The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed...The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.展开更多
In weak field limits,we compute the deflection angle of a gravitational decoupling extended black hole(BH)solution.We obtained the Gaussian optical curvature by examining the null geodesic equations with the help of G...In weak field limits,we compute the deflection angle of a gravitational decoupling extended black hole(BH)solution.We obtained the Gaussian optical curvature by examining the null geodesic equations with the help of Gauss-Bonnet theorem(GBT).We also looked into the deflection angle of light by a black hole in weak field limits with the use of the Gibbons-Werner method.We verify the graphical behavior of the black hole after determining the deflection angle of light.Additionally,in the presence of the plasma medium,we also determine the deflection angle of the light and examine its graphical behavior.Furthermore,we compute the Einstein ring via gravitational decoupling extended black hole solution.We also compute the quasi-periodic oscillations and discuss their graphical behavior.展开更多
Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial...Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.展开更多
This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses ...This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.展开更多
The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse...The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ...Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ED nozzles,capture the behavior of shock flapping,and explore asymmetric flow dynamics utilizing a symmetric nozzle.A total pressure condition,characterized by rapid rise followed by a slow fall,is employed to simulate the continuous startup and shutdown processes.The schlieren imaging technique and high-frequency pressure transducers are employed to obtain the flow information.The experimental results indicate that the flow characteristics differ between the startup and shutdown processes with a hysteresis observed in the nozzle wake mode transition.During the startup process,the shock waves are pushed outward of the nozzle,while during the shutdown process,the flow propagates inward dominated by Mach stems.Counterintuitive results are demonstrated,namely,the mode transition is not the cause of the sudden thrust decrease,and the moment of maximum thrust does not coincide with the moment of maximum total pressure.During the operation of the nozzle,two stages of shock wave flapping occur,accompanied by significant wall pressure oscillations.These oscillation frequencies are demonstrated to be related to the inherent acoustic frequencies of the test chamber.An improved pressure ratio method is proposed to predict the position of the shock oscillation separation point.The prediction results revealed the shock behavior during the flapping process.展开更多
During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for culti...During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.展开更多
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with...This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.展开更多
The challenge of solving nonlinear problems in multi-connected domains with high accuracy has garnered significant interest.In this paper,we propose a unified wavelet solution method for accurately solving nonlinear b...The challenge of solving nonlinear problems in multi-connected domains with high accuracy has garnered significant interest.In this paper,we propose a unified wavelet solution method for accurately solving nonlinear boundary value problems on a two-dimensional(2D)arbitrary multi-connected domain.We apply this method to solve large deflection bending problems of complex plates with holes.Our solution method simplifies the treatment of the 2D multi-connected domain by utilizing a natural discretization approach that divides it into a series of one-dimensional(1D)intervals.This approach establishes a fundamental relationship between the highest-order derivative in the governing equation of the problem and the remaining lower-order derivatives.By combining a wavelet high accuracy integral approximation format on 1D intervals,where the convergence order remains constant regardless of the number of integration folds,with the collocation method,we obtain a system of algebraic equations that only includes discrete point values of the highest order derivative.In this process,the boundary conditions are automatically replaced using integration constants,eliminating the need for additional processing.Error estimation and numerical results demonstrate that the accuracy of this method is unaffected by the degree of nonlinearity of the equations.When solving the bending problem of multi-perforated complex-shaped plates under consideration,it is evident that directly using higher-order derivatives as unknown functions significantly improves the accuracy of stress calculation,even when the stress exhibits large gradient variations.Moreover,compared to the finite element method,the wavelet method requires significantly fewer nodes to achieve the same level of accuracy.Ultimately,the method achieves a sixth-order accuracy and resembles the treatment of one-dimensional problems during the solution process,effectively avoiding the need for the complex 2D meshing process typically required by conventional methods when solving problems with multi-connected domains.展开更多
Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)feat...Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.展开更多
Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the da...Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.展开更多
