期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
A missing data processing method for dam deformation monitoring data using spatiotemporal clustering and support vector machine model 被引量:1
1
作者 Yan-tao Zhu Chong-shi Gu Mihai A.Diaconeasa 《Water Science and Engineering》 CSCD 2024年第4期417-424,共8页
Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument... Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument faults,and human operational errors,thereby often hindering the accurate assessment of actual deformation patterns.This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data.It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring.The proposed method was validated in a concrete dam project,with the model error maintaining within 5%,demonstrating its effectiveness in processing missing deformation data.This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management. 展开更多
关键词 Missing data recovery Concrete dam Deformation monitoring spatiotemporal clustering Support vector machine model
在线阅读 下载PDF
Application Research of Multi-Dimensional Customer Behavior Analysis Model in Precision Marketing
2
作者 Shuotong Dong 《Open Journal of Applied Sciences》 2024年第12期3589-3600,共12页
The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends ... The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research. 展开更多
关键词 Customer Behavior Analysis Precision Marketing multi-dimensional model data Theory Personalized Recommendation
在线阅读 下载PDF
Multi-dimensional database design and implementation of dam safety monitoring system 被引量:2
3
作者 Zhao Erfeng Wang Yachao +2 位作者 Jiang Yufeng Zhang Lei Yu Hong 《Water Science and Engineering》 EI CAS 2008年第3期112-120,共9页
To improve the effectiveness of dam safety monitoring database systems,the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mod... To improve the effectiveness of dam safety monitoring database systems,the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode.The optimal data model was confirmed by identifying data objects,defining relations and reviewing entities.The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely.On this basis,a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established,for which factual tables and dimensional tables have been designed.Finally,based on service design and user interface design,the dam safety monitoring system has been developed with Delphi as the development tool.This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design.It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers. 展开更多
关键词 dam safety multi-dimensional database conceptual data model database mode monitoring system
在线阅读 下载PDF
Spatiotemporal Data Graph Modeling and Exploration of Application Scenarios in “Power Grid One Graph” 被引量:5
4
作者 Peng Li Zhen Dai +4 位作者 Yachen Tang Guangyi Liu Jiaxuan Hou Qinyu Feng Quanchen Lin 《CSEE Journal of Power and Energy Systems》 2025年第2期538-551,共14页
