Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimo...Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods.展开更多
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ...BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.展开更多
Ransomware is malware that encrypts data without permission,demanding payment for access.Detecting ransomware on Android platforms is challenging due to evolving malicious techniques and diverse application behaviors....Ransomware is malware that encrypts data without permission,demanding payment for access.Detecting ransomware on Android platforms is challenging due to evolving malicious techniques and diverse application behaviors.Traditional methods,such as static and dynamic analysis,suffer from polymorphism,code obfuscation,and high resource demands.This paper introduces a multi-stage approach to enhance behavioral analysis for Android ransomware detection,focusing on a reduced set of distinguishing features.The approach includes ransomware app collection,behavioral profile generation,dataset creation,feature identification,reduction,and classification.Experiments were conducted on∼3300 Android-based ransomware samples,despite the challenges posed by their evolving nature and complexity.The feature reduction strategy successfully reduced features by 80%,with only a marginal loss of detection accuracy(0.59%).Different machine learning algorithms are employed for classification and achieve 96.71%detection accuracy.Additionally,10-fold cross-validation demonstrated robustness,yielding an AUC-ROC of 99.3%.Importantly,latency and memory evaluations revealed that models using the reduced feature set achieved up to a 99%reduction in inference time and significant memory savings across classifiers.The proposed approach outperforms existing techniques by achieving high detection accuracy with a minimal feature set,also suitable for deployment in resource-constrained environments.Future work may extend datasets and include iOS-based ransomware applications.展开更多
Bocapavovirus,a member of the genus Bocaparvovirus within the subfamily Parvovirinae and the family Parvoviridae,is a small,non-enveloped,single-stranded DNA virus.This pathogen poses health risks to both humans and a...Bocapavovirus,a member of the genus Bocaparvovirus within the subfamily Parvovirinae and the family Parvoviridae,is a small,non-enveloped,single-stranded DNA virus.This pathogen poses health risks to both humans and animals.The Bocaparvovirus genome.展开更多
The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significan...The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.展开更多
Kernel-based slow feature analysis(SFA)methods have been successfully applied in the industrial process fault detection field.However,kernel-based SFA methods have high computational complexity as dealing with nonline...Kernel-based slow feature analysis(SFA)methods have been successfully applied in the industrial process fault detection field.However,kernel-based SFA methods have high computational complexity as dealing with nonlinearity,leading to delays in detecting time-varying data features.Additionally,the uncertain kernel function and kernel parameters limit the ability of the extracted features to express process characteristics,resulting in poor fault detection performance.To alleviate the above problems,a novel randomized auto-regressive dynamic slow feature analysis(RRDSFA)method is proposed to simultaneously monitor the operating point deviations and process dynamic faults,enabling real-time monitoring of data features in industrial processes.Firstly,the proposed Random Fourier mappingbased method achieves more effective nonlinear transformation,contrasting with the current kernelbased RDSFA algorithm that may lead to significant computational complexity.Secondly,a randomized RDSFA model is developed to extract nonlinear dynamic slow features.Furthermore,a Bayesian inference-based overall fault monitoring model including all RRDSFA sub-models is developed to overcome the randomness of random Fourier mapping.Finally,the superiority and effectiveness of the proposed monitoring method are demonstrated through a numerical case and a simulation of continuous stirred tank reactor.展开更多
Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently d...Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.展开更多
Objective To determine the correlation between traditional Chinese medicine(TCM)inspec-tion of spirit classification and the severity grade of depression based on facial features,offer-ing insights for intelligent int...Objective To determine the correlation between traditional Chinese medicine(TCM)inspec-tion of spirit classification and the severity grade of depression based on facial features,offer-ing insights for intelligent intergrated TCM and western medicine diagnosis of depression.Methods Using the Audio-Visual Emotion Challenge and Workshop(AVEC 2014)public dataset on depression,which conclude 150 interview videos,the samples were classified ac-cording to the TCM inspection of spirit classification:Deshen(得神,presence of spirit),Shaoshen(少神,insufficiency of spirit),and Shenluan(神乱,confusion of spirit).Meanwhile,based on Beck Depression Inventory-II(BDI-II)score for the severity grade of depression,the samples were