Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)feat...Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.展开更多
Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Nume...Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Numerical approaches have become necessary and sufficient to be addressed and employed for benefiting from the adaptability of such systems for varied applications.A variety of fractional Layla and Majnun model(LMM)system kinds has been proposed in the current work where some of these systems’key behaviors are addressed.In addition,the necessary and sufficient conditions for the stability and asymptotic stability of the fractional dynamic systems are investigated,as a result of which,the necessary requirements of the LMM to achieve constant and asymptotically steady zero resolutions are provided.As a special case,when Layla and Majnun have equal feelings,we propose an analysis of the system in view of its equilibrium and fixed point sets.Considering that the system has marginal stability if its eigenvalues have both negative and zero real portions,it is demonstrated that the system neither converges nor diverges to a steady trajectory or equilibrium point.It,rather,continues to hover along the line separating stability and instability based on the fractional LMM system.展开更多
Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),a...Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.展开更多
Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived sol...Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived solitary wave solution, we obtain some specific chaotic solitons to the (2+1)-dimensional GBK system.展开更多
Chaotic cryptography has been applied to image encryption;however,only the traditional low-dimensional chaotic systems has been widely analyzed or deciphered,which does not show satisfied security and efficiency.To so...Chaotic cryptography has been applied to image encryption;however,only the traditional low-dimensional chaotic systems has been widely analyzed or deciphered,which does not show satisfied security and efficiency.To solve this problem,a new algorithm based on cross-chaos map has been created in this article.The image pixels are scrambled under control of high-dimensional chaotic sequence,which is generated by cross chaotic map.The image pixels are substituted by ciphertext feedback algorithm.It can relate encryption required parameters with plaintext and can make a plaintext byte affect more ciphertext bytes.Proved by theoretical analysis and experimental results,the algorithm has higher complex degree and has passed SP800-22 pseudo-random number standard tests,and it has high encryption speed,high security,etc.It can be widely applied in the field of image encryption.展开更多
With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In t...With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.展开更多
This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the ...This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the user’s key, then uses the chaotic mapping to get the chaotic sequence and inserts the sequence into the LSBs of the image blocks to get the watermarked image blocks. The paper reconstructed the watermarked image from all the embedded blocks. The analysis and experimental results show that the scheme is pretty fragile to tampering, and it can localize the tampering position accurately, reach 3×3 blocks.展开更多
A color image encryption method combining deoxyribonucleic(DNA)encoding and hyperchaotic mapping is proposed to solve the problems of simple structure,low complexit and low security of the existing encryption system f...A color image encryption method combining deoxyribonucleic(DNA)encoding and hyperchaotic mapping is proposed to solve the problems of simple structure,low complexit and low security of the existing encryption system for low-dimensional chaotic mapping encoding system and a single DNA encoding system.Firstly,according to the information of the plaintext images,the initial values of all chaotic maps and the random matrices with the same size as the plaintext images are iteratively generated.Then,the generated initial values and random matrices are divided into the sub-blocks with the same size.The DNA encoding mode of each sub-block and the DNA operation rules between the sub-blocks are determined by the dynamic hyperchaotic sequence.Finally,the diffusion operation is adopted to achieve a better encryption effect.The simulation results indicate that the proposed encryption algorithm can resist a variety of attacks due to its high complexity,strong security and large key space.展开更多
A well known chaotic mapping in symbol space is a shift mapping.However,other chaotic mappings in symbol space exist too.The basic change is to consider the process not only at a set of times which are equally spaced,...A well known chaotic mapping in symbol space is a shift mapping.However,other chaotic mappings in symbol space exist too.The basic change is to consider the process not only at a set of times which are equally spaced,say at unit time apart(a shift mapping),but at a set of times which are not equally spaced,say if the unit time can not be fixed.The increasing mapping as a generalization of the shift mapping and the k-switch mapping are introduced.The increasing and k-switch mappings are chaotic.展开更多
This letter presents a new type of chaotic encryption system based on combined chaotic mapping pseudo-random number generator, Hash table, and elliptic curve. In this program, the elliptic curve algorithm is used for ...This letter presents a new type of chaotic encryption system based on combined chaotic mapping pseudo-random number generator, Hash table, and elliptic curve. In this program, the elliptic curve algorithm is used for the key distribution. After the linear transformation, the original chaotic sequence generated by drive system will be combined to chaotic mapping, converted to an encryption key sequence and constructed as Hash table for message authentication. The communication experiment used in the letter proves that the combination of combined chaotic encryption and conventional encryption is safe, feasible, and easy to implement by software.展开更多
Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematica...Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.展开更多
Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blo...Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.展开更多
Bit-plane decomposition makes images obtain a number of layers. According to the amount of data information, images are encrypted, and the paper proposes image encryption method with Chaotic Mapping based on multi-lay...Bit-plane decomposition makes images obtain a number of layers. According to the amount of data information, images are encrypted, and the paper proposes image encryption method with Chaotic Mapping based on multi-layer parameter disturbance. The advantage of multi-layer parameter disturbance is that it not only scrambles pixel location of images, but also changes pixel values of images. Bit-plane decomposition can increase the space of key. And using chaotic sequence generated by chaotic system with different complexities to encrypt layers with different information content can save operation time. The simulation experiments show that using chaotic mapping in image encryption method based on multi-layer parameter disturbance can cover plaintext effectively and safely, which makes it achieve ideal encryption effect.展开更多
This paper proposes a universal impulse-function-based method for extending discrete chaotic maps,enabling flexible construction of multicavity chaotic attractors.The proposed method achieves one-directional(1D)/two-d...This paper proposes a universal impulse-function-based method for extending discrete chaotic maps,enabling flexible construction of multicavity chaotic attractors.The proposed method achieves one-directional(1D)/two-directional(2D)extensions without introducing additional nonlinear terms or altering system stability.Theoretically,the cavity quantity in arbitrary directions is controlled by adjusting impulse levels N,while the amplitude regulation is implemented through modifications to the proportionality parameter r.Theoretical analyses,including Lyapunov exponents(LEs)and bifurcation diagrams,are conducted,confirming that the extended maps retain the intrinsic dynamics of five rational map classes.The field-programmable gate array(FPGA)implementation results are consistent with the numerical simulation results,verifying the correctness of the theoretical analysis.The method enables the expansion of unipolar attractors and enhances entropy metrics,offering a robust framework for applications in secure communication,encryption,and chaos-based technologies.展开更多
This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels o...This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.展开更多
Chaotic encryption is one of hot topics in cryptography, which has received increasing attention. Among many encryption methods, chaotic map is employed as an important source of pseudo-random numbers(PRNS). Although ...Chaotic encryption is one of hot topics in cryptography, which has received increasing attention. Among many encryption methods, chaotic map is employed as an important source of pseudo-random numbers(PRNS). Although the randomness and the butterfly effect of chaotic map make the generated sequence look very confused, its essence is still the deterministic behavior generated by a set of deterministic parameters. Therefore, the unceasing improved parameter estimation technology becomes one of potential threats for chaotic encryption, enhancing the attacking effect of the deciphering methods. In this paper, for better analyzing the cryptography, we focus on investigating the condition of chaotic maps to resist parameter estimation. An improved particle swarm optimization(IPSO) algorithm is introduced as the estimation method. Furthermore, a new piecewise principle is proposed for increasing estimation precision. Detailed experimental results demonstrate the effectiveness of the new estimation principle, and some new requirements are summarized for a secure chaotic encryption system.展开更多
This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a...This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a structural condition on the considered class of response systems is satisfied.The method presents some useful features:it enables exact GS to be achieved in finite time(i.e.,dead-beat synchronization);it is rigorous,systematic,and straightforward in checking GS;it can be applied to a wide class of chaotic maps.Some examples of GS,including the Grassi-Miller map and a recently introduced minimal 2-D quadratic map,are illustrated.展开更多
In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for med...In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for medical images themselves to be protected,a novel robust watermarking algorithm for encrypted medical images based on dual-tree complex wavelet transform and discrete cosine transform(DTCWT-DCT)and chaotic map is proposed in this paper.First,DTCWT-DCT transformation was performed on medical images,and dot product was per-formed in relation to the transformation matrix and logistic map.Inverse transformation was undertaken to obtain encrypted medical images.Then,in the low-frequency part of the DTCWT-DCT transformation coefficient of the encrypted medical image,a set of 32 bits visual feature vectors that can effectively resist geometric attacks are found to be the feature vector of the encrypted medical image by using perceptual hashing.After that,different logistic initial values and growth parameters were set to encrypt the watermark,and zero-watermark technology was used to embed and extract the encrypted medical images by combining cryptography and third-party concepts.The proposed watermarking algorithm does not change the region of