By modeling the spatiotemporal data of the power grid, it is possible to better understand its operational status, identify potential issues and risks, and take timely measures to adjust and optimize the system. Compa... By modeling the spatiotemporal data of the power grid, it is possible to better understand its operational status, identify potential issues and risks, and take timely measures to adjust and optimize the system. Compared to the bus-branch model, the node-breaker model provides higher granularity in describing grid components and can dynamically reflect changes in equipment status, thus improving the efficiency of grid dispatching and operation. This paper proposes a spatiotemporal data modeling method based on a graph database. It elaborates on constructing graph nodes, graph ontology models, and graph entity models from grid dispatch data, describing the construction of the spatiotemporal node-breaker graph model and the transformation to the bus-branch model. Subsequently, by integrating spatiotemporal data attributes into the pre-built static grid graph model, a spatiotemporal evolving graph of the power grid is constructed. Furthermore, the concept of the “Power Grid One Graph” and its requirements in modern power systems are elucidated. Leveraging the constructed spatiotemporal node-breaker graph model and graph computing technology, the paper explores the feasibility of grid situational awareness. Finally, typical applications in an operational provincial grid are showcased, and potential scenarios of the proposed spatiotemporal graph model are discussed. 展开更多
关键词 “Power Grid One Graph” graph data modeling situational awareness spatiotemporal evolving graph spatiotemporal node-breaker graph model
原文传递
Data-sequence Modeling Based Causal Evaluation Method for Power Systems and Spatiotemporal Causality Variation Patterns
5
作者 Qi Chen Gang Mu +1 位作者 Hongbo Liu Changgang Wang 《CSEE Journal of Power and Energy Systems》 2025年第4期1429-1441,共13页
The data acquisition technologies used in power systems have been continuously improving,thus laying the solid foundation for data-driven operation analysis of power systems.However,existing methods for analyzing the ... The data acquisition technologies used in power systems have been continuously improving,thus laying the solid foundation for data-driven operation analysis of power systems.However,existing methods for analyzing the relationship between operational variables mainly depend on the mathematical model and element parameters of the power system.Therefore,a thorough data-based analysis method is required to investigate the spatiotemporal characteristics of power system operation,especially for new types of power systems.The causal inference method,which has been successfully applied in