divided into minimal(0-13,Q1),mild(14-19,Q2),moderate(20-28,Q3),and severe(29-63,Q4).Sixty-eight landmarks were extracted with a ResNet-50 network,and the feature extracion mode was stadardized.Random forest and support vectior machine(SVM)classifiers were used to predict TCM inspection of spirit classification and the severity grade of depression,respectively.A Chi-square test and Apriori association rule mining were then applied to quantify and explore the relationships.Results The analysis revealed a statistically significant and moderately strong association be-tween TCM spirit classification and the severity grade of depression,as confirmed by a Chi-square test(χ^(2)=14.04,P=0.029)with a Cramer’s V effect size of 0.243.Further exploration us-ing association rule mining identified the most compelling rule:“moderate depression(Q3)→Shenluan”.This rule demonstrated a support level of 5%,indicating this specific co-occur-rence was present in 5%of the cohort.Crucially,it achieved a high Confidence of 86%,mean-ing that among patients diagnosed with Q3,86%exhibited the Shenluan pattern according to TCM assessment.The substantial Lift of 2.37 signifies that the observed likelihood of Shenlu-an manifesting in Q3 patients is 2.37 times higher than would be expected by chance if these states were independent-compelling evidence of a highly non-random association.Conse-quently,Shenluan emerges as a distinct and core TCM diagnostic manifestation strongly linked to Q3,forming a clinically significant phenotype within this patient subgroup.展开更多
Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin...Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.展开更多
Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of mu...Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.展开更多
Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown a...Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.展开更多
The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends ...The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research.展开更多
Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis i...Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis is presented. The monitoring data were first modeled as ARMA models, while a principalcomponent matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobisdistance criterion functions. Then, a new damage-sensitive feature index DDSF is proposed. A hypothesis test involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of DDSF had significantly changed after damage. The numerical results of a three-span-girder model shows that the defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line damage alarming in SHM.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
The paper had introduced the development stage and role of site analysis in landscape design. By taking Canal Park in Yichang City for example, landscape design concepts had been discussed and design concepts of this ...The paper had introduced the development stage and role of site analysis in landscape design. By taking Canal Park in Yichang City for example, landscape design concepts had been discussed and design concepts of this park had been summarized as: continuing history and culture of the site; forming rare urban wetland landscape; respecting surrounding environment and integrating leisure recreation with ideal landscape layout; displaying regional customs through core scenic spots; manifesting regional features through plants' planning. After the analysis of features of Canal Park, four approaches for urban park features construction had been revealed, that is, guiding with new concept by centering on urban development requirement; reflecting regional customs; exploiting local historical resources; and fully expressing the property of the park. It was considered that urban park feature construction should be based on site analysis. Through exploitation and refinement of overt natural landscape features and covert cultural and historical resources, they should be decomposed, processed and integrated into concrete concepts. Finally, individual features of the site even the city could be embodied in concrete landscape factors.展开更多
Shield attitudes,essentially governed by intricate mechanisms,impact the segment assembly quality and tunnel axis deviation.In data-driven prediction,however,existing methods using the original driving parameters fail...Shield attitudes,essentially governed by intricate mechanisms,impact the segment assembly quality and tunnel axis deviation.In data-driven prediction,however,existing methods using the original driving parameters fail to present convincing performance due to insufficient consideration of complicated interactions among the parameters.Therefore,a multi-dimensional feature synthesizing and screening method is proposed to explore the optimal features that can better reflect the physical mechanism in predicting shield tunneling attitudes.Features embedded with physical knowledge were synthesized from seven dimensions,which were validated by the clustering quality of Shapley Additive Explanations(SHAP)values.Subsequently,a novel index,Expected Impact Index(EII),has been proposed for screening the optimal features reliably.Finally,a Bayesian-optimized deep learning model was established to validate the proposed method in a case study.Results show that the proposed method effectively identifies the optimal parameters for shield attitude prediction,with an average Mean Squared Error(MSE)deduction of 27.3%.The proposed method realized effective assimilation of shield driving data with physical mechanism,providing a valuable reference for shield deviation control.展开更多
