A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter ident...A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter identification is derived on the basis of the characteristics of the modulation function.The transformation of the differential equation model of a continuous system into a general algebraic equation model is effectively achieved,thereby avoiding the influence of errors introduced by the initial value and differential derivation of the system.Modulation function method parameter identification models have been established for single-degree-of-freedom and multi-degree-of-freedom magnetic levitation bearing rotor systems.The influence of different parameters of Hartley modulation function on the accuracy of system parameter identification has been investigated,thus providing a basis for the design of Hartley modulation function parameters.Simulation and experimental results demonstrate that the modulation function method can effectively identify system parameters despite the presence of system noise.展开更多
The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches...The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.展开更多
Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-no...Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.展开更多
To classify the frequency modulation signal, this paper employs a parameter invariant filter, which can transfer the frequency modulated information to variety of its envelope, and then extracts the histogram feature ...To classify the frequency modulation signal, this paper employs a parameter invariant filter, which can transfer the frequency modulated information to variety of its envelope, and then extracts the histogram feature to classify the modulation type. This method can efficiently classify the type of a signal such as frequency modulation (FM), binary frequency shift keyiing (BFSK), quadrature frequency shift keying (QFSK), 8-ary frequency shift keying (8FSK), etc. It can easily be realized and is especially suitable to applications in software radio.展开更多
As the competition for marine resources is increasingly fierce,the security of underwater acoustic communication has attracted a great deal of attention.The information and location of the communicating platform can b...As the competition for marine resources is increasingly fierce,the security of underwater acoustic communication has attracted a great deal of attention.The information and location of the communicating platform can be leaked during the traditional underwater acoustic communication technology.According to the unique advantages of chaos communication,we put forward a novel communication scheme using complex parameter modulation and the complex Lorenz system.Firstly,we design a feedback controller and parameter update laws in a complex-variable form with rigorous mathematical proofs(while many previous references on the real-variable form were only special cases in which the imaginary part was zero),which can be realized in practical engineering;then we design a new communication scheme employing parameter modulation.The main parameter spaces of the complex Lorenz system are discussed,then they are adopted in our communication scheme.We also find that there exist parametric attractors in the complex Lorenz system.We make numerical simulations in two channels for digital signals and the simulations verify our conclusions.展开更多
Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity....Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity.A simulation method of aerial&space targets echo characteristics(A&STEC)is proposed that is universal to aerial and space targets.We utilize a fixed-wing UAV(unmanned aerial vehicle)and typical missiles in simulation.The echo signal modulation characteristic parameters are calculated theoretically by the atmospheric attenuation model,the finite element method and a MUMPS solver.The verification simulations show that this method can analyze the influence of the target shape,incident direction,detection position and detection frequency on echo waveform,intensity and energy distribution.The results show that the profile of echo waveform can invert the general shape of the target.The relationship between time and intensity can determine whether the target is moving towards or away from the detector in addition.These conclusions can provide a reference for the ballistic missile target tracking and the defense against UVA intrusion in theory.展开更多
In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter e...In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.展开更多
<span style="font-family:Verdana;">In this article, the effect of temperature on the photovoltaic parameters of mono-crystalline silicon Photovoltaic Panel is undertaken, using the Matlab environment w...<span style="font-family:Verdana;">In this article, the effect of temperature on the photovoltaic parameters of mono-crystalline silicon Photovoltaic Panel is undertaken, using the Matlab environment with varying module temperature in the range 25°C - 60°C at constant solar irradiations 200 - 500 W/m</span><sup><span style="font-family:Verdana;">2</span><span></span></sup><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> The results show that the temperature has a significant impact on the various parameters of the photovoltaic panel and it controls the quality and performance of the solar panel</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> The photovoltaic</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span><span style="font-family:Verdana;">parameters are the current of short circuit </span><i></i></span><i><i><span><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">sc</span></sub></span></i><span></span></i><span style="font-family:Verdana;">, the open circuit voltage </span><i></i></span><i><i><span><span style="font-family:Verdana;">V</span><sub><span style="font-family:Verdana;">co</span></sub></span></i><span></span></i><span style="font-family:Verdana;">, the