many fields,is a powerful tool for investigating the interaction of data variables.In this study,a causal inference method is proposed based on supervisory control and data acquisition(SCADA)data for investigating the spatiotemporal causal relationships in power systems.Initially,a multiple data-sequence regression model is proposed to analyze the relationship of operation data variables.Next,the linear non-Gaussian acyclic model(LiNGAM)is used to calculate the causal index of the operational variables,and its limitations are analyzed.Furthermore,a new causal index of“full variable amplitude LiNGAM(FVA-LiNGAM)”is proposed by incorporating prior causal direct knowledge and considering the effect of real variable amplitude.Using the FVA-LiNGAM causal index,the causal relationship of operation variables can be investigated with higher spatiotemporal accuracy than that of the original LiNGAM index.Taking a real SCADA data subset of a provincial power system as an example,the validity of the FVA-LiNGAM causal index is verified.The variation patterns in spatiotemporal causality are explored using actual SCADA data sequences.The result shows that there indeed exists some spatiotemporal causality variation patterns between the operating variables of the power system. 展开更多
关键词 data-sequence modeling full variable amplitude causal index power system operation SCADA data sequences spatiotemporal causality variation patterns
原文传递
Population migration across the Qinghai-Tibet Plateau:Spatiotemporal patterns and driving factors 被引量:2
6
作者 WANG Nan WANG Huimeng +3 位作者 DU Yunyan YI Jiawei LIU Zhang TU Wenna 《Journal of Geographical Sciences》 SCIE CSCD 2021年第2期195-214,共20页
Developing a comprehensive understanding of inter-city interactions is crucial for regional planning.We therefore examined spatiotemporal patterns of population migration across the Qinghai-Tibet Plateau(QTP)using mig... Developing a comprehensive understanding of inter-city interactions is crucial for regional planning.We therefore examined spatiotemporal patterns of population migration across the Qinghai-Tibet Plateau(QTP)using migration big data from Tencent for the period between 2015 and 2019.We initially used decomposition and breakpoint detection methods to examine time-series migration data and to identify the two seasons with the strongest and weakest population migration levels,between June 18th and August 18th and between October 8th and February 15th,respectively.Population migration within the former period was 2.03 times that seen in the latter.We then used a variety of network analysis methods to examine population flow directions as well as the importance of each individual city in migration.The two capital cities on the QTP,Lhasa and Xining,form centers for population migration and are also transfer hubs through which migrants from