This paper explores how the Chinese college students' life is represented in some graffiti collected in campus.The article analyzes and compares the topics of graffiti from different settings and the linguistic fe...This paper explores how the Chinese college students' life is represented in some graffiti collected in campus.The article analyzes and compares the topics of graffiti from different settings and the linguistic features they manifest.The findings show that fewer graffiti from female toilet and classroom in this university pay attention to political issues compared with the graffiti abroad.Graffiti in female toilet mainly focus on the theme of love,and are found to be more interactive in discourse.Whereas graffiti on desks tend to cover mixed themes and be less interactive.There are more graphic graffiti and exam answers on the undergraduate students' desk than on the postgraduates'.Graffiti have some linguistic features as thematization,repetition and salience,etc.展开更多
The accuracy and reliability of non-destructive testing(NDT)approaches in detecting interior corrosion problems are critical,yet research in this field is limited.This work describes a novel way to monitor the structu...The accuracy and reliability of non-destructive testing(NDT)approaches in detecting interior corrosion problems are critical,yet research in this field is limited.This work describes a novel way to monitor the structural integrity of steel gas pipelines that uses advanced numerical modeling techniques to anticipate fracture development and corrosion effects.The objective is to increase pipeline dependability and safety through more precise,real-time health evaluations.Compared to previous approaches,our solution provides higher accuracy in fault detection and quantification,making it ideal for pipeline integritymonitoring in real-world applications.To solve this issue,statistical analysis was conducted on the size and directional distribution features of about 380,000 sets of internal corrosion faults,as well as simulations of erosion and wear patterns on bent pipes.Using real defectmorphologies,we developed a modeling framework for typical interior corrosion flaws.We evaluated and validated the applicability and effectiveness of in-service inspection processes,as well as conducted on-site comparison tests.The results show that(1)the length and width of corrosion defects follow a log-normal distribution,the clock orientation follows a normal distribution,and the peak depth follows a Freundlich EX function distribution pattern;(2)pipeline corrosion defect data can be classified into three classes using the K-means clustering algorithm,allowing rapid and convenient acquisition of typical size and orientation characteristics of internal corrosion defects;(3)the applicability range and boundary conditions of various NDT techniques were verified,establishing comprehensive selection principles for internal corrosion defect detection technology;(4)on-site inspection results showed a 31%The simulation and validation platform for typical interior corrosion issues greatly enhances the accuracy and reliability of detection data.展开更多
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with...This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.展开更多
This study systematically analyzes the genre structure and linguistic features of 42 English abstracts from six internationally renowned medical journals,based on the revised CARS model proposed by Swales.The research...This study systematically analyzes the genre structure and linguistic features of 42 English abstracts from six internationally renowned medical journals,based on the revised CARS model proposed by Swales.The research findings indicate that medical abstracts typically follow a three-step structure:“Establishing a Research Territory-Establishing a Research Niche-Occupying the Niche”,where the steps“Research Purpose”and“Research Results”are the most frequently utilized,forming the core content of the abstracts.Within the sequence of moves,81%conform to conventional patterns,while a minority of samples exhibit unconventional structures such as inversion,cycling,and repetition.In terms of linguistic features,the present simple tense and active voice are predominantly used,reflecting the universality of the research and the author’s agency;conversely,the simple past tense and passive voice are primarily employed to describe research methods and processes.This study reveals the writing conventions of medical abstracts,providing empirical evidence and genre reference for non-native scholars in the preparation and publication of their work in international journals.展开更多
基金supported by the Science and Technology Project of Henan Province(No.222102210081).
文摘Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods.
文摘BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1I1A3049788).