form factor FF, the maximum power </span><i><i><span><span style="font-family:Verdana;">P</span><sub></sub></span></i><i><span style="font-family:Verdana;"><sub>max</sub></span></i><i><span></span></i><span></span></i><span style="font-family:Verdana;"> as well as efficiency. The relative change of these photovoltaic parameters with temperature is also evaluated in this article. A DS-100M solar panel has been used as reference model. The results show also that the open circuit voltage, maximum power, fill factor and efficiency decrease with temperature</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> but the short circuit current increase</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> with temperature</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> Th</span><span style="font-family:Verdana;">e</span><span style="font-family:Verdana;"> results are in good agreement with the available literature.</span>展开更多
It is now well known that amplitude modulated(AM) high frequency(HF) radio wave transmissions into the ionosphere can be used to generate very/extremely low frequency(VLF/ELF) radio waves using the so-called ‘electro...It is now well known that amplitude modulated(AM) high frequency(HF) radio wave transmissions into the ionosphere can be used to generate very/extremely low frequency(VLF/ELF) radio waves using the so-called ‘electrojet antenna’. Duty cycle and heating frequency are analyzed and discussed with the lower-ionosphere modulated heating model, so as to improve the radiation efficiency of VLF/ELF waves in AM ionospheric heating experiments. Based on numerical simulation, the ranges of parametric selectivity in optimal duty cycle and heating frequency( fHF) are derived. The International Reference Ionosphere 2015(IRI-2015) model and two-parameter model are used to predict background electron density profiles, and optimized ranges of duty cycle for different density profiles are analyzed and compared. The influences of wave polarizations on optimal duty cycle are also discussed. It is shown that intensity of the VLF/ELF equivalent radiation source(M) firstly rises and then falls with the increase of duty cycle. When using the IRI model, M peaks at a duty cycle of 50%, optimally ranging from 40%-70%. For the two-parameter model case, an optimal duty cycle is 40% and the optimized ranges vary from 30%-60%. Heating with an X-mode polarization is more efficient than with the O-mode case in VLF/ELF wave generation. Nevertheless, an optimal duty cycle is almost independent of HF wave polarizations. To obtain better VLF/ELF generation, optional fHFmay be 0.8-0.9 times of foE for the O-mode heating and 0.75-0.85 times for the X-mode polarization case. Finally, the variations of these two parameters in different latitudes are discussed.展开更多
An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integratio...An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integration,an equivalent discrete identification model which is parameterized with continuous-time model parameters is developed,and the parameters can be estimated by the least-squares (LS) algorithm.Even with white noises in input and output measurement data,the LS estimate is biased,and the bias is determined by the variances of noises.According to the asymptotic analysis,the relationship between bias and noise variances is derived.One equation relating to the measurement noise variances is derived through the analysis of the LS errors.Increasing the degree of denominator of the system transfer function by one,an extended model is constructed.By comparing the true value and LS estimates of the parameters between original and extended model,another equation with input and output noise variances is formulated.So,the noise variances are resolved by the set of equations,the LS bias is eliminated and the unbiased estimates of system parameters are obtained.A simulation example by comparing the standard LS with bias eliminating LS algorithm indicates that the proposed algorithm is an efficient method with noisy input and output measurements.展开更多
A numerical model of thermoelectric module (TEM) is created by academic analysis,and the impacts of the resistance ratio and thermoelement size on the output power and thermoelectric efficiency of the TEM are analyz...A numerical model of thermoelectric module (TEM) is created by academic analysis,and the impacts of the resistance ratio and thermoelement size on the output power and thermoelectric efficiency of the TEM are analyzed by the MATLAB numerical calculation.The numerical model is validated by the ANSYS thermal,electrical,and structural coupling simulation.The effects of the variable physical property parameters and contact effect on the output power and thermoelectric efficiency are evaluated,and the concept of aspect ratio optimal domain is proposed,which provides a new design approach for the TEM.展开更多
Polarization coding is a specific encoding method by using the polarization state of optical signal carrying coded in- formation. It focuses on nonlinear effects, polarization mode dispersion and other issues in high-...Polarization coding is a specific encoding method by using the polarization state of optical signal carrying coded in- formation. It focuses on nonlinear effects, polarization mode dispersion and other issues in high-speed fiber-optic communi- cations. This paper presents a measurement method for polarization state based on elastic-optic modulator. This method not only retains the original advantages of elastic-optic modulator for polarization measurement, but also overcomes the defects of existing methods including high modulation frequency and invalid collection by using array detector. Matlab simulation and experimental verification scheme are given. The feasibility of this method is verified through theoretical analysis, and simulation and experimental results are carried out. The error analysis of the measurement results shows that the method can meet the measurement requirements and provide conditions for using the polarization encoding in high-speed communication.展开更多