other cities off the plateau enter and leave this region.Data show that these two cities contribute more than 35%of total population migration.The majority of migrants tend to move within the province,particularly during the weakest migration season.We also utilized interactive relationship force and radiation models to examine the interaction strength and the radiating energy of each individual city.Results show that Lhasa and Xining exhibit the strongest interactions with other cities and have the largest radiating energies.Indeed,the radiating energy of the QTP cities correlates with their gross domestic product(GDP)(Pearson correlation coefficient:0.754 in the weakest migration season,WMS versus 0.737 in the strongest migration season,SMS),while changes in radiating energy correlate with the tourism-related revenue(Pearson correlation coefficient:0.685).These outcomes suggest that level of economic development and level of tourism are the two most important factors driving the QTP population migration.The results of this analysis provide critical clarification guidance regarding huge QTP development differences. 展开更多
关键词 Qinghai-Tibet Plateau population migration migration big data flow radiation model spatiotemporal interaction mode
原文传递
A gated spatiotemporal fusion network for lightning forecasting based on weather foundation models
7
作者 Yiran LI Qingyong LI +5 位作者 Dong ZHENG Yangli-ao GENG Zhiqing GUO Liangtao XU Wen YAO Weitao LYU 《Science China Earth Sciences》 2025年第9期2957-2975,共19页
Lightning is a significant natural hazard that poses considerable risks to both human safety and industrial operations.Accurate,fine-scale lightning forecasting is crucial for effective disaster prevention.Traditional... Lightning is a significant natural hazard that poses considerable risks to both human safety and industrial operations.Accurate,fine-scale lightning forecasting is crucial for effective disaster prevention.Traditional forecasting methods primarily rely on numerical weather prediction(NWP),which demands substantial computational resources to solve complex atmospheric evolution equations.Recently,deep learning-based weather prediction models—particularly weather foundation models(WFMs)—have demonstrated promising results,achieving performance comparable to NWP while requiring substantially fewer computational resources.However,existing WFMs are unable to directly generate lightning forecasts and struggle to satisfy the high spatial resolution required for fine-scale prediction.To address these limitations,this paper investigates a fine-scale lightning forecasting approach based on WFMs and proposes a dual-source data-driven forecasting framework that integrates the strengths of both WFMs and recent lightning observations to enhance predictive performance.Furthermore,a gated spatiotemporal fusion