interest of medical images thus it does not affect the judgment of doctors.Additionally,the security of the algorithm is enhanced by using chaotic mapping,which is sensitive to the initial value in order to encrypt the medical image and the watermark.The simulation results show that the pro-posed algorithm has good homomorphism,which can not only protect the original medical image and the watermark information,but can also embed and extract the watermark directly in the encrypted image,eliminating the potential risk of decrypting the embedded watermark and extracting watermark.Compared with the recent related research,the proposed algorithm solves the contradiction between robustness and invisibility of the watermarking algorithm for encrypted medical images,and it has good results against both conventional attacks and geometric attacks.Under geometric attacks in particular,the proposed algorithm performs much better than existing algorithms.展开更多
A digital image encryption scheme using chaotic map lattices has been proposed recently. In this paper, two fatal flaws of the cryptosystem are pointed out. According to these two drawbacks, cryptanalysts could recove...A digital image encryption scheme using chaotic map lattices has been proposed recently. In this paper, two fatal flaws of the cryptosystem are pointed out. According to these two drawbacks, cryptanalysts could recover the plaintext by applying the chosen plaintext attack. Therefore, the proposed cryptosystem is not secure enough to be used in the image transmission system. Experimental results show the feasibility of the attack. As a result, we make some improvements to the encryption scheme, which can completely resist our chosen plaintext attack.展开更多
We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability...We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability of the fixed points in the model are studied indicating that they are infinitely many and all unstable.In particular,a computer searching program is employed to explore the chaotic attractors in these maps,and a simple map is exemplified to show their complex dynamics.Interestingly,this map contains infinitely many coexisting attractors which has been rarely reported in the literature.Further studies on these coexisting attractors are carried out by investigating their time histories,phase trajectories,basins of attraction,Lyapunov exponents spectrum,and Lyapunov(Kaplan–Yorke)dimension.Bifurcation analysis reveals that the map has periodic and chaotic solutions,and more importantly,exhibits extreme multi-stability.展开更多
基金supported by the National Key R&D Program of China(No.2021YFC2103600)the National Natural Science Foundation of China(Nos.21878156,21978131,22275085,and 22278224)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20200089 and BK20200691)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(No.KL21-08).
文摘Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.
基金supported by Ajman University Internal Research Grant No.(DRGS Ref.2024-IRGHBS-3).
文摘Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Numerical approaches have become necessary and sufficient to be addressed and employed for benefiting from the adaptability of such systems for varied applications.A variety of fractional Layla and Majnun model(LMM)system kinds has been proposed in the current work where some of these systems’key behaviors are addressed.In addition,the necessary and sufficient conditions for the stability and asymptotic stability of the fractional dynamic systems are investigated,as a result of which,the necessary requirements of the LMM to achieve constant and asymptotically steady zero resolutions are provided.As a special case,when Layla and Majnun have equal feelings,we propose an analysis of the system in view of its equilibrium and fixed point sets.Considering that the system has marginal stability if its eigenvalues have both negative and zero real portions,it is demonstrated that the system neither converges nor diverges to a steady trajectory or equilibrium point.It,rather,continues to hover along the line separating stability and instability based on the fractional LMM system.
文摘Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.
基金浙江省自然科学基金,Foundation of New Century "151 Talent Engineering" of Zhejiang Province,丽水学院校科研和教改项目,the Scientific Research Foundation of Key Discipline of Zhejiang Province
文摘Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived solitary wave solution, we obtain some specific chaotic solitons to the (2+1)-dimensional GBK system.
基金Supported by the National Natural Science Foundation of China (60973162)the Natural Science Foundation of Shandong Province of China (ZR2009GM037)+2 种基金the Science and Technology Project of Shandong Province,China (2010GGX10132,2012GGX10110)the Key Natural Science Foundation of Shan-dong Province of China (Z2006G01)the Soft Science Project of Shangdong Province of China (2012RKA10009)
文摘Chaotic cryptography has been applied to image encryption;however,only the traditional low-dimensional chaotic systems has been widely analyzed or deciphered,which does not show satisfied security and efficiency.To solve this problem,a new algorithm based on cross-chaos map has been created in this article.The image pixels are scrambled under control of high-dimensional chaotic sequence,which is generated by cross chaotic map.The image pixels are substituted by ciphertext feedback algorithm.It can relate encryption required parameters with plaintext and can make a plaintext byte affect more ciphertext bytes.Proved by theoretical analysis and experimental results,the algorithm has higher complex degree and has passed SP800-22 pseudo-random number standard tests,and it has high encryption speed,high security,etc.It can be widely applied in the field of image encryption.
基金This work has received funding from National Natural Science Foundation of China(No.42275157).
文摘With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.