文摘Ransomware is malware that encrypts data without permission,demanding payment for access.Detecting ransomware on Android platforms is challenging due to evolving malicious techniques and diverse application behaviors.Traditional methods,such as static and dynamic analysis,suffer from polymorphism,code obfuscation,and high resource demands.This paper introduces a multi-stage approach to enhance behavioral analysis for Android ransomware detection,focusing on a reduced set of distinguishing features.The approach includes ransomware app collection,behavioral profile generation,dataset creation,feature identification,reduction,and classification.Experiments were conducted on∼3300 Android-based ransomware samples,despite the challenges posed by their evolving nature and complexity.The feature reduction strategy successfully reduced features by 80%,with only a marginal loss of detection accuracy(0.59%).Different machine learning algorithms are employed for classification and achieve 96.71%detection accuracy.Additionally,10-fold cross-validation demonstrated robustness,yielding an AUC-ROC of 99.3%.Importantly,latency and memory evaluations revealed that models using the reduced feature set achieved up to a 99%reduction in inference time and significant memory savings across classifiers.The proposed approach outperforms existing techniques by achieving high detection accuracy with a minimal feature set,also suitable for deployment in resource-constrained environments.Future work may extend datasets and include iOS-based ransomware applications.
基金supported by the Natural Science Foundation of Sichuan Province,China(2024NSFSC1272)the Innovation Team Development Funds for Sichuan Mutton Goat&Sheep,China(SCCXTD-2024-14)Scientific and Technological Innovation Team for Qinghai-Tibetan Plateau Research in Southwest Minzu University,China(2024CXTD08)。
文摘Bocapavovirus,a member of the genus Bocaparvovirus within the subfamily Parvovirinae and the family Parvoviridae,is a small,non-enveloped,single-stranded DNA virus.This pathogen poses health risks to both humans and animals.The Bocaparvovirus genome.
文摘The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.
基金supported by the Program of National Natural Science Foundation of China(U23A20329,62163036)Youth Academic and Technical Leaders Reserve Talent Training project(202105AC160094)Industrial Innovation Talent Special Project of Xingdian Talent Support Program(XDYC-CYCX-2022-0010).
文摘Kernel-based slow feature analysis(SFA)methods have been successfully applied in the industrial process fault detection field.However,kernel-based SFA methods have high computational complexity as dealing with nonlinearity,leading to delays in detecting time-varying data features.Additionally,the uncertain kernel function and kernel parameters limit the ability of the extracted features to express process characteristics,resulting in poor fault detection performance.To alleviate the above problems,a novel randomized auto-regressive dynamic slow feature analysis(RRDSFA)method is proposed to simultaneously monitor the operating point deviations and process dynamic faults,enabling real-time monitoring of data features in industrial processes.Firstly,the proposed Random Fourier mappingbased method achieves more effective nonlinear transformation,contrasting with the current kernelbased RDSFA algorithm that may lead to significant computational complexity.Secondly,a randomized RDSFA model is developed to extract nonlinear dynamic slow features.Furthermore,a Bayesian inference-based overall fault monitoring model including all RRDSFA sub-models is developed to overcome the randomness of random Fourier mapping.Finally,the superiority and effectiveness of the proposed monitoring method are demonstrated through a numerical case and a simulation of continuous stirred tank reactor.
基金supported in part by the National Science Fund for Distinguished Young Scholars of China(62225303)the National Natural Science Fundation of China(62303039,62433004)+2 种基金the China Postdoctoral Science Foundation(BX20230034,2023M730190)the Fundamental Research Funds for the Central Universities(buctrc202201,QNTD2023-01)the High Performance Computing Platform,College of Information Science and Technology,Beijing University of Chemical Technology
文摘Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.