In this study,we examined the thermal fluctuations,deflection angle,and greybody factor of a high-dimensional Schwarzschild black hole in scalar-tensor-vector gravity(STVG).We calculated some thermodynamic quantities ...In this study,we examined the thermal fluctuations,deflection angle,and greybody factor of a high-dimensional Schwarzschild black hole in scalar-tensor-vector gravity(STVG).We calculated some thermodynamic quantities related to the correction of the black hole entropy caused by thermal fluctuations and discussed the effect of the correction parameters on these quantities.By analyzing the changes in the corrected specific heat,we found that thermal fluctuations made the small black hole more stable.It is worth noting that the STVG parameter did not affect the thermodynamic stability of this black hole.Additionally,by utilizing the Gauss-Bonnet theorem,the deflection angle was obtained in the weak field limit,and the effects of the two parameters on the results were visualized.Finally,we calculated the bounds on the greybody factor of a massless scalar field.We observed that as the STVG parameter around the black hole increased,the weak deflection angle became larger,and more scalar particles can reach infinity.However,the spacetime dimension has the opposite effect on the STVG parameter on the weak deflection angle and greybody factor.展开更多
A novel compliant spinal fixation designed based on the concept of compliant mechanisms can reduce the stress-shielding effect and adjacent segment degeneration(ASD)effectively,but propose higher requirements for the ...A novel compliant spinal fixation designed based on the concept of compliant mechanisms can reduce the stress-shielding effect and adjacent segment degeneration(ASD)effectively,but propose higher requirements for the properties of the used materials.Bulk metallic glasses(BMGs),as a kind of young biomaterials,exhibiting excellent comprehensive properties,which are attractive for compliant spinal fixation.Here,according to the practical service condition of the basic elements in compliant spinal fixation,large deflection deformation behaviors of Zr_(61)Ti_(2)Cu_(25)Al_(12)(at.%,ZT1)BMG beam,including elastic,yielding and plastic were investigated systematically.It was shown that the theoretical nonlinear analytical solution curve as the benchmark not only with the capacity to predict the nonlinear load-deflection relation within the elastic deformation regime,but also assists to capture the yielding event roughly,which can be used as a powerful design tool for engineers.To capture the beginning of the yielding event exactly,bending proof strength(σ_(p),0.05%)accompanied with tiny permanent strain of 0.05% was proposed and determined for BMGs in biomedical implant applications,which is of significance for setting the allowable operating limits of the basic flexible elements.By approach of interrupted loading-unloading cycles,plastic deformation driven by the bending moment can be classified into two typical stages:the initial stage which mainly characterized by the nucleation and intense interaction of abundant shear bands when the plastic strain below the critical value,and the second stage which dominated by the progressive propagation of shear bands and coupled with the emergence of shear offsets on tensile side.The plasticity of BMG beam structures depends on the BMG's inherent plastic zone size(rp).When the half beam thickness less than that of the rp,the plastic deformation of BMGs will behave in a stable manner,which can be acted as the margin of safety effectively.展开更多
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
We investigate the light deflection in the weak field approximation from the accelerating charged AdS black hole.For this purpose,we apply the Gauss–Bonnet theorem to calculate the light deflection in the weak field ...We investigate the light deflection in the weak field approximation from the accelerating charged AdS black hole.For this purpose,we apply the Gauss–Bonnet theorem to calculate the light deflection in the weak field area and use the Gibbons–Werner approach to analyze the optical geometry of the accelerating charged AdS black hole in the non-magnetic plasma absence/presence of a non-magnetic medium.We also represent the graphical behavior of the light deflection angle w.r.t.the impact parameter.We also compute the light deflection angle using Keeton and Petters approximations under the impact of accelerating charged AdS black hole geometry.Furthermore,by using the ray-tracing approach,we determine the shadow in the nonmagnetic plasma presence and also demonstrate that graphical shadow has an impact on the gauge potential,non-magnetic plasma frequencies and charge.展开更多
This article considers a static and spherical black hole(BH)in f(Q)gravity.f(Q)gravity is the extension of symmetric teleparallel general relativity,where both curvature and torsion are vanishing and gravity is descri...This article considers a static and spherical black hole(BH)in f(Q)gravity.f(Q)gravity is the extension of symmetric teleparallel general relativity,where both curvature and torsion are vanishing and gravity is described by nonmetricity.In this study,we investigate the possible implications of quasinormal mode(QNM)modified Hawking spectra and deflection angles generated by the model.The Wentzel–Kramers–Brillouin method is used to solve the equations of motion for massless Dirac perturbation fields and explore the impact of the nonmetricity parameter(Q_(0)).Based on the QNM computation,we can ensure that the BH is stable against massless Dirac perturbations and as Q_(0)increases the oscillatory frequency of the mode decreases.We then discuss the weak deflection angle in the weak field limit approximation.We compute the deflection angle up to the fourth order of approximation and show how the nonmetricity parameter affects it.We find that the Q_(0)parameter reduces the deflection angle.展开更多