文摘This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the user’s key, then uses the chaotic mapping to get the chaotic sequence and inserts the sequence into the LSBs of the image blocks to get the watermarked image blocks. The paper reconstructed the watermarked image from all the embedded blocks. The analysis and experimental results show that the scheme is pretty fragile to tampering, and it can localize the tampering position accurately, reach 3×3 blocks.
基金Research and Practice Project of“Double Innovation”Education and Teaching Model of Mechatronics Engineering Specialty。
文摘A color image encryption method combining deoxyribonucleic(DNA)encoding and hyperchaotic mapping is proposed to solve the problems of simple structure,low complexit and low security of the existing encryption system for low-dimensional chaotic mapping encoding system and a single DNA encoding system.Firstly,according to the information of the plaintext images,the initial values of all chaotic maps and the random matrices with the same size as the plaintext images are iteratively generated.Then,the generated initial values and random matrices are divided into the sub-blocks with the same size.The DNA encoding mode of each sub-block and the DNA operation rules between the sub-blocks are determined by the dynamic hyperchaotic sequence.Finally,the diffusion operation is adopted to achieve a better encryption effect.The simulation results indicate that the proposed encryption algorithm can resist a variety of attacks due to its high complexity,strong security and large key space.
基金supported by Latvian Scientific(09.1220)ESF Project(2009/0223/1DP/1.1.1.2.0/09APIA/VIAA/008)
文摘A well known chaotic mapping in symbol space is a shift mapping.However,other chaotic mappings in symbol space exist too.The basic change is to consider the process not only at a set of times which are equally spaced,say at unit time apart(a shift mapping),but at a set of times which are not equally spaced,say if the unit time can not be fixed.The increasing mapping as a generalization of the shift mapping and the k-switch mapping are introduced.The increasing and k-switch mappings are chaotic.
文摘This letter presents a new type of chaotic encryption system based on combined chaotic mapping pseudo-random number generator, Hash table, and elliptic curve. In this program, the elliptic curve algorithm is used for the key distribution. After the linear transformation, the original chaotic sequence generated by drive system will be combined to chaotic mapping, converted to an encryption key sequence and constructed as Hash table for message authentication. The communication experiment used in the letter proves that the combination of combined chaotic encryption and conventional encryption is safe, feasible, and easy to implement by software.
基金funded by Deanship of Research and Graduate Studies at King Khalid University.The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP.2/556/45).
文摘Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.
基金supported by the Large Group Project under grant number(RGP2/473/46).
文摘Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.
文摘Bit-plane decomposition makes images obtain a number of layers. According to the amount of data information, images are encrypted, and the paper proposes image encryption method with Chaotic Mapping based on multi-layer parameter disturbance. The advantage of multi-layer parameter disturbance is that it not only scrambles pixel location of images, but also changes pixel values of images. Bit-plane decomposition can increase the space of key. And using chaotic sequence generated by chaotic system with different complexities to encrypt layers with different information content can save operation time. The simulation experiments show that using chaotic mapping in image encryption method based on multi-layer parameter disturbance can cover plaintext effectively and safely, which makes it achieve ideal encryption effect.
基金supported by the National Natural Science Foundation of China(Grant No.62001391)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515010308)+1 种基金the Natural Science Basic Research Program of Shaanxi(Grant No.2024JC-YBQN-0464)the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government(Grant No.24JK0559).
文摘This paper proposes a universal impulse-function-based method for extending discrete chaotic maps,enabling flexible construction of multicavity chaotic attractors.The proposed method achieves one-directional(1D)/two-directional(2D)extensions without introducing additional nonlinear terms or altering system stability.Theoretically,the cavity quantity in arbitrary directions is controlled by adjusting impulse levels N,while the amplitude regulation is implemented through modifications to the proportionality parameter r.Theoretical analyses,including Lyapunov exponents(LEs)and bifurcation diagrams,are conducted,confirming that the extended maps retain the intrinsic dynamics of five rational map classes.The field-programmable gate array(FPGA)implementation results are consistent with the numerical simulation results,verifying the correctness of the theoretical analysis.The method enables the expansion of unipolar attractors and enhances entropy metrics,offering a robust framework for applications in secure communication,encryption,and chaos-based technologies.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61001099 and 10971120)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200444)
文摘This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61161006 and 61573383)the Key Innovation Project of Graduate of Central South University(Grant No.2018ZZTS009)the Postdoctoral Innovative Talents Support Program(Grant No.BX20180386)。
文摘Chaotic encryption is one of hot topics in cryptography, which has received increasing attention. Among many encryption methods, chaotic map is employed as an important source of pseudo-random numbers(PRNS). Although the randomness and the butterfly effect of chaotic map make the generated sequence look very confused, its essence is still the deterministic behavior generated by a set of deterministic parameters. Therefore, the unceasing improved parameter estimation technology becomes one of potential threats for chaotic encryption, enhancing the attacking effect of the deciphering methods. In this paper, for better analyzing the cryptography, we focus on investigating the condition of chaotic maps to resist parameter estimation. An improved particle swarm optimization(IPSO) algorithm is introduced as the estimation method. Furthermore, a new piecewise principle is proposed for increasing estimation precision. Detailed experimental results demonstrate the effectiveness of the new estimation principle, and some new requirements are summarized for a secure chaotic encryption system.