A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. T...A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.展开更多
Modulation signal classification in communication systems can be considered a pattern recognition problem.Earlier works have focused on several feature extraction approaches such as fractal feature,signal constellatio...Modulation signal classification in communication systems can be considered a pattern recognition problem.Earlier works have focused on several feature extraction approaches such as fractal feature,signal constellation reconstruction,etc.The recent advent of deep learning(DL)models makes it possible to proficiently classify the modulation signals.In this view,this study designs a chaotic oppositional satin bowerbird optimization(COSBO)with bidirectional long term memory(BiLSTM)model for modulation signal classification in communication systems.The proposed COSBO-BiLSTM technique aims to classify the different kinds of digitally modulated signals.In addition,the fractal feature extraction process takes place by the use of Sevcik Fractal Dimension(SFD)approach.Moreover,the modulation signal classification process takes place using BiLSTM with fully convolutional network(BiLSTM-FCN).Furthermore,the optimal hyperparameter adjustment of the BiLSTM-FCN technique takes place by the use of COSBO algorithm.In order to ensure the enhanced classification performance of the COSBO-BiLSTM model,a wide range of simulations were carried out.The experimental results highlighted that the COSBO-BiLSTM technique has accomplished improved performance over the existing techniques.展开更多
In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propa...In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).展开更多
To meet the actual requirement of automatic monitoring of the shortwave signals under wide band ranges, a technique for automatic recognition is studied in this paper. And basing upon the spectrum and modulation chara...To meet the actual requirement of automatic monitoring of the shortwave signals under wide band ranges, a technique for automatic recognition is studied in this paper. And basing upon the spectrum and modulation characters of amplitude modulation (AM) signals, an automatic recognition scheme for AM signals is proposed. The proposed scheme is achieved by a joint judgment with four different characteristic parameters. Experiment results indicate that the proposed scheme can effectively recognize AM signals in practice.展开更多
A fast parameter estimation algorithm is discussed for a polyphase coded Continuous Waveform(CW) signal in Additive White Gaussian Noise(AWGN).The proposed estimator is based on the sum of the modulus square of the am...A fast parameter estimation algorithm is discussed for a polyphase coded Continuous Waveform(CW) signal in Additive White Gaussian Noise(AWGN).The proposed estimator is based on the sum of the modulus square of the ambiguity function at the different Doppler shifts.An iterative refinement stage is proposed to avoid the effect of the spurious peaks that arise when the summation length of the estimator exceeds the subcode duration.The theoretical variance of the subcode rate estimate is derived.The Monte-Carlo simulation results show that the proposed estimator is highly accurate and effective at moderate Signal-to-Noise Ratio(SNR).展开更多
This paper starts with untime-diversification of the time-diversification deformation model and gives displacement distribution model of untime-diversification and simplifies further the study of deformation model. Th...This paper starts with untime-diversification of the time-diversification deformation model and gives displacement distribution model of untime-diversification and simplifies further the study of deformation model. The paper discusses the problem of least squares fitting of coordinate parameters model—parameters of deformation model. During discussion, the basic means of cubic B splines and two steps of multidimensional disorder datum fitting are adopted which can make fitting function calculated mostly approximate coordinate parameters model and it can make calculation easier.展开更多
Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) proces...Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.展开更多
Aiming at solving the problem of strong coupling characteristic of the key parameters of high-speed pneumatic pulse width modulation( PWM) on / off valve, a general lumped parameter mathematical model based on the val...Aiming at solving the problem of strong coupling characteristic of the key parameters of high-speed pneumatic pulse width modulation( PWM) on / off valve, a general lumped parameter mathematical model based on the valves time periods was well developed. With this model,the mass flow rate and dynamic pressure characteristics of constant volumes controlled by high-speed pneumatic PWM on /off valves was well described. A variable flow rate coefficient model was proposed to substitute for the constant one used in most of the prior works to investigate PWM on /off valves' dynamical pressure response, and a formula for disclosing the inherent relationship among the PWM command signal,static mass flow rate,and sonic conductance of the valve was newly derived.Finally,an extensive set of analytical experimental comparisons were implemented to verify the validity of the proposed mathematica model. With the proposed model, PWM on /off valves' characteristics,such as mass flow rate,step pressure response of the valve control system,mean pressure and ripple amplitude,not only in the linear range,but also in the nonlinear range can be wel predicted; Good agreement between measured and calculated results was obtained,which proved that the model is helpful for designing a control strategy in a closed loop control system.展开更多
基金supported by the National Science and Technology Major Project(Grant No.J2019-Ⅳ-0003-0070).
