金Sponsored by the Quality Engineering Project of Education Department of Anhui Province(2022jyxm671)Research Team Project of Anhui Xinhua University(kytd202202)+1 种基金Key Project of Scientific Research(Natural Science)of Higher Education Institutions in Anhui Province(2022AH051861)Teaching Reform Research and Practice Quality Engineering Project of Anhui Xinhua University(2024jy035).
文摘During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.
基金supported by the National Natural Science Foundation of China(72101025,72271049),the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-24-024)the Hebei Natural Science Foundation(F2023501011)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the R&D Program of Beijing Municipal Education Commission(KM202411232015).
文摘This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.
文摘This study examines the spatial and temporal patterns of wetland degradation in Delhi from 1991 to 2021 using remote sensing and GIS techniques.The Automated Water Extraction Index(AWEI)was applied to pre-monsoon Landsat imagery to delineate surface water bodies over the past 30 years accurately.Supervised classification was employed to generate land use maps,while census data was utilized to analyze urbanization trends across the region.Classification accuracy was assessed using Google Earth reference data through a confusion matrix,ensuring the reliability of the land cover analysis.Results reveal a significant decline in wetland extent,especially in densely populated and rapidly urbanizing districts such as North West,South,and East Delhi.During this time,the urban population increased from 52.7% to 97.4%,accompanied by a 70.2% expansion of built-up areas,while wetlands contracted from 32.9 km^(2) to 30.2 km^(2).South Delhi experienced the most severe wetland loss,with water body coverage dropping from 0.800% to 0.025%,whereas North East and Central Delhi maintained higher wetland coverage due to the influence of the Yamuna River and targeted conservation efforts.The study highlights the strong linkage between urban growth and wetland decline,which threatens biodiversity,groundwater recharge,and ecological stability.These findings emphasize the urgent need for integrated urban planning and conservation policies to safeguard wetlands,thereby promoting sustainability and water security in the National Capital Region.
基金supported by the National Key R&D Program of China(No.2021YFC2103600)the National Natural Science Foundation of China(Nos.21878156,21978131,22275085,and 22278224)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20200089 and BK20200691)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(No.KL21-08).
文摘Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.
基金supported by the National Natural Science Foundation Projects of China(Grant No.42071284).
文摘Understanding the complex interactions between urbanization and ecosystem services(ESs)is crucial for optimiz ing planning policies and achieving sustainable urban management.While previous research has largely focused on highly urbanized areas,little attention has been given to the phased effect of progressive urbanization on ES networks.This study proposes a conceptual framework that utilizes the network method and space-time replace ment to examine the effect of urbanization on the complex relationships among ESs at different stages,with a particular emphasis on the progressive evolution of the process.We apply this framework to the Horqin area,a typical eco-fragile area in China.Results demonstrate that the connectivity of the ES synergy network exhibits a non-stationary characteristic,initially increasing,then decreasing,and subsequently strengthening.Meanwhile,its modularity shows a rising trend during periods of accelerated urbanization.The performance of the trade off network displays the opposite pattern.Additionally,we observe a gradual replacement of provisioning and regulation services by cultural services in terms of dominance in the synergy network as urbanization advances.By providing guidance for identifying key planning initiatives and implementing ecological protection policies at different stages of development,this study contributes a pathway that can inform development strategies in other regions undergoing progressive urbanization.
基金supported by the Kushlan Fund from the University of Miami Department of Biology.
文摘South Florida’s natural forest ecosystems,including pine rocklands and hardwood hammocks,are threatened by land use change and urbanization,invasive species,and climate change.It is critical to understand the responses of these ecosystems to anthropogenic disturbances to conserve the remnants of the USA natural subtropical forests.Using dendrochronology,long-term growth patterns were characterized in three dominant native tree species:Bursera simaruba,Swietenia mahagoni,and Pinus elliottii.Core samples were collected from>30 individuals of each species in hardwood hammocks(B.simaruba and S.mahagoni)and pine rocklands(P.elliottii)to examine growth patterns.Relationships between annual tree growth rates and climatic variables were assessed to address three questions:(1)What are the climatic drivers of growth in these three South Florida tree species?(2)Are their growth rates stable or changing through time?and(3)Are tree growth rates affected by urbanization?Standardized growth rates of the three species have changed through time,with small young trees showing accelerated growth through time,whereas larger,older trees showed declining growth rates.S.mahagoni and B.simaruba grew faster in urbanized parks than in more natural parks,whereas P.elliottii grew slower in urban parks.There were positive correlations between tree growth and the current year’s fall precipitation and no discernable effects of the current year’s monthly temperatures on growth rates of any of the species.These results suggest that the foundational tree species of the southern USA endangered pine rocklands and hardwood hammocks may be vulnerable to ongoing changes in precipitation and temperature as well as other environmental effects associated with urbanization.
基金Financial support was provided by Secretaría de Cienciay Técnica-Universidad Nacional de Río Cuarto(SECyTUNRC,Grant PPI 18/C416)Fondo para la Investigación Científca y Tecnológica(FONCyT,Grant PICT BIDPICT 0981-20182530-2019).
文摘Wetlands are unique ecological environments capable of harboring high biodiversity.However,urbanization can degrade,eliminate,or transformthese habitats.Although amphibians utilize habitats created by humans in urban landscapes,few studies have investigated the infuence of thehabitat quality on the life history of anurans.We assessed life history traits such as snout-vent length(SVL),body condition,and reproductiveinvestment in the South American common toad Rhinella arenarum,to determine whether urbanization is harmful or benefcial to this species.We sampled wetlands with different levels of urbanization in Río Cuarto city,Córdoba,Argentina.We recorded males with lower SVL in mediumurbanized wetlands and those with the highest SVL in both low and high urbanization categories,similar to what was found for body conditionswith males with low body conditions inhabiting wetlands with a medium degree of urbanization.In females,lower SVL was recorded in mediumurbanization and highest SVL in high and low urbanization.It is observed that females recorded in highly urbanized wetlands have a very lowbody condition.The reproductive investment parameters were not signifcantly different,but we observed an association between a greaternumber of eggs and clutch size with wetlands of low urbanization.These results show a variability of responses of R.arenarum to urbanization,which could be due to phenotypic plasticity in its life history parameters,allowing it to inhabit urban areas.Continuous monitoring of the speciesin these wetlands is needed to determine if these biological responses are temporary or persistent.