network(gSTFNet)is designed to address the challenges of cross-temporal and cross-modal fusion inherent in dual-source data integration.gSTFNet employs a dual-encoding structure to separately encode features from WFMs and lightning observations,effectively narrowing the modal gap in the latent feature space.A gated spatiotemporal fusion module is then introduced to model the spatiotemporal correlations between the two types of features,facilitating seamless cross-temporal fusion.The fused features are subsequently processed by a deconvolutional network to generate accurate lightning forecasts.We evaluate the proposed gSTFNet using real-world lightning observation data collected in Guangdong from 2018 to 2022.Experimental results demonstrate that:(1)In terms of the ETS score,the dual-source framework achieves a 50% improvement over models trained solely on WFMs,and a 300% improvement over the HRES lightning forecasting product released by the European Centre for Medium-Range Weather Forecasts(ECMWF);(2)gSTFNet outperforms several state-of-the-art deep learning baselines that utilize dual-source inputs,clearly demonstrating superior forecasting accuracy. 展开更多
关键词 Lightning forecasting Weather foundation model Neural network Deep learning spatiotemporal data fusion
原文传递
基于大数据驱动的激光器网络相位时空同步控制研究
8
作者 何中胜 王伟 《激光杂志》 北大核心 2025年第5期178-183,共6页
激光器网络在运行过程中,常受外界环境因素的干扰,这些干扰易导致激光器的相位发生位移,进而引发数据传输的不稳定性,严重制约了激光器网络通信的质量和数据传输的可靠性。为此,提出基于大数据驱动的激光器网络相位时空同步控制方法。首... 激光器网络在运行过程中,常受外界环境因素的干扰,这些干扰易导致激光器的相位发生位移,进而引发数据传输的不稳定性,严重制约了激光器网络通信的质量和数据传输的可靠性。为此,提出基于大数据驱动的激光器网络相位时空同步控制方法。首先,构建激光器网络结构,深入分析了网络中激光器相位时空同步的特性及其影响因素。然后,以这些影响因素作为约束条件,设计相位同步控制方法。该方法的核心在于利用大数据驱动技术对控制模型中的不确定参数进行优化,从而确保相位同步的精确性和稳定性。实验结果表明,该控制方法能够精确检测相位误差,并将其降至0,极大地提升了激光器网络的通信质量和性能。 展开更多
关键词 大数据驱动方法 激光器网络 相位误差 相位时空同步 控制模型设计
原文传递
融合数据质量增强和时空信息编码网络的船舶海上轨迹预测方法 被引量:1
9
作者 石悦 罗贺 +1 位作者 蒋儒浩 王国强 《模式识别与人工智能》 北大核心 2025年第1期51-67,共17页
高精度的海上船舶轨迹预测是降低船舶碰撞风险、提升船舶搜救效率的重要基础.海上航行环境的多变性使船舶轨迹数据在时间和空间上具有高度复杂性,现有方法对船舶轨迹数据的质量及运动信息关注度不足,难以充分捕捉轨迹中的时空特征和关... 高精度的海上船舶轨迹预测是降低船舶碰撞风险、提升船舶搜救效率的重要基础.海上航行环境的多变性使船舶轨迹数据在时间和空间上具有高度复杂性,现有方法对船舶轨迹数据的质量及运动信息关注度不足,难以充分捕捉轨迹中的时空特征和关联信息.因此,文中提出融合数据质量增强和时空信息编码网络的船舶海上轨迹预测方法(Ship Maritime Trajectory Prediction Method Integrating Data Quality Enhancement and Spatio-Temporal Information Encoding Network,DQE-STIEN).首先,基于船舶轨迹数据的特征,设计结合哈希映射分类及局部离群哈希值异常检测的数据质量增强算法,对问题数据进行质量增强.然后,针对多属性的船舶轨迹数据,设计具有双编码通道的时空信息编码网络,充分提取并整合船舶轨迹数据中的位置信息与运动特征.最后,基于时空信息编码提取数据中的时空关联信息,并经解码生成完整的轨迹预测结果.在5个不同区域的AIS数据集上的实验表明DQE-STIEN性能较优.同时,DQE-STIEN具有一定的泛化性,也能有效分析能源、销售、环境和金融等领域的时序数据. 展开更多
关键词 轨迹预测 时空信息编码 数据质量增强 双编码通道 混合预测模型
在线阅读 下载PDF
实景三维背景下事件的概念、分类与数据模型研究进展及展望
10
作者 王明明 曹一冰 +3 位作者 华一新 张江水 李圣卉 陈敏颉 《地球信息科学学报》 北大核心 2025年第7期1532-1550,共19页