文摘A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter identification is derived on the basis of the characteristics of the modulation function.The transformation of the differential equation model of a continuous system into a general algebraic equation model is effectively achieved,thereby avoiding the influence of errors introduced by the initial value and differential derivation of the system.Modulation function method parameter identification models have been established for single-degree-of-freedom and multi-degree-of-freedom magnetic levitation bearing rotor systems.The influence of different parameters of Hartley modulation function on the accuracy of system parameter identification has been investigated,thus providing a basis for the design of Hartley modulation function parameters.Simulation and experimental results demonstrate that the modulation function method can effectively identify system parameters despite the presence of system noise.
基金Project supported by the National Natural Science Foundation of China (Grant No. U22B2095)the Civil Aerospace Technology Research Project (Grant No. D010103)。
文摘The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.
基金the National Natural Science Foundation of China(Grant Nos.61973037 and 61673066).
文摘Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.
基金Project supported by National High-Technology Research and De-velopment Program(Grant No .863 -2002AA119010)
文摘To classify the frequency modulation signal, this paper employs a parameter invariant filter, which can transfer the frequency modulated information to variety of its envelope, and then extracts the histogram feature to classify the modulation type. This method can efficiently classify the type of a signal such as frequency modulation (FM), binary frequency shift keyiing (BFSK), quadrature frequency shift keying (QFSK), 8-ary frequency shift keying (8FSK), etc. It can easily be realized and is especially suitable to applications in software radio.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1806202,61773010,and 61903207)the International Collaborative Research Project of Qilu University of Technology(Grant No.QLUTGJHZ2018020)Major Scientific and Technological Innovation Projects of Shandong Province,China(Grant Nos.2019JZZY010731 and 2020CXGC010901).
文摘As the competition for marine resources is increasingly fierce,the security of underwater acoustic communication has attracted a great deal of attention.The information and location of the communicating platform can be leaked during the traditional underwater acoustic communication technology.According to the unique advantages of chaos communication,we put forward a novel communication scheme using complex parameter modulation and the complex Lorenz system.Firstly,we design a feedback controller and parameter update laws in a complex-variable form with rigorous mathematical proofs(while many previous references on the real-variable form were only special cases in which the imaginary part was zero),which can be realized in practical engineering;then we design a new communication scheme employing parameter modulation.The main parameter spaces of the complex Lorenz system are discussed,then they are adopted in our communication scheme.We also find that there exist parametric attractors in the complex Lorenz system.We make numerical simulations in two channels for digital signals and the simulations verify our conclusions.
文摘Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity.A simulation method of aerial&space targets echo characteristics(A&STEC)is proposed that is universal to aerial and space targets.We utilize a fixed-wing UAV(unmanned aerial vehicle)and typical missiles in simulation.The echo signal modulation characteristic parameters are calculated theoretically by the atmospheric attenuation model,the finite element method and a MUMPS solver.The verification simulations show that this method can analyze the influence of the target shape,incident direction,detection position and detection frequency on echo waveform,intensity and energy distribution.The results show that the profile of echo waveform can invert the general shape of the target.The relationship between time and intensity can determine whether the target is moving towards or away from the detector in addition.These conclusions can provide a reference for the ballistic missile target tracking and the defense against UVA intrusion in theory.
基金Project supported by the National Natural Science Foundation of China(Grant No.61973037)。
文摘In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.
