Because the hydraulic directional valve usually works in a bad working environment and is disturbed by multi-factor noise,the traditional single sensor monitoring technology is difficult to use for an accurate diagnos...Because the hydraulic directional valve usually works in a bad working environment and is disturbed by multi-factor noise,the traditional single sensor monitoring technology is difficult to use for an accurate diagnosis of it.Therefore,a fault diagnosis method based on multi-sensor information fusion is proposed in this paper to reduce the inaccuracy and uncertainty of traditional single sensor information diagnosis technology and to realize accurate monitoring for the location or diagnosis of early faults in such valves in noisy environments.Firstly,the statistical features of signals collected by the multi-sensor are extracted and the depth features are obtained by a convolutional neural network(CNN)to form a complete and stable multi-dimensional feature set.Secondly,to obtain a weighted multi-dimensional feature set,the multi-dimensional feature sets of similar sensors are combined,and the entropy weight method is used to weight these features to reduce the interference of insensitive features.Finally,the attention mechanism is introduced to improve the dual-channel CNN,which is used to adaptively fuse the weighted multi-dimensional feature sets of heterogeneous sensors,to flexibly select heterogeneous sensor information so as to achieve an accurate diagnosis.Experimental results show that the weighted multi-dimensional feature set obtained by the proposed method has a high fault-representation ability and low information redundancy.It can diagnose simultaneously internal wear faults of the hydraulic directional valve and electromagnetic faults of actuators that are difficult to diagnose by traditional methods.This proposed method can achieve high fault-diagnosis accuracy under severe working conditions.展开更多
Retired batteries for secondary use offer significant economic benefits and environmental value.Accurate sorting of retired batteries with diverse characteristics can further enhance their application efficiency.Howev...Retired batteries for secondary use offer significant economic benefits and environmental value.Accurate sorting of retired batteries with diverse characteristics can further enhance their application efficiency.However,in practical sorting processes,the presence of redundant features,noise interference,and distribution discrepancies in the data severely limits the accuracy of sorting outcomes.To address these challenges,this paper proposes an enhanced retired battery sorting strategy that incorporates feature selection and a clustering algorithm,aiming to optimize the sorting process from the perspective of feature data.To address feature redundancy and high dimensionality issues,this paper proposes an entropy screening method.The Local Outlier Factor algorithm is used to remove anomalous samples.Subsequently,an ensemble clustering approach is developed based on Kmeans,Density-Based Spatial Clustering of Applications with Noise,Gaussian Mixture Model,and Spectral clustering,to handle diverse data distributions.The proposed method is validated on 100 retired batteries as well as the large-scale dataset.Additionally,its strong sorting capability and engineering applicability are further demonstrated through carefully designed aging-controlled experiments.展开更多
This paper proposes an event-based two-stage Nonintrusive load monitoring(NILM)method involving multidimensional features,which is an essential technology for energy savings and management.First,capture appliance even...This paper proposes an event-based two-stage Nonintrusive load monitoring(NILM)method involving multidimensional features,which is an essential technology for energy savings and management.First,capture appliance events using a goodness of fit test and then pair the on-off events.Then the multi-dimensional features are extracted to establish a feature library.In the first stage identification,several groups of events for the appliance have been divided,according to three features,including phase,steady active power and power peak.In the second stage identification,a“one against the rest”support vector machine(SVM)model for each group is established to precisely identify the appliances.The proposed method is verified by using a public available dataset;the results show that the proposed method contains high generalization ability,less computation,and less training samples.展开更多