【意义】事件作为表征现实世界复杂过程的重要单元,近年来受到各学科广泛关注。随着数字孪生、实景三维中国等重点工程的推进,基于实体的现实世界建模与表达需求日益突出,亟需从实体视角重新审视事件的定义、分类及数据模型体系,以支撑... 【意义】事件作为表征现实世界复杂过程的重要单元,近年来受到各学科广泛关注。随着数字孪生、实景三维中国等重点工程的推进,基于实体的现实世界建模与表达需求日益突出,亟需从实体视角重新审视事件的定义、分类及数据模型体系,以支撑多维信息表达与深层语义解析。【进展】本文首先从跨学科角度系统梳理了事件的概念内涵与定义特征,其次归纳了现有事件分类方式的理论依据与结构特征。同时,从建模理念与适用范围两个维度出发,提出三类事件数据模型划分框架:事件语义要素模型、基于本体的事件模型、面向事件的时空数据模型,并对其在“时间、空间、参与对象、事件关系与层次结构”等关键维度的表达能力进行了系统分析与对比评价,揭示了各模型在动态过程表达、通用性与扩展性等方面的应用优势与局限。【方法】在上述基础上,本文提出了基于时空实体的事件定义,并进一步提出两种面向实体建模与事件分析的新型分类方法:依据事件记录完整度的分类方式和依据变化过程类别的分类方式。【展望】未来研究可推动事件数据模型由“结构组织”向“语义融合”与“智能建构”转型,融合多类模型优势构建统一框架,协同定性与定量建模机制以支撑一体化分析,并引入人工智能,提升建模的智能性与自适应能力。 展开更多
关键词 实景三维 事件定义 事件分类 事件数据模型 事件本体模型 时空数据模型 时空实体 变化过程
原文传递
基于自然语言增强的签到轨迹与用户匹配方法
11
作者 王天一 林友芳 +3 位作者 贡乐天 陈炜 郭晟楠 万怀宇 《计算机科学》 北大核心 2025年第2期99-106,共8页
随着定位技术和传感器的高速发展,用户移动轨迹数据日渐丰富,但大多分散在不同平台上。为了全面利用这些数据并准确反映用户的真实行为,对轨迹用户匹配的研究变得至关重要。该任务旨在从海量签到轨迹数据中精准关联用户身份。近年来,研... 随着定位技术和传感器的高速发展,用户移动轨迹数据日渐丰富,但大多分散在不同平台上。为了全面利用这些数据并准确反映用户的真实行为,对轨迹用户匹配的研究变得至关重要。该任务旨在从海量签到轨迹数据中精准关联用户身份。近年来,研究者们尝试运用循环神经网络、注意力机制等方法深入挖掘轨迹数据。然而,当前方法在处理用户签到轨迹时面临两大挑战:一是签到数据中有限的时空特征不足以从主观和客观两个角度全面地建模签到点信息,二是用户的签到轨迹往往围绕着一个特定的主题。针对这两点挑战,提出了一种基于自然语言增强的轨迹用户匹配模型(Natural Language Augmented Trajectory User Link,NLATUL)。首先,设计了一套自然语言模板与软提示令牌来描述签到轨迹,并使用语言模型来理解签到点中的主观意图,融合用户的时空状态,提供了一种充分从主观与客观两个方面建模签到点的方法;在此基础上,通过提示学习的方法推理签到轨迹的主题,并对建模的签到点表示的轨迹进行双向编码,通过签到轨迹主题与签到轨迹编码的结合实现对用户签到轨迹的准确理解。在两个真实世界签到数据集上验证的实验结果表明,NLATUL能够更准确地匹配签到轨迹与其对应的用户。 展开更多
关键词 轨迹用户匹配 签到序列学习 时空数据挖掘 语言模型 提示学习
在线阅读 下载PDF
基于边缘智能的高速公路交通流预测方法 被引量:1
12
作者 王小博 张轩 +2 位作者 高张浩 吴鑫 董云卫 《计算机技术与发展》 2025年第4期193-201,共9页
高速公路作为国民经济发展的重要动脉之一,其网络交通流量的规模不仅反映了区域经济的发展水平,依据路网流量对车流进行引导,确保高速公路通畅和安全也体现了交通保障与管理的能力。由于高速公路运行会受到重大社会活动、极端天气、自... 高速公路作为国民经济发展的重要动脉之一,其网络交通流量的规模不仅反映了区域经济的发展水平,依据路网流量对车流进行引导,确保高速公路通畅和安全也体现了交通保障与管理的能力。由于高速公路运行会受到重大社会活动、极端天气、自然灾害、交通事故及其他突发事件影响,高速公路交通流量预测的准确性和及时性是高速公路管理和运维中的一个技术难题。为此,提出了一种基于边缘智能的高速公路交通流预测方法,设计并构建了结构化神经网络预测模型,能够有效地捕捉和表达复杂的不同高速公路间车辆通行的时空相关性,用于实现省域高速公路网络交通流量的预测。基于陕西省关中地区多条互联高速公路的实际运营数据,构建了模型学习数据集和实验测试集,并在多种运行场景下进行预测实验。实验结果表明,提出的“多层时空卷积”预测网络模型在高速公路交通流量预测的实时性和准确性方面具有显著优势。 展开更多
关键词 智能交通 “多层时空卷积”预测网络模型 边缘智能 高速公路流量预测 时空相关性 云边协同计算 交通流量大数据
在线阅读 下载PDF
融合多模态气象信息与MJO时空演变特征的预测模型
13
作者 徐政 方巍 《海洋学报》 北大核心 2025年第10期126-136,共11页
马登–朱利安振荡(Madden-Julian Oscillation,MJO)作为热带季节内变率的主要模态,其准确预测对于提升次季节预测能力至关重要。然而,MJO具有多尺度演变特征和高度非线性动力过程,现有预测方法在捕捉其复杂时空结构方面仍存在不足。为此... 马登–朱利安振荡(Madden-Julian Oscillation,MJO)作为热带季节内变率的主要模态,其准确预测对于提升次季节预测能力至关重要。然而,MJO具有多尺度演变特征和高度非线性动力过程,现有预测方法在捕捉其复杂时空结构方面仍存在不足。为此,本文提出了一种融合多模态数据与时空特征的MJO预测模型(Multimodal data and Integrated Spatiotemporal features for MJO prediction,MISM)。该模型以历史实时多变量MJO指数(Real-time Multivariate MJO index,RMM)和多个气象因子作为联合输入,通过压缩激励模块、卷积模块和Swin Transformer模块构建空间特征提取模块,并引入自回归注意力机制实现非线性时间序列建模。实验结果表明,MISM模型的预测技巧可延伸至30 d以上,并在25 d以上的长期预测阶段表现优于传统的动力学和统计学方法。此外,本文利用显著性图对气象因子贡献区域进行分析,结果显示西太平洋及印尼群岛在不同提前期均呈现较高敏感性,海洋区域贡献普遍强于陆地。水汽和海温异常在短期与中期作用更突出,而低层风场和对流活动在长期阶段贡献较强,高层环流则在各时效保持稳定影响,体现了模型对MJO演变机制的识别能力。 展开更多
关键词 MJO预测 次季节预测 多模态数据 时空建模 显著性图
在线阅读 下载PDF
数字孪生水利动态时空数据底板构建研究 被引量:10
14
作者 崔培 张涛 +2 位作者 曾斌 赵杰 孙晓莹 《中国水利》 2025年第2期52-64,共13页