文摘<span style="font-family:Verdana;">In this article, the effect of temperature on the photovoltaic parameters of mono-crystalline silicon Photovoltaic Panel is undertaken, using the Matlab environment with varying module temperature in the range 25°C - 60°C at constant solar irradiations 200 - 500 W/m</span><sup><span style="font-family:Verdana;">2</span><span></span></sup><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> The results show that the temperature has a significant impact on the various parameters of the photovoltaic panel and it controls the quality and performance of the solar panel</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> The photovoltaic</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span><span style="font-family:Verdana;">parameters are the current of short circuit </span><i></i></span><i><i><span><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">sc</span></sub></span></i><span></span></i><span style="font-family:Verdana;">, the open circuit voltage </span><i></i></span><i><i><span><span style="font-family:Verdana;">V</span><sub><span style="font-family:Verdana;">co</span></sub></span></i><span></span></i><span style="font-family:Verdana;">, the form factor FF, the maximum power </span><i><i><span><span style="font-family:Verdana;">P</span><sub></sub></span></i><i><span style="font-family:Verdana;"><sub>max</sub></span></i><i><span></span></i><span></span></i><span style="font-family:Verdana;"> as well as efficiency. The relative change of these photovoltaic parameters with temperature is also evaluated in this article. A DS-100M solar panel has been used as reference model. The results show also that the open circuit voltage, maximum power, fill factor and efficiency decrease with temperature</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> but the short circuit current increase</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> with temperature</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> Th</span><span style="font-family:Verdana;">e</span><span style="font-family:Verdana;"> results are in good agreement with the available literature.</span>
基金supported by the Innovation Fund of China Electronics Technology Group Corporation (No. KJ1602004)
文摘It is now well known that amplitude modulated(AM) high frequency(HF) radio wave transmissions into the ionosphere can be used to generate very/extremely low frequency(VLF/ELF) radio waves using the so-called ‘electrojet antenna’. Duty cycle and heating frequency are analyzed and discussed with the lower-ionosphere modulated heating model, so as to improve the radiation efficiency of VLF/ELF waves in AM ionospheric heating experiments. Based on numerical simulation, the ranges of parametric selectivity in optimal duty cycle and heating frequency( fHF) are derived. The International Reference Ionosphere 2015(IRI-2015) model and two-parameter model are used to predict background electron density profiles, and optimized ranges of duty cycle for different density profiles are analyzed and compared. The influences of wave polarizations on optimal duty cycle are also discussed. It is shown that intensity of the VLF/ELF equivalent radiation source(M) firstly rises and then falls with the increase of duty cycle. When using the IRI model, M peaks at a duty cycle of 50%, optimally ranging from 40%-70%. For the two-parameter model case, an optimal duty cycle is 40% and the optimized ranges vary from 30%-60%. Heating with an X-mode polarization is more efficient than with the O-mode case in VLF/ELF wave generation. Nevertheless, an optimal duty cycle is almost independent of HF wave polarizations. To obtain better VLF/ELF generation, optional fHFmay be 0.8-0.9 times of foE for the O-mode heating and 0.75-0.85 times for the X-mode polarization case. Finally, the variations of these two parameters in different latitudes are discussed.
基金Project(50875028) supported by the National Natural Science Foundation of China
文摘An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integration,an equivalent discrete identification model which is parameterized with continuous-time model parameters is developed,and the parameters can be estimated by the least-squares (LS) algorithm.Even with white noises in input and output measurement data,the LS estimate is biased,and the bias is determined by the variances of noises.According to the asymptotic analysis,the relationship between bias and noise variances is derived.One equation relating to the measurement noise variances is derived through the analysis of the LS errors.Increasing the degree of denominator of the system transfer function by one,an extended model is constructed.By comparing the true value and LS estimates of the parameters between original and extended model,another equation with input and output noise variances is formulated.So,the noise variances are resolved by the set of equations,the LS bias is eliminated and the unbiased estimates of system parameters are obtained.A simulation example by comparing the standard LS with bias eliminating LS algorithm indicates that the proposed algorithm is an efficient method with noisy input and output measurements.
基金Funded by Guangdong Natural Science Foundation (No.00355991220615019)
文摘A numerical model of thermoelectric module (TEM) is created by academic analysis,and the impacts of the resistance ratio and thermoelement size on the output power and thermoelectric efficiency of the TEM are analyzed by the MATLAB numerical calculation.The numerical model is validated by the ANSYS thermal,electrical,and structural coupling simulation.The effects of the variable physical property parameters and contact effect on the output power and thermoelectric efficiency are evaluated,and the concept of aspect ratio optimal domain is proposed,which provides a new design approach for the TEM.