AIM:To investigate the clinical features and prognosis of patients with orbital inflammatory myofibroblastic tumor(IMT).METHODS:This retrospective study collected clinical data from 22 patients diagnosed with orbital ...AIM:To investigate the clinical features and prognosis of patients with orbital inflammatory myofibroblastic tumor(IMT).METHODS:This retrospective study collected clinical data from 22 patients diagnosed with orbital IMT based on histopathological examination.The patients were followed up to assess their prognosis.Clinical data from patients,including age,gender,course of disease,past medical history,primary symptoms,ophthalmologic examination findings,general condition,as well as imaging,laboratory,histopathological,and immunohistochemical results from digital records were collected.Orbital magnetic resonance imaging(MRI)and(or)computed tomography(CT)scans were performed to assess bone destruction of the mass,invasion of surrounding tissues,and any inflammatory changes in periorbital areas.RESULTS:The mean age of patients with orbital IMT was 28.24±3.30y,with a male-to-female ratio of 1.2:1.Main clinical manifestations were proptosis,blurred vision,palpable mass,and pain.Bone destruction and surrounding tissue invasion occurred in 72.73%and 54.55%of cases,respectively.Inflammatory changes in the periorbital site were observed in 77.27%of the patients.Hematoxylin and eosin staining showed proliferation of fibroblasts and myofibroblasts,accompanied by infiltration of lymphocytes and plasma cells.Immunohistochemical staining revealed that smooth muscle actin(SMA)and vimentin were positive in 100%of cases,while anaplastic lymphoma kinase(ALK)showed positivity in 47.37%.The recurrence rate of orbital IMT was 27.27%,and sarcomatous degeneration could occur.There were no significant correlations between recurrence and factors such as age,gender,laterality,duration of the disease,periorbital tissue invasion,bone destruction,periorbital inflammation,tumor size,fever,leukocytosis,or treatment(P>0.05).However,lymphadenopathy and a Ki-67 index of 10%or higher may be risk factors for recurrence(P=0.046;P=0.023).CONCLUSION:Orbital IMT is a locally invasive disease that may recur or lead to sarcomatoid degeneration,primarily affecting young and middle-aged patients.The presence of lymphadenopathy and a Ki-67 index of 10%or higher may signify a poor prognosis.展开更多
BACKGROUND SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma is a highly aggressive tumor,and spontaneous splenic rupture(SSR)as its presenting manifestation is rarely reported among pancreatic mal...BACKGROUND SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma is a highly aggressive tumor,and spontaneous splenic rupture(SSR)as its presenting manifestation is rarely reported among pancreatic malignancies.CASE SUMMARY We herein report a rare case of a 59-year-old female who presented with acute left upper quadrant abdominal pain without any history of trauma.Abdominal imaging demonstrated a heterogeneous splenic lesion with hemoperitoneum,raising clinical suspicion of SSR.Emergency laparotomy revealed a pancreatic tumor invading the spleen and left kidney,with associated splenic rupture and dense adhesions,necessitating en bloc resection of the distal pancreas,spleen,and left kidney.Histopathology revealed a biphasic malignancy composed of moderately differentiated pancreatic ductal adenocarcinoma and an undifferentiated carcinoma with rhabdoid morphology and loss of SMARCB1 expression.Immunohistochemical analysis confirmed complete loss of SMARCB1/INI1 in the undifferentiated component,along with a high Ki-67 index(approximately 80%)and CD10 positivity.The ductal adenocarcinoma component retained SMARCB1/INI1 expression and was positive for CK7 and CK-pan.Transitional zones between the two tumor components suggested progressive dedifferentiation and underlying genomic instability.The patient received adjuvant chemotherapy with gemcitabine and nab-paclitaxel and maintained a satisfactory quality of life at the 6-month follow-up.CONCLUSION This study reports a rare case of SMARCB1/INI1-deficient undifferentiated rhabdoid carcinoma of the pancreas combined with ductal adenocarcinoma,presenting as SSR-an exceptionally uncommon initial manifestation of pancreatic malignancy.展开更多
Community Question Answering(CQA) in web forums, as a classic forum for user communication,provides a large number of high-quality useful answers in comparison with traditional question answering.Development of method...Community Question Answering(CQA) in web forums, as a classic forum for user communication,provides a large number of high-quality useful answers in comparison with traditional question answering.Development of methods to get good, honest answers according to user questions is a challenging task in natural language processing. Many answers are not associated with the actual problem or shift the subjects,and this usually occurs in relatively long answers. In this paper, we enhance answer selection in CQA using multidimensional feature combination and similarity order. We make full use of the information in answers to questions to determine the similarity between questions and answers, and use the text-based description of the answer to determine whether it is a reasonable one. Our work includes two subtasks:(a) classifying answers as good, bad, or potentially associated with a question, and(b) answering YES/NO based on a list of all answers to a question. The experimental results show that our approach is significantly more efficient than the baseline model, and its overall ranking is relatively high in comparison with that of other models.展开更多