水利部大力推进数字孪生水利建设,正在通过统筹建设数字孪生流域、数字孪生水网、数字孪生工程,持续推进水利智能业务应用体系建设,构建具有“预报、预警、预演、预案”功能的数字孪生水利体系。数据底板是数字孪生水利建设的核心与关键... 水利部大力推进数字孪生水利建设,正在通过统筹建设数字孪生流域、数字孪生水网、数字孪生工程,持续推进水利智能业务应用体系建设,构建具有“预报、预警、预演、预案”功能的数字孪生水利体系。数据底板是数字孪生水利建设的核心与关键,目前数字孪生水利建设虽然取得了明显成效,但数据底板还需要向更加动态、多维和融合方向发展,构建时空数据架构和技术路线,为数字孪生水利构建坚实数据基础,支撑数字孪生水利体系新发展。从构建动态时空数据底板出发,以时间空间、数据资源、数据引擎和安全与标准四个维度探讨构建统一动态时空数据底板的架构思路,从水利对象、水利网格、水利主题、水利事件四个层次探索水利时空数据模型构建技术路线,提出“四维四层”架构的水利动态时空数据底板构建方法。 展开更多
关键词 数字孪生水利 多维融合 时空数据底板 数据模型构建 水利对象
在线阅读 下载PDF
TSEncoder:基于SAVMD和多源数据融合的故障分类
15
作者 季龙炳 周宇 钱巨 《计算机系统应用》 2025年第1期223-235,共13页
针对实际运行机械设备信号易受噪声干扰导致故障特征难以准确提取,以及设备单一位置信息无法全面反映运行状态的问题,本研究提出了一种改进的信号自适应分解与多源数据融合的时空故障分类方法.首先,提出了一种改进的信号自适应分解算法S... 针对实际运行机械设备信号易受噪声干扰导致故障特征难以准确提取,以及设备单一位置信息无法全面反映运行状态的问题,本研究提出了一种改进的信号自适应分解与多源数据融合的时空故障分类方法.首先,提出了一种改进的信号自适应分解算法SAVMD(signal adaptive variational mode decomposition),并构建加权峭度稀疏度指标WKS(weighted kurtosis sparsity)筛选出富含特征信息的IMF(intrinsic mode function)分量,以实现信号重构.其次,将不同位置传感器的多源数据进行融合,并以周期性采样得到的数据集作为模型的输入.最后,构建了一个时空故障分类模型来处理多源数据,通过改进的稀疏自注意力机制降低噪声干扰,并利用双编码器机制实现对时间步长和空间通道信息的有效处理.在3个公开的机械设备故障数据集上进行实验,平均准确率分别达到了99.1%、98.5%和99.4%.与其他故障分类方法相比表现更好,具有良好的自适应性和鲁棒性,为机械设备的故障诊断提供了一种可行的方法. 展开更多
关键词 信号自适应分解 多源数据融合 时空故障分类模型 故障分类
在线阅读 下载PDF
公路交通流预测综述:方法与进展
16
作者 王小博 张轩 +1 位作者 高张浩 董云卫 《计算机技术与发展》 2025年第11期12-19,共8页
随着城市化进程的加速和智能交通的迅猛发展,交通流预测已成为智慧交通和智慧城市领域的核心研究方向。该文系统回顾了基于深度学习的交通流预测技术的研究现状,深入剖析了当前交通流量预测中面临的技术挑战,包括时空动态依赖建模的不... 随着城市化进程的加速和智能交通的迅猛发展,交通流预测已成为智慧交通和智慧城市领域的核心研究方向。该文系统回顾了基于深度学习的交通流预测技术的研究现状,深入剖析了当前交通流量预测中面临的技术挑战,包括时空动态依赖建模的不足、外部因素复杂性的影响、数据质量问题以及深度学习模型高计算成本与可解释性差等问题。同时,文章指出,未来的研究应聚焦于“数据-模型-系统”三大层面的智慧交通协同优化:数据层应强化多模态数据融合与隐私保护,模型层可结合知识图谱和大模型技术,提升动态时空建模能力,系统层则应依托边缘智能与分布式计算,提升实时性和系统鲁棒性。该研究为智能交通系统的进一步发展提供了重要的理论支持与实践指导。 展开更多
关键词 交通流预测 时空依赖建模 深度学习 多模态数据 智能交通
在线阅读 下载PDF
基于手机信令数据的地铁客流时空动态演化与多尺度预测模型研究
17
作者 张春焰 李树春 +1 位作者 陈龙 马志 《移动信息》 2025年第9期245-247,共3页
城市轨道交通系统对客流预测的实时性与精度提出更高要求,手机信令数据具备覆盖广泛、更新频繁、稳定连续等特点,可有效支撑地铁客流的动态建模。文中基于地铁站点间的客流迁移关系构建图结构传播张量模型,提取了跨站点时空同步性与突... 城市轨道交通系统对客流预测的实时性与精度提出更高要求,手机信令数据具备覆盖广泛、更新频繁、稳定连续等特点,可有效支撑地铁客流的动态建模。文中基于地铁站点间的客流迁移关系构建图结构传播张量模型,提取了跨站点时空同步性与突变行为特征,设计了图卷积与时序递归融合的神经网络结构,构建了面向短中长期的多层次输出机制。实验结果表明,该模型在多尺度下具备较高预测精度与良好泛化能力。 展开更多
关键词 手机信令数据 地铁客流 图神经网络 时空建模
在线阅读 下载PDF
LSTM-MSTCN-XGBoost混合模型的时空数据特征挖掘
18
作者 李阳政 易吉良 《现代电子技术》 北大核心 2025年第16期157-160,共4页
时空数据因具有时空关联性与动态演化性,导致特征挖掘难度大。目前单一维度分析方法难以全面捕捉时空数据的长短期变化特征,易使关键信息丢失。为此,提出一种基于LSTM-MSTCN-XGBoost混合模型的时空数据特征挖掘方法。用OWL对时空数据进... 时空数据因具有时空关联性与动态演化性,导致特征挖掘难度大。目前单一维度分析方法难以全面捕捉时空数据的长短期变化特征,易使关键信息丢失。为此,提出一种基于LSTM-MSTCN-XGBoost混合模型的时空数据特征挖掘方法。用OWL对时空数据进行形式化建模,由LSTM与MSTCN模型分别挖掘长短期特征,输入XGBoost模型融合并输出特征模式识别结果。实验结果表明,所提方法提取的时空数据特征全局时空Moran′s I指数超过0.9,在交通时空数据挖掘中对拥堵特征的刻画也更贴合实际,可为时空数据挖掘及智能决策提供有效途径。 展开更多
关键词 时空数据 特征挖掘 LSTM模型 MSTCN模型 XGBoost模型 OWL形式化建模
在线阅读 下载PDF
Reconstruction of dissolved oxygen in the tropical Pacific Ocean for past 100 years based on XGBoost
19
作者 Jingjing Shen Bin Lu +1 位作者 Lei Zhou Xiaoying Gan 《Acta Oceanologica Sinica》 2025年第8期194-206,共13页