基金Research and Development Plan of Key Areas of Hunan Science and Technology Department (2022SK2044)Clinical Research Center for Depressive Disorder in Hunan Province (2021SK4022)。
文摘Objective To determine the correlation between traditional Chinese medicine(TCM)inspec-tion of spirit classification and the severity grade of depression based on facial features,offer-ing insights for intelligent intergrated TCM and western medicine diagnosis of depression.Methods Using the Audio-Visual Emotion Challenge and Workshop(AVEC 2014)public dataset on depression,which conclude 150 interview videos,the samples were classified ac-cording to the TCM inspection of spirit classification:Deshen(得神,presence of spirit),Shaoshen(少神,insufficiency of spirit),and Shenluan(神乱,confusion of spirit).Meanwhile,based on Beck Depression Inventory-II(BDI-II)score for the severity grade of depression,the samples were divided into minimal(0-13,Q1),mild(14-19,Q2),moderate(20-28,Q3),and severe(29-63,Q4).Sixty-eight landmarks were extracted with a ResNet-50 network,and the feature extracion mode was stadardized.Random forest and support vectior machine(SVM)classifiers were used to predict TCM inspection of spirit classification and the severity grade of depression,respectively.A Chi-square test and Apriori association rule mining were then applied to quantify and explore the relationships.Results The analysis revealed a statistically significant and moderately strong association be-tween TCM spirit classification and the severity grade of depression,as confirmed by a Chi-square test(χ^(2)=14.04,P=0.029)with a Cramer’s V effect size of 0.243.Further exploration us-ing association rule mining identified the most compelling rule:“moderate depression(Q3)→Shenluan”.This rule demonstrated a support level of 5%,indicating this specific co-occur-rence was present in 5%of the cohort.Crucially,it achieved a high Confidence of 86%,mean-ing that among patients diagnosed with Q3,86%exhibited the Shenluan pattern according to TCM assessment.The substantial Lift of 2.37 signifies that the observed likelihood of Shenlu-an manifesting in Q3 patients is 2.37 times higher than would be expected by chance if these states were independent-compelling evidence of a highly non-random association.Conse-quently,Shenluan emerges as a distinct and core TCM diagnostic manifestation strongly linked to Q3,forming a clinically significant phenotype within this patient subgroup.
基金Science and Technology Innovation 2030‐“New Generation Artificial Intelligence”major project,Grant/Award Number:2020AAA0108703。
文摘Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.
文摘Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.
基金The work is supported by the Sub-Project of“Research on Key Technologies and Equipment of Reservoir Stimulation”of China National Petroleum Corporation Post–14th Five-Year Plan Forward-Looking Major Science and Technology Project“Research on New Technology of Monitoring and Diagnosis of Horizontal Well Hydraulic Fracture Network Distribution Pattern”(2021DJ4502).
文摘Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.
文摘The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2006AA04Z416)the National Natural Science Foundation of China (No50538020)
文摘Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis is presented. The monitoring data were first modeled as ARMA models, while a principalcomponent matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobisdistance criterion functions. Then, a new damage-sensitive feature index DDSF is proposed. A hypothesis test involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of DDSF had significantly changed after damage. The numerical results of a three-span-girder model shows that the defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line damage alarming in SHM.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
基金Supported by Research Results of Scientific Research Project of Guangxi Education Department (201010LX531)~~
文摘The paper had introduced the development stage and role of site analysis in landscape design. By taking Canal Park in Yichang City for example, landscape design concepts had been discussed and design concepts of this park had been summarized as: continuing history and culture of the site; forming rare urban wetland landscape; respecting surrounding environment and integrating leisure recreation with ideal landscape layout; displaying regional customs through core scenic spots; manifesting regional features through plants' planning. After the analysis of features of Canal Park, four approaches for urban park features construction had been revealed, that is, guiding with new concept by centering on urban development requirement; reflecting regional customs; exploiting local historical resources; and fully expressing the property of the park. It was considered that urban park feature construction should be based on site analysis. Through exploitation and refinement of overt natural landscape features and covert cultural and historical resources, they should be decomposed, processed and integrated into concrete concepts. Finally, individual features of the site even the city could be embodied in concrete landscape factors.