To identify recruitment information in different domains, we propose a novel model of hierarchical tree- structured conditional random fields (HT-CRFs). In our ap- proach, first, the concept of a Web object (WOB) ...To identify recruitment information in different domains, we propose a novel model of hierarchical tree- structured conditional random fields (HT-CRFs). In our ap- proach, first, the concept of a Web object (WOB) is discussed for the description of special Web information. Second, in contrast to traditional methods, the Boolean model and multi- rule are introduced to denote a one-dimensional text feature for a better representation of Web objects. Furthermore, a two-dimensional semantic texture feature is developed to dis- cover the layout of a WOB, which can emphasize the struc- tural attributes and the specific semantics term attributes of WOBs. Third, an optimal WOB information extraction (IE) based on HT-CRF is performed, addressing the problem of a model having an excessive dependence on the page structure and optimizing the efficiency of the model's training. Finally, we compare the proposed model with existing decoupled ap- proaches for WOB IE. The experimental results show that the accuracy rate of WOB IE is significantly improved and that time complexity is reduced.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Ela...In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Elatty E.Abd Elgawad Computers,Materials&Continua,2022,Vol.70,No.1,pp.1617–1630.DOI:10.32604/cmc.2022.018621,URL:https://www.techscience.com/cmc/v70n1/44361,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”.展开更多
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ...BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.展开更多
During Donald Trump’s first term,the“Trump Shock”brought world politics into an era of uncertainties and pulled the transatlantic alliance down to its lowest point in history.The Trump 2.0 tsunami brewed by the 202...During Donald Trump’s first term,the“Trump Shock”brought world politics into an era of uncertainties and pulled the transatlantic alliance down to its lowest point in history.The Trump 2.0 tsunami brewed by the 2024 presidential election of the United States has plunged the U.S.-Europe relations into more gloomy waters,ushering in a more complex and turbulent period of adjustment.展开更多
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attack...Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attacks on smart contracts often cause huge economic losses.Since it is difficult to repair and update smart contracts,it is necessary to find the vulnerabilities before they are deployed.However,code analysis,which requires traversal paths,and learning methods,which require many features to be trained,are too time-consuming to detect large-scale on-chain contracts.Learning-based methods will obtain detection models from a feature space compared to code analysis methods such as symbol execution.But the existing features lack the interpretability of the detection results and training model,even worse,the large-scale feature space also affects the efficiency of detection.This paper focuses on improving the detection efficiency by reducing the dimension of the features,combined with expert knowledge.In this paper,a feature extraction model Block-gram is proposed to form low-dimensional knowledge-based features from bytecode.First,the metadata is separated and the runtime code is converted into a sequence of opcodes,which are divided into segments based on some instructions(jumps,etc.).Then,scalable Block-gram features,including 4-dimensional block features and 8-dimensional attribute features,are mined for the learning-based model training.Finally,feature contributions are calculated from SHAP values to measure the relationship between our features and the results of the detection model.In addition,six types of vulnerability labels are made on a dataset containing 33,885 contracts,and these knowledge-based features are evaluated using seven state-of-the-art learning algorithms,which show that the average detection latency speeds up 25×to 650×,compared with the features extracted by N-gram,and also can enhance the interpretability of the detection model.展开更多
The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed...The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.展开更多
Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial...Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.展开更多
Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework...Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework for human gait classification in video sequences using deep learning(DL)fusion assisted and posterior probability-based moth flames optimization(MFO)is proposed.In the first step,the video frames are resized and finetuned by two pre-trained lightweight DL models,EfficientNetB0 and MobileNetV2.Both models are selected based on the top-5 accuracy and less number of parameters.Later,both models are trained through deep transfer learning and extracted deep features fused using a voting scheme.In the last step,the authors develop a posterior probabilitybased MFO feature selection algorithm to select the best features.The selected features are classified using several supervised learning methods.The CASIA-B publicly available dataset has been employed for the experimental process.On this dataset,the authors selected six angles such as 0°,18°,90°,108°,162°,and 180°and obtained an average accuracy of 96.9%,95.7%,86.8%,90.0%,95.1%,and 99.7%.Results demonstrate comparable improvement in accuracy and significantly minimize the computational time with recent state-of-the-art techniques.展开更多