The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends ...The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research.展开更多
Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective...Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective Coriolis condition,the velocity component parallel to the rotational axis exerts no influence on the magnitude of Coriolis acceleration.This circumstance implies a potential mitigation of the Coriolis force's deflective impact.Regrettably,extant investigations predominantly emphasize the dilative and compressive Coriolis effects,largely neglecting the pragmatic import of the deflective Coriolis condition.In pursuit of this gap,a series of discrete element method(DEM)simulations have been conducted to scrutinize the feasibility of centrifugal modelling for dry granular run-out processes under deflective Coriolis conditions.The findings concerning the deflective Coriolis effect reveal a consistent rise in the run-out distance by 2%–16%,a modest increase in bulk flow velocity of under 4%,and a slight elevation in average flow depth by no more than 25%.These alterations display smaller dependence on the specific testing conditions due to the granular flow undergoing dual deflections in opposing directions.This underscores the significance and utility of the deflective Coriolis condition.Notably,the anticipated reduction in error in predicting the final run-out distance is substantial,potentially reaching a 150%improvement compared to predictions made under the dilative and compressive Coriolis conditions.Therefore,the deflective Coriolis condition is advised when the final run-out distance of the granular flow is the main concern.To mitigate the impact of Coriolis acceleration,a greater initial height of the granular column is recommended,with a height/width ratio exceeding 1,as the basal friction of the granular material plays a crucial role in mitigating the deflective Coriolis effect.For more transverse-uniform flow properties,the width of the granular column should be as large as possible.展开更多
Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sin...Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.展开更多
文摘The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.
基金funded by the National Natural Science Foundation of China under Grant No.11975145。
文摘In weak field limits,we compute the deflection angle of a gravitational decoupling extended black hole(BH)solution.We obtained the Gaussian optical curvature by examining the null geodesic equations with the help of Gauss-Bonnet theorem(GBT).We also looked into the deflection angle of light by a black hole in weak field limits with the use of the Gibbons-Werner method.We verify the graphical behavior of the black hole after determining the deflection angle of light.Additionally,in the presence of the plasma medium,we also determine the deflection angle of the light and examine its graphical behavior.Furthermore,we compute the Einstein ring via gravitational decoupling extended black hole solution.We also compute the quasi-periodic oscillations and discuss their graphical behavior.
基金the financial support from the Guangxi Natural Science Foundation(grant no.2021GXNSFDA075012,2023GXNSFGA026002)National Natural Science Foundation of China(52104298,22075073,52362027,52462029)Fundamental Research Funds for the Central Universities(531107051077).
文摘Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.
文摘This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.
文摘The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(No.12002102)。
文摘Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ED nozzles,capture the behavior of shock flapping,and explore asymmetric flow dynamics utilizing a symmetric nozzle.A total pressure condition,characterized by rapid rise followed by a slow fall,is employed to simulate the continuous startup and shutdown processes.The schlieren imaging technique and high-frequency pressure transducers are employed to obtain the flow information.The experimental results indicate that the flow characteristics differ between the startup and shutdown processes with a hysteresis observed in the nozzle wake mode transition.During the startup process,the shock waves are pushed outward of the nozzle,while during the shutdown process,the flow propagates inward dominated by Mach stems.Counterintuitive results are demonstrated,namely,the mode transition is not the cause of the sudden thrust decrease,and the moment of maximum thrust does not coincide with the moment of maximum total pressure.During the operation of the nozzle,two stages of shock wave flapping occur,accompanied by significant wall pressure oscillations.These oscillation frequencies are demonstrated to be related to the inherent acoustic frequencies of the test chamber.An improved pressure ratio method is proposed to predict the position of the shock oscillation separation point.The prediction results revealed the shock behavior during the flapping process.
基金Sponsored by the Quality Engineering Project of Education Department of Anhui Province(2022jyxm671)Research Team Project of Anhui Xinhua University(kytd202202)+1 种基金Key Project of Scientific Research(Natural Science)of Higher Education Institutions in Anhui Province(2022AH051861)Teaching Reform Research and Practice Quality Engineering Project of Anhui Xinhua University(2024jy035).