文摘Shield attitudes,essentially governed by intricate mechanisms,impact the segment assembly quality and tunnel axis deviation.In data-driven prediction,however,existing methods using the original driving parameters fail to present convincing performance due to insufficient consideration of complicated interactions among the parameters.Therefore,a multi-dimensional feature synthesizing and screening method is proposed to explore the optimal features that can better reflect the physical mechanism in predicting shield tunneling attitudes.Features embedded with physical knowledge were synthesized from seven dimensions,which were validated by the clustering quality of Shapley Additive Explanations(SHAP)values.Subsequently,a novel index,Expected Impact Index(EII),has been proposed for screening the optimal features reliably.Finally,a Bayesian-optimized deep learning model was established to validate the proposed method in a case study.Results show that the proposed method effectively identifies the optimal parameters for shield attitude prediction,with an average Mean Squared Error(MSE)deduction of 27.3%.The proposed method realized effective assimilation of shield driving data with physical mechanism,providing a valuable reference for shield deviation control.
文摘This paper explores how the Chinese college students' life is represented in some graffiti collected in campus.The article analyzes and compares the topics of graffiti from different settings and the linguistic features they manifest.The findings show that fewer graffiti from female toilet and classroom in this university pay attention to political issues compared with the graffiti abroad.Graffiti in female toilet mainly focus on the theme of love,and are found to be more interactive in discourse.Whereas graffiti on desks tend to cover mixed themes and be less interactive.There are more graphic graffiti and exam answers on the undergraduate students' desk than on the postgraduates'.Graffiti have some linguistic features as thematization,repetition and salience,etc.
基金The“13th Five-Year Plan”National Science and Technology Major Project,2016ZX05052,Changchao QiThe China National Petroleum Corporation Science and Technology Project,2021DJ6505,Changchao Qi.
文摘The accuracy and reliability of non-destructive testing(NDT)approaches in detecting interior corrosion problems are critical,yet research in this field is limited.This work describes a novel way to monitor the structural integrity of steel gas pipelines that uses advanced numerical modeling techniques to anticipate fracture development and corrosion effects.The objective is to increase pipeline dependability and safety through more precise,real-time health evaluations.Compared to previous approaches,our solution provides higher accuracy in fault detection and quantification,making it ideal for pipeline integritymonitoring in real-world applications.To solve this issue,statistical analysis was conducted on the size and directional distribution features of about 380,000 sets of internal corrosion faults,as well as simulations of erosion and wear patterns on bent pipes.Using real defectmorphologies,we developed a modeling framework for typical interior corrosion flaws.We evaluated and validated the applicability and effectiveness of in-service inspection processes,as well as conducted on-site comparison tests.The results show that(1)the length and width of corrosion defects follow a log-normal distribution,the clock orientation follows a normal distribution,and the peak depth follows a Freundlich EX function distribution pattern;(2)pipeline corrosion defect data can be classified into three classes using the K-means clustering algorithm,allowing rapid and convenient acquisition of typical size and orientation characteristics of internal corrosion defects;(3)the applicability range and boundary conditions of various NDT techniques were verified,establishing comprehensive selection principles for internal corrosion defect detection technology;(4)on-site inspection results showed a 31%The simulation and validation platform for typical interior corrosion issues greatly enhances the accuracy and reliability of detection data.
基金supported by the National Natural Science Foundation of China(72101025,72271049),the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-24-024)the Hebei Natural Science Foundation(F2023501011)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the R&D Program of Beijing Municipal Education Commission(KM202411232015).
文摘This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.
文摘This study systematically analyzes the genre structure and linguistic features of 42 English abstracts from six internationally renowned medical journals,based on the revised CARS model proposed by Swales.The research findings indicate that medical abstracts typically follow a three-step structure:“Establishing a Research Territory-Establishing a Research Niche-Occupying the Niche”,where the steps“Research Purpose”and“Research Results”are the most frequently utilized,forming the core content of the abstracts.Within the sequence of moves,81%conform to conventional patterns,while a minority of samples exhibit unconventional structures such as inversion,cycling,and repetition.In terms of linguistic features,the present simple tense and active voice are predominantly used,reflecting the universality of the research and the author’s agency;conversely,the simple past tense and passive voice are primarily employed to describe research methods and processes.This study reveals the writing conventions of medical abstracts,providing empirical evidence and genre reference for non-native scholars in the preparation and publication of their work in international journals.