This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses ...This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.展开更多
Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vi...Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vision, attracting the attention of many researchers. However, most HSI SR methods focus on the tradeoff between spatial resolution and spectral information, and cannot guarantee the efficient extraction of image information. In this paper, a multidimensional features network(MFNet) for HSI SR is proposed, which simultaneously learns and fuses the spatial,spectral, and frequency multidimensional features of HSI. Spatial features contain rich local details,spectral features contain the information and correlation between spectral bands, and frequency feature can reflect the global information of the image and can be used to obtain the global context of HSI. The fusion of the three features can better guide image super-resolution, to obtain higher-quality high-resolution hyperspectral images. In MFNet, we use the frequency feature extraction module(FFEM) to extract the frequency feature. On this basis, a multidimensional features extraction module(MFEM) is designed to learn and fuse multidimensional features. In addition, experimental results on two public datasets demonstrate that MFNet achieves state-of-the-art performance.展开更多
Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems,particularly in dynamic and unstructured environments.While recent advancements in deep learni...Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems,particularly in dynamic and unstructured environments.While recent advancements in deep learning have significantly enhanced road scene classification,simultaneously achieving high accuracy,computational efficiency,and adaptability across diverse conditions continues to be difficult.To address these challenges,this study proposes HybridLSTM,a novel and efficient framework that integrates deep learning-based,object-based,and handcrafted feature extraction methods within a unified architecture.HybridLSTM is designed to classify four distinct road scene categories—crosswalk(CW),highway(HW),overpass/tunnel(OP/T),and parking(P)—by leveraging multiple publicly available datasets,including Places-365,BDD100K,LabelMe,and KITTI,thereby promoting domain generalization.The framework fuses object-level features extracted using YOLOv5 and VGG19,scene-level global representations obtained from a modified VGG19,and fine-grained texture features captured through eight handcrafted descriptors.This hybrid feature fusion enables the model to capture both semantic context and low-level visual cues,which are critical for robust scene understanding.To model spatial arrangements and latent sequential dependencies present even in static imagery,the combined features are processed through a Long Short-Term Memory(LSTM)network,allowing the extraction of discriminative patterns across heterogeneous feature spaces.Extensive experiments conducted on 2725 annotated road scene images,with an 80:20 training-to-testing split,validate the effectiveness of the proposed model.HybridLSTM achieves a classification accuracy of 96.3%,a precision of 95.8%,a recall of 96.1%,and an F1-score of 96.0%,outperforming several existing state-of-the-art methods.These results demonstrate the robustness,scalability,and generalization capability of HybridLSTM across varying environments and scene complexities.Moreover,the framework is optimized to balance classification performance with computational efficiency,making it highly suitable for real-time deployment in embedded autonomous driving systems.Future work will focus on extending the model to multi-class detection within a single frame and optimizing it further for edge-device deployments to reduce computational overhead in practical applications.展开更多
Drug resistance remains a major challenge in breast cancer chemotherapy,yet the metabolic alterations underlying this phenomenon are not fully understood.There is much evidence indicating the cellular heterogeneity am...Drug resistance remains a major challenge in breast cancer chemotherapy,yet the metabolic alterations underlying this phenomenon are not fully understood.There is much evidence indicating the cellular heterogeneity among cancer cells,which exhibit varying degrees of metabolic reprogramming and thus may result in differential contributions to drug resistance.A home-built single-cell quantitative mass spectrometry(MS)platform,which integrates micromanipulation and electro-osmotic sampling,was developed to quantitatively profile the tricarboxylic acid(TCA)cycle metabolites at the single-cell level.Using this platform,the metabolic profiles of drug-sensitive MCF-7 breast cancer cells and their drug-resistant derivative MCF-7/ADR cells were compared.This results revealed a selective upregulation of downstream TCA cycle metabolites includingα-ketoglutarate,succinate,fumarate,and malate in drug-resistant cancer cells,while early TCA metabolites remained largely unchanged.Furthermore,notable variations in the abundance of the metabolites were observed in individual cells.The comparative analysis also revealed that not all MCF-7/ADR cells exhibit the same degree of metabolic deviation from the parental line in the metabolites during resistance acquisition.The observed metabolic profiles indicate enhanced glutaminolysis,altered mitochondrial electron transport chain activity,and increased metabolic flexibility in drug-resistant cancer cells that support their survival under chemotherapeutic stress.The findings further suggest the potential for incorporating cellular metabolic heterogeneity into future drug resistance studies.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51805376 and U1709208)the Zhejiang Provincial Natural Science Foundation of China(Nos.LY20E050028 and LD21E050001)。