文摘During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.
基金supported by the National Natural Science Foundation of China(72101025,72271049),the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-24-024)the Hebei Natural Science Foundation(F2023501011)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the R&D Program of Beijing Municipal Education Commission(KM202411232015).
文摘This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.
基金supported by the National Natural Science Foundation of China(Grant No.11925204).
文摘The challenge of solving nonlinear problems in multi-connected domains with high accuracy has garnered significant interest.In this paper,we propose a unified wavelet solution method for accurately solving nonlinear boundary value problems on a two-dimensional(2D)arbitrary multi-connected domain.We apply this method to solve large deflection bending problems of complex plates with holes.Our solution method simplifies the treatment of the 2D multi-connected domain by utilizing a natural discretization approach that divides it into a series of one-dimensional(1D)intervals.This approach establishes a fundamental relationship between the highest-order derivative in the governing equation of the problem and the remaining lower-order derivatives.By combining a wavelet high accuracy integral approximation format on 1D intervals,where the convergence order remains constant regardless of the number of integration folds,with the collocation method,we obtain a system of algebraic equations that only includes discrete point values of the highest order derivative.In this process,the boundary conditions are automatically replaced using integration constants,eliminating the need for additional processing.Error estimation and numerical results demonstrate that the accuracy of this method is unaffected by the degree of nonlinearity of the equations.When solving the bending problem of multi-perforated complex-shaped plates under consideration,it is evident that directly using higher-order derivatives as unknown functions significantly improves the accuracy of stress calculation,even when the stress exhibits large gradient variations.Moreover,compared to the finite element method,the wavelet method requires significantly fewer nodes to achieve the same level of accuracy.Ultimately,the method achieves a sixth-order accuracy and resembles the treatment of one-dimensional problems during the solution process,effectively avoiding the need for the complex 2D meshing process typically required by conventional methods when solving problems with multi-connected domains.
基金supported by the National Key R&D Program of China(No.2021YFC2103600)the National Natural Science Foundation of China(Nos.21878156,21978131,22275085,and 22278224)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20200089 and BK20200691)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(No.KL21-08).
文摘Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.
基金supported by the National Natural Science Foundation of China(Grant No.42307218)the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University),Ministry of Education(Grant No.2022P08)the Natural Science Foundation of Zhejiang Province(Grant No.LTZ21E080001).
文摘Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.
基金supported by the National Natural Science Foundation of China (Grant No.12065012)Yunnan Fundamental Research Projects (202301AS070029)Yunnan High-Level Talent Training Support Plan Young&Elite Talents Project (Grant No.YNWR-QNBJ-2018-360)。
文摘In this study,we examined the thermal fluctuations,deflection angle,and greybody factor of a high-dimensional Schwarzschild black hole in scalar-tensor-vector gravity(STVG).We calculated some thermodynamic quantities related to the correction of the black hole entropy caused by thermal fluctuations and discussed the effect of the correction parameters on these quantities.By analyzing the changes in the corrected specific heat,we found that thermal fluctuations made the small black hole more stable.It is worth noting that the STVG parameter did not affect the thermodynamic stability of this black hole.Additionally,by utilizing the Gauss-Bonnet theorem,the deflection angle was obtained in the weak field limit,and the effects of the two parameters on the results were visualized.Finally,we calculated the bounds on the greybody factor of a massless scalar field.We observed that as the STVG parameter around the black hole increased,the weak deflection angle became larger,and more scalar particles can reach infinity.However,the spacetime dimension has the opposite effect on the STVG parameter on the weak deflection angle and greybody factor.
基金supported by the National Key Research and De-velopment Program of China under Grant No.2017YFB0306201the Research&Developement Program of the CAS-WEGO Group.