文摘Polarization coding is a specific encoding method by using the polarization state of optical signal carrying coded in- formation. It focuses on nonlinear effects, polarization mode dispersion and other issues in high-speed fiber-optic communi- cations. This paper presents a measurement method for polarization state based on elastic-optic modulator. This method not only retains the original advantages of elastic-optic modulator for polarization measurement, but also overcomes the defects of existing methods including high modulation frequency and invalid collection by using array detector. Matlab simulation and experimental verification scheme are given. The feasibility of this method is verified through theoretical analysis, and simulation and experimental results are carried out. The error analysis of the measurement results shows that the method can meet the measurement requirements and provide conditions for using the polarization encoding in high-speed communication.
文摘A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.
文摘Modulation signal classification in communication systems can be considered a pattern recognition problem.Earlier works have focused on several feature extraction approaches such as fractal feature,signal constellation reconstruction,etc.The recent advent of deep learning(DL)models makes it possible to proficiently classify the modulation signals.In this view,this study designs a chaotic oppositional satin bowerbird optimization(COSBO)with bidirectional long term memory(BiLSTM)model for modulation signal classification in communication systems.The proposed COSBO-BiLSTM technique aims to classify the different kinds of digitally modulated signals.In addition,the fractal feature extraction process takes place by the use of Sevcik Fractal Dimension(SFD)approach.Moreover,the modulation signal classification process takes place using BiLSTM with fully convolutional network(BiLSTM-FCN).Furthermore,the optimal hyperparameter adjustment of the BiLSTM-FCN technique takes place by the use of COSBO algorithm.In order to ensure the enhanced classification performance of the COSBO-BiLSTM model,a wide range of simulations were carried out.The experimental results highlighted that the COSBO-BiLSTM technique has accomplished improved performance over the existing techniques.
基金supported by the Regional Joint Fund for Basic and Applied Basic Research of Guangdong Province(2019B1515120009)the Defense Basic Scientific Research Program(61424132005).
文摘In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).
文摘To meet the actual requirement of automatic monitoring of the shortwave signals under wide band ranges, a technique for automatic recognition is studied in this paper. And basing upon the spectrum and modulation characters of amplitude modulation (AM) signals, an automatic recognition scheme for AM signals is proposed. The proposed scheme is achieved by a joint judgment with four different characteristic parameters. Experiment results indicate that the proposed scheme can effectively recognize AM signals in practice.
文摘A fast parameter estimation algorithm is discussed for a polyphase coded Continuous Waveform(CW) signal in Additive White Gaussian Noise(AWGN).The proposed estimator is based on the sum of the modulus square of the ambiguity function at the different Doppler shifts.An iterative refinement stage is proposed to avoid the effect of the spurious peaks that arise when the summation length of the estimator exceeds the subcode duration.The theoretical variance of the subcode rate estimate is derived.The Monte-Carlo simulation results show that the proposed estimator is highly accurate and effective at moderate Signal-to-Noise Ratio(SNR).
文摘This paper starts with untime-diversification of the time-diversification deformation model and gives displacement distribution model of untime-diversification and simplifies further the study of deformation model. The paper discusses the problem of least squares fitting of coordinate parameters model—parameters of deformation model. During discussion, the basic means of cubic B splines and two steps of multidimensional disorder datum fitting are adopted which can make fitting function calculated mostly approximate coordinate parameters model and it can make calculation easier.
文摘Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.
基金National Natural Science Foundation of China(No.51205362)Zhejiang Provincial National Science Foundation of China(No.LQ12E05017)
文摘Aiming at solving the problem of strong coupling characteristic of the key parameters of high-speed pneumatic pulse width modulation( PWM) on / off valve, a general lumped parameter mathematical model based on the valves time periods was well developed. With this model,the mass flow rate and dynamic pressure characteristics of constant volumes controlled by high-speed pneumatic PWM on /off valves was well described. A variable flow rate coefficient model was proposed to substitute for the constant one used in most of the prior works to investigate PWM on /off valves' dynamical pressure response, and a formula for disclosing the inherent relationship among the PWM command signal,static mass flow rate,and sonic conductance of the valve was newly derived.Finally,an extensive set of analytical experimental comparisons were implemented to verify the validity of the proposed mathematica model. With the proposed model, PWM on /off valves' characteristics,such as mass flow rate,step pressure response of the valve control system,mean pressure and ripple amplitude,not only in the linear range,but also in the nonlinear range can be wel predicted; Good agreement between measured and calculated results was obtained,which proved that the model is helpful for designing a control strategy in a closed loop control system.