文摘Because the hydraulic directional valve usually works in a bad working environment and is disturbed by multi-factor noise,the traditional single sensor monitoring technology is difficult to use for an accurate diagnosis of it.Therefore,a fault diagnosis method based on multi-sensor information fusion is proposed in this paper to reduce the inaccuracy and uncertainty of traditional single sensor information diagnosis technology and to realize accurate monitoring for the location or diagnosis of early faults in such valves in noisy environments.Firstly,the statistical features of signals collected by the multi-sensor are extracted and the depth features are obtained by a convolutional neural network(CNN)to form a complete and stable multi-dimensional feature set.Secondly,to obtain a weighted multi-dimensional feature set,the multi-dimensional feature sets of similar sensors are combined,and the entropy weight method is used to weight these features to reduce the interference of insensitive features.Finally,the attention mechanism is introduced to improve the dual-channel CNN,which is used to adaptively fuse the weighted multi-dimensional feature sets of heterogeneous sensors,to flexibly select heterogeneous sensor information so as to achieve an accurate diagnosis.Experimental results show that the weighted multi-dimensional feature set obtained by the proposed method has a high fault-representation ability and low information redundancy.It can diagnose simultaneously internal wear faults of the hydraulic directional valve and electromagnetic faults of actuators that are difficult to diagnose by traditional methods.This proposed method can achieve high fault-diagnosis accuracy under severe working conditions.
基金supported partly by Research Project for Hunan Provincial Department of Education(Grant No.24B0158)partly by the National Natural Science Foundation of China(Grant No.62003288)+1 种基金partly by the Key Project of Research and Development Plan of Hunan Province(Grant No.2023GK2030)partly by the State Key Labora-tory of Advanced Design and Manufacturing Technology for Vehicle(Grant No.72375003).
文摘Retired batteries for secondary use offer significant economic benefits and environmental value.Accurate sorting of retired batteries with diverse characteristics can further enhance their application efficiency.However,in practical sorting processes,the presence of redundant features,noise interference,and distribution discrepancies in the data severely limits the accuracy of sorting outcomes.To address these challenges,this paper proposes an enhanced retired battery sorting strategy that incorporates feature selection and a clustering algorithm,aiming to optimize the sorting process from the perspective of feature data.To address feature redundancy and high dimensionality issues,this paper proposes an entropy screening method.The Local Outlier Factor algorithm is used to remove anomalous samples.Subsequently,an ensemble clustering approach is developed based on Kmeans,Density-Based Spatial Clustering of Applications with Noise,Gaussian Mixture Model,and Spectral clustering,to handle diverse data distributions.The proposed method is validated on 100 retired batteries as well as the large-scale dataset.Additionally,its strong sorting capability and engineering applicability are further demonstrated through carefully designed aging-controlled experiments.
基金supported by the National Science Foundation of China(U2166209,52007126)the Science and Technology Project of State Grid Tibet Electric Power Company(52311020009X)。
文摘This paper proposes an event-based two-stage Nonintrusive load monitoring(NILM)method involving multidimensional features,which is an essential technology for energy savings and management.First,capture appliance events using a goodness of fit test and then pair the on-off events.Then the multi-dimensional features are extracted to establish a feature library.In the first stage identification,several groups of events for the appliance have been divided,according to three features,including phase,steady active power and power peak.In the second stage identification,a“one against the rest”support vector machine(SVM)model for each group is established to precisely identify the appliances.The proposed method is verified by using a public available dataset;the results show that the proposed method contains high generalization ability,less computation,and less training samples.
基金Supported by the National Key R&D Program of China(No.2023YFC2410203)Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support(No.ZLRK202503).