文摘A novel compliant spinal fixation designed based on the concept of compliant mechanisms can reduce the stress-shielding effect and adjacent segment degeneration(ASD)effectively,but propose higher requirements for the properties of the used materials.Bulk metallic glasses(BMGs),as a kind of young biomaterials,exhibiting excellent comprehensive properties,which are attractive for compliant spinal fixation.Here,according to the practical service condition of the basic elements in compliant spinal fixation,large deflection deformation behaviors of Zr_(61)Ti_(2)Cu_(25)Al_(12)(at.%,ZT1)BMG beam,including elastic,yielding and plastic were investigated systematically.It was shown that the theoretical nonlinear analytical solution curve as the benchmark not only with the capacity to predict the nonlinear load-deflection relation within the elastic deformation regime,but also assists to capture the yielding event roughly,which can be used as a powerful design tool for engineers.To capture the beginning of the yielding event exactly,bending proof strength(σ_(p),0.05%)accompanied with tiny permanent strain of 0.05% was proposed and determined for BMGs in biomedical implant applications,which is of significance for setting the allowable operating limits of the basic flexible elements.By approach of interrupted loading-unloading cycles,plastic deformation driven by the bending moment can be classified into two typical stages:the initial stage which mainly characterized by the nucleation and intense interaction of abundant shear bands when the plastic strain below the critical value,and the second stage which dominated by the progressive propagation of shear bands and coupled with the emergence of shear offsets on tensile side.The plasticity of BMG beam structures depends on the BMG's inherent plastic zone size(rp).When the half beam thickness less than that of the rp,the plastic deformation of BMGs will behave in a stable manner,which can be acted as the margin of safety effectively.
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
基金funded by the National Natural Science Foundation of China 11975145。
文摘We investigate the light deflection in the weak field approximation from the accelerating charged AdS black hole.For this purpose,we apply the Gauss–Bonnet theorem to calculate the light deflection in the weak field area and use the Gibbons–Werner approach to analyze the optical geometry of the accelerating charged AdS black hole in the non-magnetic plasma absence/presence of a non-magnetic medium.We also represent the graphical behavior of the light deflection angle w.r.t.the impact parameter.We also compute the light deflection angle using Keeton and Petters approximations under the impact of accelerating charged AdS black hole geometry.Furthermore,by using the ray-tracing approach,we determine the shadow in the nonmagnetic plasma presence and also demonstrate that graphical shadow has an impact on the gauge potential,non-magnetic plasma frequencies and charge.
文摘This article considers a static and spherical black hole(BH)in f(Q)gravity.f(Q)gravity is the extension of symmetric teleparallel general relativity,where both curvature and torsion are vanishing and gravity is described by nonmetricity.In this study,we investigate the possible implications of quasinormal mode(QNM)modified Hawking spectra and deflection angles generated by the model.The Wentzel–Kramers–Brillouin method is used to solve the equations of motion for massless Dirac perturbation fields and explore the impact of the nonmetricity parameter(Q_(0)).Based on the QNM computation,we can ensure that the BH is stable against massless Dirac perturbations and as Q_(0)increases the oscillatory frequency of the mode decreases.We then discuss the weak deflection angle in the weak field limit approximation.We compute the deflection angle up to the fourth order of approximation and show how the nonmetricity parameter affects it.We find that the Q_(0)parameter reduces the deflection angle.
文摘The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research.
基金supported by the National Natural Science Foundation of China(Grant Nos.42120104008 and 42307214)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230620).
文摘Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective Coriolis condition,the velocity component parallel to the rotational axis exerts no influence on the magnitude of Coriolis acceleration.This circumstance implies a potential mitigation of the Coriolis force's deflective impact.Regrettably,extant investigations predominantly emphasize the dilative and compressive Coriolis effects,largely neglecting the pragmatic import of the deflective Coriolis condition.In pursuit of this gap,a series of discrete element method(DEM)simulations have been conducted to scrutinize the feasibility of centrifugal modelling for dry granular run-out processes under deflective Coriolis conditions.The findings concerning the deflective Coriolis effect reveal a consistent rise in the run-out distance by 2%–16%,a modest increase in bulk flow velocity of under 4%,and a slight elevation in average flow depth by no more than 25%.These alterations display smaller dependence on the specific testing conditions due to the granular flow undergoing dual deflections in opposing directions.This underscores the significance and utility of the deflective Coriolis condition.Notably,the anticipated reduction in error in predicting the final run-out distance is substantial,potentially reaching a 150%improvement compared to predictions made under the dilative and compressive Coriolis conditions.Therefore,the deflective Coriolis condition is advised when the final run-out distance of the granular flow is the main concern.To mitigate the impact of Coriolis acceleration,a greater initial height of the granular column is recommended,with a height/width ratio exceeding 1,as the basal friction of the granular material plays a crucial role in mitigating the deflective Coriolis effect.For more transverse-uniform flow properties,the width of the granular column should be as large as possible.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.