Oceanic dissolved oxygen(DO)in the ocean has an indispensable role on supporting biological respiration,maintaining ecological balance and promoting nutrient cycling.According to existing research,the total DO has dec... Oceanic dissolved oxygen(DO)in the ocean has an indispensable role on supporting biological respiration,maintaining ecological balance and promoting nutrient cycling.According to existing research,the total DO has declined by 2%of the total over the past 50 a,and the tropical Pacific Ocean occupied the largest oxygen minimum zone(OMZ)areas.However,the sparse observation data is limited to understanding the dynamic variation and trend of ocean using traditional interpolation methods.In this study,we applied different machine learning algorithms to fit regression models between measured DO,ocean reanalysis physical variables,and spatiotemporal variables.We demonstrate that extreme gradient boosting(XGBoost)model has the best performance,hereby reconstructing a four-dimensional DO dataset of the tropical Pacific Ocean from 1920 to 2023.The results reveal that XGBoost significantly improves the reconstruction performance in the tropical Pacific Ocean,with a 35.3%reduction in root mean-squared error and a 39.5%decrease in mean absolute error.Additionally,we compare the results with three Coupled Model Intercomparison Project Phase 6(CMIP6)models data to confirm the high accuracy of the 4-dimensional reconstruction.Overall,the OMZ mainly dominates the eastern tropical Pacific Ocean,with a slow expansion.This study used XGBoost to efficiently reconstructing 4-dimensional DO enhancing the understanding of the hypoxic expansion in the tropical Pacific Ocean and we foresee that this approach would be extended to reconstruct more ocean elements. 展开更多
关键词 dissolved oxygen(DO) machine learning spatiotemporal data modeling tropical Pacific Ocean
在线阅读 下载PDF
基于多源时空数据的城市公交站点地理空间优化方法:冗余优化模型
20
作者 李霄 王少华 +4 位作者 梁浩健 周亮 刘畅 王润桥 苏澄 《地球信息科学学报》 北大核心 2025年第8期1822-1840,共19页
【目的】可持续发展是全球各国发展的核心议题,涵盖了可持续的交通体系、包容和可持续的城市化等重要内容。作为城市公共服务设施的重要组成部分,公交网络是城市稳定运行的基石,其站点与线路的分布直接影响居民的出行方式。现有研究多... 【目的】可持续发展是全球各国发展的核心议题,涵盖了可持续的交通体系、包容和可持续的城市化等重要内容。作为城市公共服务设施的重要组成部分,公交网络是城市稳定运行的基石,其站点与线路的分布直接影响居民的出行方式。现有研究多聚焦于公交站点与线路的可达性分析、选址优化以及与人口、土地利用等因素的空间耦合关系,但在面对城市空间异质性和设施冗余问题时,仍存在优化深度不足、影响机制不清等问题。【方法】本文以北京市为例,重点关注北京东城区、西城区,本研究基于公交网络、地形、经济等多源数据,构建影响因素体系,并采用XGBoost机器学习方法,揭示驱动因子对公交站点分布的影响权重。在此基础上,提出了考虑站点冗余的数学模型,优化上下行站点的空间布局,绘制北京市公交站点空间优化布局图。【结果】研究结果表明:(1)北京市公交设施分布存在不均衡现象,中心城区与边缘区域在便捷公共交通可达人口比例上相差超过30%;(2)在19类影响因素中,人口密度为核心驱动因子,占比27.77%,风景名胜数量和停车场数量的影响较小,特征重要性不足0.5%;(3)与p-中值模型相比,所提出的冗余优化模型显著减少了优化后站点的冗余程度,同时兼顾了加权距离最小化的性能,优化后的站点布局沿着原有公交线路分布且更加均匀。【结论】该研究结果可以为公交站点及其他公共服务设施布局提供一定的参考与理论支撑,有助于提升公共资源利用效率,促进城市可持续发展。 展开更多
关键词 可持续交通 地理空间优化 空间特征分析 步行可达性 冗余优化模型 公交站点 多源时空数据
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部