文摘AIM:To investigate the clinical features and prognosis of patients with orbital inflammatory myofibroblastic tumor(IMT).METHODS:This retrospective study collected clinical data from 22 patients diagnosed with orbital IMT based on histopathological examination.The patients were followed up to assess their prognosis.Clinical data from patients,including age,gender,course of disease,past medical history,primary symptoms,ophthalmologic examination findings,general condition,as well as imaging,laboratory,histopathological,and immunohistochemical results from digital records were collected.Orbital magnetic resonance imaging(MRI)and(or)computed tomography(CT)scans were performed to assess bone destruction of the mass,invasion of surrounding tissues,and any inflammatory changes in periorbital areas.RESULTS:The mean age of patients with orbital IMT was 28.24±3.30y,with a male-to-female ratio of 1.2:1.Main clinical manifestations were proptosis,blurred vision,palpable mass,and pain.Bone destruction and surrounding tissue invasion occurred in 72.73%and 54.55%of cases,respectively.Inflammatory changes in the periorbital site were observed in 77.27%of the patients.Hematoxylin and eosin staining showed proliferation of fibroblasts and myofibroblasts,accompanied by infiltration of lymphocytes and plasma cells.Immunohistochemical staining revealed that smooth muscle actin(SMA)and vimentin were positive in 100%of cases,while anaplastic lymphoma kinase(ALK)showed positivity in 47.37%.The recurrence rate of orbital IMT was 27.27%,and sarcomatous degeneration could occur.There were no significant correlations between recurrence and factors such as age,gender,laterality,duration of the disease,periorbital tissue invasion,bone destruction,periorbital inflammation,tumor size,fever,leukocytosis,or treatment(P>0.05).However,lymphadenopathy and a Ki-67 index of 10%or higher may be risk factors for recurrence(P=0.046;P=0.023).CONCLUSION:Orbital IMT is a locally invasive disease that may recur or lead to sarcomatoid degeneration,primarily affecting young and middle-aged patients.The presence of lymphadenopathy and a Ki-67 index of 10%or higher may signify a poor prognosis.
文摘BACKGROUND SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma is a highly aggressive tumor,and spontaneous splenic rupture(SSR)as its presenting manifestation is rarely reported among pancreatic malignancies.CASE SUMMARY We herein report a rare case of a 59-year-old female who presented with acute left upper quadrant abdominal pain without any history of trauma.Abdominal imaging demonstrated a heterogeneous splenic lesion with hemoperitoneum,raising clinical suspicion of SSR.Emergency laparotomy revealed a pancreatic tumor invading the spleen and left kidney,with associated splenic rupture and dense adhesions,necessitating en bloc resection of the distal pancreas,spleen,and left kidney.Histopathology revealed a biphasic malignancy composed of moderately differentiated pancreatic ductal adenocarcinoma and an undifferentiated carcinoma with rhabdoid morphology and loss of SMARCB1 expression.Immunohistochemical analysis confirmed complete loss of SMARCB1/INI1 in the undifferentiated component,along with a high Ki-67 index(approximately 80%)and CD10 positivity.The ductal adenocarcinoma component retained SMARCB1/INI1 expression and was positive for CK7 and CK-pan.Transitional zones between the two tumor components suggested progressive dedifferentiation and underlying genomic instability.The patient received adjuvant chemotherapy with gemcitabine and nab-paclitaxel and maintained a satisfactory quality of life at the 6-month follow-up.CONCLUSION This study reports a rare case of SMARCB1/INI1-deficient undifferentiated rhabdoid carcinoma of the pancreas combined with ductal adenocarcinoma,presenting as SSR-an exceptionally uncommon initial manifestation of pancreatic malignancy.
基金developed by the NLP601 group at School of Electronics Engineering and Computer Science, Peking University, within the National Natural Science Foundation of China (No. 61672046)
文摘Community Question Answering(CQA) in web forums, as a classic forum for user communication,provides a large number of high-quality useful answers in comparison with traditional question answering.Development of methods to get good, honest answers according to user questions is a challenging task in natural language processing. Many answers are not associated with the actual problem or shift the subjects,and this usually occurs in relatively long answers. In this paper, we enhance answer selection in CQA using multidimensional feature combination and similarity order. We make full use of the information in answers to questions to determine the similarity between questions and answers, and use the text-based description of the answer to determine whether it is a reasonable one. Our work includes two subtasks:(a) classifying answers as good, bad, or potentially associated with a question, and(b) answering YES/NO based on a list of all answers to a question. The experimental results show that our approach is significantly more efficient than the baseline model, and its overall ranking is relatively high in comparison with that of other models.