文摘This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a structural condition on the considered class of response systems is satisfied.The method presents some useful features:it enables exact GS to be achieved in finite time(i.e.,dead-beat synchronization);it is rigorous,systematic,and straightforward in checking GS;it can be applied to a wide class of chaotic maps.Some examples of GS,including the Grassi-Miller map and a recently introduced minimal 2-D quadratic map,are illustrated.
基金supported by the Key Research Project of Hainan Province[ZDYF2018129]the Higher Education Research Project of Hainan Province(Hnky2019-73)+3 种基金the National Natural Science Foundation of China[61762033]the Natural Science Foundation of Hainan[617175]the Special Scientific Research Project of Philosophy and Social Sciences of Chongqing Medical University[201703]the Key Research Project of Haikou College of Economics[HJKZ18-01].
文摘In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for medical images themselves to be protected,a novel robust watermarking algorithm for encrypted medical images based on dual-tree complex wavelet transform and discrete cosine transform(DTCWT-DCT)and chaotic map is proposed in this paper.First,DTCWT-DCT transformation was performed on medical images,and dot product was per-formed in relation to the transformation matrix and logistic map.Inverse transformation was undertaken to obtain encrypted medical images.Then,in the low-frequency part of the DTCWT-DCT transformation coefficient of the encrypted medical image,a set of 32 bits visual feature vectors that can effectively resist geometric attacks are found to be the feature vector of the encrypted medical image by using perceptual hashing.After that,different logistic initial values and growth parameters were set to encrypt the watermark,and zero-watermark technology was used to embed and extract the encrypted medical images by combining cryptography and third-party concepts.The proposed watermarking algorithm does not change the region of interest of medical images thus it does not affect the judgment of doctors.Additionally,the security of the algorithm is enhanced by using chaotic mapping,which is sensitive to the initial value in order to encrypt the medical image and the watermark.The simulation results show that the pro-posed algorithm has good homomorphism,which can not only protect the original medical image and the watermark information,but can also embed and extract the watermark directly in the encrypted image,eliminating the potential risk of decrypting the embedded watermark and extracting watermark.Compared with the recent related research,the proposed algorithm solves the contradiction between robustness and invisibility of the watermarking algorithm for encrypted medical images,and it has good results against both conventional attacks and geometric attacks.Under geometric attacks in particular,the proposed algorithm performs much better than existing algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)+2 种基金the Program for Excellent Talents in Universities of Liaoning Province, China (Grant No. LR2012003)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)the Fundamental Research Funds for the Central Universities of China (Grant No. DUT12JB06)
文摘A digital image encryption scheme using chaotic map lattices has been proposed recently. In this paper, two fatal flaws of the cryptosystem are pointed out. According to these two drawbacks, cryptanalysts could recover the plaintext by applying the chosen plaintext attack. Therefore, the proposed cryptosystem is not secure enough to be used in the image transmission system. Experimental results show the feasibility of the attack. As a result, we make some improvements to the encryption scheme, which can completely resist our chosen plaintext attack.
基金National Natural Science Foundation of China(Grant Nos.11672257,11632008,11772306,and 11972173)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20161314)+1 种基金the 5th 333 High-level Personnel Training Project of Jiangsu Province of China(Grant No.BRA2018324)the Excellent Scientific and Technological Innovation Team of Jiangsu University.
文摘We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability of the fixed points in the model are studied indicating that they are infinitely many and all unstable.In particular,a computer searching program is employed to explore the chaotic attractors in these maps,and a simple map is exemplified to show their complex dynamics.Interestingly,this map contains infinitely many coexisting attractors which has been rarely reported in the literature.Further studies on these coexisting attractors are carried out by investigating their time histories,phase trajectories,basins of attraction,Lyapunov exponents spectrum,and Lyapunov(Kaplan–Yorke)dimension.Bifurcation analysis reveals that the map has periodic and chaotic solutions,and more importantly,exhibits extreme multi-stability.