文摘To identify recruitment information in different domains, we propose a novel model of hierarchical tree- structured conditional random fields (HT-CRFs). In our ap- proach, first, the concept of a Web object (WOB) is discussed for the description of special Web information. Second, in contrast to traditional methods, the Boolean model and multi- rule are introduced to denote a one-dimensional text feature for a better representation of Web objects. Furthermore, a two-dimensional semantic texture feature is developed to dis- cover the layout of a WOB, which can emphasize the struc- tural attributes and the specific semantics term attributes of WOBs. Third, an optimal WOB information extraction (IE) based on HT-CRF is performed, addressing the problem of a model having an excessive dependence on the page structure and optimizing the efficiency of the model's training. Finally, we compare the proposed model with existing decoupled ap- proaches for WOB IE. The experimental results show that the accuracy rate of WOB IE is significantly improved and that time complexity is reduced.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
文摘In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Elatty E.Abd Elgawad Computers,Materials&Continua,2022,Vol.70,No.1,pp.1617–1630.DOI:10.32604/cmc.2022.018621,URL:https://www.techscience.com/cmc/v70n1/44361,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”.
文摘BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.
文摘During Donald Trump’s first term,the“Trump Shock”brought world politics into an era of uncertainties and pulled the transatlantic alliance down to its lowest point in history.The Trump 2.0 tsunami brewed by the 2024 presidential election of the United States has plunged the U.S.-Europe relations into more gloomy waters,ushering in a more complex and turbulent period of adjustment.
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
基金partially supported by the National Natural Science Foundation (62272248)the Open Project Fund of State Key Laboratory of Computer Architecture,Institute of Computing Technology,Chinese Academy of Sciences (CARCHA202108,CARCH201905)+1 种基金the Natural Science Foundation of Tianjin (20JCZDJC00610)Sponsored by Zhejiang Lab (2021KF0AB04)。
文摘Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attacks on smart contracts often cause huge economic losses.Since it is difficult to repair and update smart contracts,it is necessary to find the vulnerabilities before they are deployed.However,code analysis,which requires traversal paths,and learning methods,which require many features to be trained,are too time-consuming to detect large-scale on-chain contracts.Learning-based methods will obtain detection models from a feature space compared to code analysis methods such as symbol execution.But the existing features lack the interpretability of the detection results and training model,even worse,the large-scale feature space also affects the efficiency of detection.This paper focuses on improving the detection efficiency by reducing the dimension of the features,combined with expert knowledge.In this paper,a feature extraction model Block-gram is proposed to form low-dimensional knowledge-based features from bytecode.First,the metadata is separated and the runtime code is converted into a sequence of opcodes,which are divided into segments based on some instructions(jumps,etc.).Then,scalable Block-gram features,including 4-dimensional block features and 8-dimensional attribute features,are mined for the learning-based model training.Finally,feature contributions are calculated from SHAP values to measure the relationship between our features and the results of the detection model.In addition,six types of vulnerability labels are made on a dataset containing 33,885 contracts,and these knowledge-based features are evaluated using seven state-of-the-art learning algorithms,which show that the average detection latency speeds up 25×to 650×,compared with the features extracted by N-gram,and also can enhance the interpretability of the detection model.
文摘The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.
基金the financial support from the Guangxi Natural Science Foundation(grant no.2021GXNSFDA075012,2023GXNSFGA026002)National Natural Science Foundation of China(52104298,22075073,52362027,52462029)Fundamental Research Funds for the Central Universities(531107051077).
文摘Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.
基金King Saud University,Grant/Award Number:RSP2024R157。
文摘Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework for human gait classification in video sequences using deep learning(DL)fusion assisted and posterior probability-based moth flames optimization(MFO)is proposed.In the first step,the video frames are resized and finetuned by two pre-trained lightweight DL models,EfficientNetB0 and MobileNetV2.Both models are selected based on the top-5 accuracy and less number of parameters.Later,both models are trained through deep transfer learning and extracted deep features fused using a voting scheme.In the last step,the authors develop a posterior probabilitybased MFO feature selection algorithm to select the best features.The selected features are classified using several supervised learning methods.The CASIA-B publicly available dataset has been employed for the experimental process.On this dataset,the authors selected six angles such as 0°,18°,90°,108°,162°,and 180°and obtained an average accuracy of 96.9%,95.7%,86.8%,90.0%,95.1%,and 99.7%.Results demonstrate comparable improvement in accuracy and significantly minimize the computational time with recent state-of-the-art techniques.
文摘This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.
基金supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang (No.GK249909299001-036)National Key Research and Development Program of China (No. 2023YFB4502803)Zhejiang Provincial Natural Science Foundation of China (No.LDT23F01014F01)。
文摘Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vision, attracting the attention of many researchers. However, most HSI SR methods focus on the tradeoff between spatial resolution and spectral information, and cannot guarantee the efficient extraction of image information. In this paper, a multidimensional features network(MFNet) for HSI SR is proposed, which simultaneously learns and fuses the spatial,spectral, and frequency multidimensional features of HSI. Spatial features contain rich local details,spectral features contain the information and correlation between spectral bands, and frequency feature can reflect the global information of the image and can be used to obtain the global context of HSI. The fusion of the three features can better guide image super-resolution, to obtain higher-quality high-resolution hyperspectral images. In MFNet, we use the frequency feature extraction module(FFEM) to extract the frequency feature. On this basis, a multidimensional features extraction module(MFEM) is designed to learn and fuse multidimensional features. In addition, experimental results on two public datasets demonstrate that MFNet achieves state-of-the-art performance.
文摘Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems,particularly in dynamic and unstructured environments.While recent advancements in deep learning have significantly enhanced road scene classification,simultaneously achieving high accuracy,computational efficiency,and adaptability across diverse conditions continues to be difficult.To address these challenges,this study proposes HybridLSTM,a novel and efficient framework that integrates deep learning-based,object-based,and handcrafted feature extraction methods within a unified architecture.HybridLSTM is designed to classify four distinct road scene categories—crosswalk(CW),highway(HW),overpass/tunnel(OP/T),and parking(P)—by leveraging multiple publicly available datasets,including Places-365,BDD100K,LabelMe,and KITTI,thereby promoting domain generalization.The framework fuses object-level features extracted using YOLOv5 and VGG19,scene-level global representations obtained from a modified VGG19,and fine-grained texture features captured through eight handcrafted descriptors.This hybrid feature fusion enables the model to capture both semantic context and low-level visual cues,which are critical for robust scene understanding.To model spatial arrangements and latent sequential dependencies present even in static imagery,the combined features are processed through a Long Short-Term Memory(LSTM)network,allowing the extraction of discriminative patterns across heterogeneous feature spaces.Extensive experiments conducted on 2725 annotated road scene images,with an 80:20 training-to-testing split,validate the effectiveness of the proposed model.HybridLSTM achieves a classification accuracy of 96.3%,a precision of 95.8%,a recall of 96.1%,and an F1-score of 96.0%,outperforming several existing state-of-the-art methods.These results demonstrate the robustness,scalability,and generalization capability of HybridLSTM across varying environments and scene complexities.Moreover,the framework is optimized to balance classification performance with computational efficiency,making it highly suitable for real-time deployment in embedded autonomous driving systems.Future work will focus on extending the model to multi-class detection within a single frame and optimizing it further for edge-device deployments to reduce computational overhead in practical applications.
基金supported by National Natural Science Foundation of China(22374080,22174068,21722504)Primary Research&Development Plan of Jiangsu Province(BK20221303,BE2022796)+1 种基金Open Foundation of State Key Laboratory of Reproductive Medicine(SKLRM-2022BP1,JX116GSP20240507)Science and Technology Development Fund of NJMU(NJMUQY2022003)。
文摘Drug resistance remains a major challenge in breast cancer chemotherapy,yet the metabolic alterations underlying this phenomenon are not fully understood.There is much evidence indicating the cellular heterogeneity among cancer cells,which exhibit varying degrees of metabolic reprogramming and thus may result in differential contributions to drug resistance.A home-built single-cell quantitative mass spectrometry(MS)platform,which integrates micromanipulation and electro-osmotic sampling,was developed to quantitatively profile the tricarboxylic acid(TCA)cycle metabolites at the single-cell level.Using this platform,the metabolic profiles of drug-sensitive MCF-7 breast cancer cells and their drug-resistant derivative MCF-7/ADR cells were compared.This results revealed a selective upregulation of downstream TCA cycle metabolites includingα-ketoglutarate,succinate,fumarate,and malate in drug-resistant cancer cells,while early TCA metabolites remained largely unchanged.Furthermore,notable variations in the abundance of the metabolites were observed in individual cells.The comparative analysis also revealed that not all MCF-7/ADR cells exhibit the same degree of metabolic deviation from the parental line in the metabolites during resistance acquisition.The observed metabolic profiles indicate enhanced glutaminolysis,altered mitochondrial electron transport chain activity,and increased metabolic flexibility in drug-resistant cancer cells that support their survival under chemotherapeutic stress.The findings further suggest the potential for incorporating cellular metabolic heterogeneity into future drug resistance studies.