The aim of this article is to explore potential directions for the development of artificial intelligence(AI).It points out that,while current AI can handle the statistical properties of complex systems,it has difficu...The aim of this article is to explore potential directions for the development of artificial intelligence(AI).It points out that,while current AI can handle the statistical properties of complex systems,it has difficulty effectively processing and fully representing their spatiotemporal complexity patterns.The article also discusses a potential path of AI development in the engineering domain.Based on the existing understanding of the principles of multilevel com-plexity,this article suggests that consistency among the logical structures of datasets,AI models,model-building software,and hardware will be an important AI development direction and is worthy of careful consideration.展开更多
The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse...The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.展开更多
Accurately identifying building distribution from remote sensing images with complex background information is challenging.The emergence of diffusion models has prompted the innovative idea of employing the reverse de...Accurately identifying building distribution from remote sensing images with complex background information is challenging.The emergence of diffusion models has prompted the innovative idea of employing the reverse denoising process to distill building distribution from these complex backgrounds.Building on this concept,we propose a novel framework,building extraction diffusion model(BEDiff),which meticulously refines the extraction of building footprints from remote sensing images in a stepwise fashion.Our approach begins with the design of booster guidance,a mechanism that extracts structural and semantic features from remote sensing images to serve as priors,thereby providing targeted guidance for the diffusion process.Additionally,we introduce a cross-feature fusion module(CFM)that bridges the semantic gap between different types of features,facilitating the integration of the attributes extracted by booster guidance into the diffusion process more effectively.Our proposed BEDiff marks the first application of diffusion models to the task of building extraction.Empirical evidence from extensive experiments on the Beijing building dataset demonstrates the superior performance of BEDiff,affirming its effectiveness and potential for enhancing the accuracy of building extraction in complex urban landscapes.展开更多
The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D desi...The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D design coordination,its static nature limits its utility in real-time construction management and operational phases.This paper proposes a novel synergistic framework that integrates the static,deep data of BIM with the dynamic,real-time capabilities of digital twin(DT)technology.The framework establishes a closed-loop data flow from design(BIM)to construction(IoT,drones,BIM 360)to operation(DT platform).We detail the technological stack required,including IoT sensors,cloud computing,and AI-driven analytics.The application of this framework is illustrated through a simulated case study of a mega-terminal airport construction project,demonstrating potential reductions in rework by 15%,improvement in labor productivity by 10%,and enhanced predictive maintenance capabilities.This research contributes to the field of construction engineering by providing a practical model for achieving full lifecycle digitalization and intelligent project management.展开更多
This research focuses on using BIM modeling optimization to control construction-period risks in the pre-construction stage of industrial factory buildings.It analyzes common risk factors and limitations of traditiona...This research focuses on using BIM modeling optimization to control construction-period risks in the pre-construction stage of industrial factory buildings.It analyzes common risk factors and limitations of traditional approaches.BIM-based methods like collision detection,4D simulation,multi-dimensional data integration,etc.,can effectively mitigate risks.Stakeholder collaboration,digital twin testing,and lean BIM integration is also crucial.Case studies show BIM can reduce risks by 32-41%,with a three phase roadmap provided.展开更多
The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significan...The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.展开更多
In the era of big data,data-driven technologies are increasingly leveraged by industry to facilitate autonomous learning and intelligent decision-making.However,the challenge of“small samples in big data”emerges whe...In the era of big data,data-driven technologies are increasingly leveraged by industry to facilitate autonomous learning and intelligent decision-making.However,the challenge of“small samples in big data”emerges when datasets lack the comprehensive information necessary for addressing complex scenarios,which hampers adaptability.Thus,enhancing data completeness is essential.Knowledge-guided virtual sample generation transforms domain knowledge into extensive virtual datasets,thereby reducing dependence on limited real samples and enabling zero-sample fault diagnosis.This study used building air conditioning systems as a case study.We innovatively used the large language model(LLM)to acquire domain knowledge for sample generation,significantly lowering knowledge acquisition costs and establishing a generalized framework for knowledge acquisition in engineering applications.This acquired knowledge guided the design of diffusion boundaries in mega-trend diffusion(MTD),while the Monte Carlo method was used to sample within the diffusion function to create information-rich virtual samples.Additionally,a noise-adding technique was introduced to enhance the information entropy of these samples,thereby improving the robustness of neural networks trained with them.Experimental results showed that training the diagnostic model exclusively with virtual samples achieved an accuracy of 72.80%,significantly surpassing traditional small-sample supervised learning in terms of generalization.This underscores the quality and completeness of the generated virtual samples.展开更多
Multi-dimensional heat transfers modeling is crucial for building simulations of insulated buildings,which are widely used and have multi-dimensional heat transfers characteristics.For this work,state-model-reduction ...Multi-dimensional heat transfers modeling is crucial for building simulations of insulated buildings,which are widely used and have multi-dimensional heat transfers characteristics.For this work,state-model-reduction techniques were used to develop a reduced low-order model of multi-dimensional heat transfers.With hot box experiment of hollow block wall,heat flow relative errors between experiment and low-order model predication were less than 8% and the largest errors were less than 3%.Also,frequency responses of five typical walls,each with different thermal masses or insulation modes,the low-order model and the complete model showed that the low-order model results agree very well in the lower excitation frequency band with deviations appearing only at high frequency.Furthermore,low-order model was used on intersection thermal bridge of a floor slab and exterior wall.Results show that errors between the two models are very small.This low-order model could be coupled with most existing simulation software for different thermal mass envelope analyses to make up for differences between the multi-dimensional and one-dimensional models,simultaneously simplifying simulation calculations.展开更多
The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ...The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.展开更多
In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assu...In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer var- ies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is approximately hundred times faster than that of grid tomography.展开更多
In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-ma...In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of floor response spectra at certain elevations are also in good agreement.展开更多
Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame "RC-MRF" buildings. The seismic response of such buildings is greatly dependent on the compu...Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame "RC-MRF" buildings. The seismic response of such buildings is greatly dependent on the computational tools used and the inherent assumptions in the modelling process. Thus, it is essential to investigate the sensitivity of the response demands to the corresponding modelling assumption. Many parameters and assumptions are justified to generate effective structural finite element(FE) models of buildings to simulate lateral behaviour and evaluate seismic design demands. As such, the present study focuses on the development of reliable FE models with various levels of refinement. The effects of the FE modelling assumptions on the seismic response demands on the design of buildings are investigated. the predictive ability of a FE model is tied to the accuracy of numerical analysis; a numerical analysis is performed for a series of symmetric buildings in active seismic zones. The results of the seismic response demands are presented in a comparative format to confirm drift and strength limits requirements. A proposed model is formulated based on a simplified modeling approach, where the most refined model is used to calibrate the simplified model.展开更多
One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for stru...One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for structural damage since its square is proportional to structural stiffness. However,it has been demonstrated in various SHM projects that this indicator is substantially affected by fluctuating environmental conditions. In order to provide reliable and consistent information on the health status of the monitored structures,it is necessary to develop a method to filter this interference. This study attempts to model and quantify the environmental influence on the modal frequencies of reinforced concrete buildings. Daily structural response measurements of a twenty-two story reinforced concrete building were collected and analyzed over a one-year period. The Bayesian spectral density approach was utilized to identify the modal frequencies of this building and it was clearly seen that the temperature and humidity fluctuation induced notable variations. A mathematical model was developed to quantify the environmental effects and model complexity was taken into consideration. Based on a Timoshenko beam model,the full model class was constructed and other reduced-order model class candidates were obtained. Then,the Bayesian modal class selection approach was employed to select the one with the most suitable complexity. The proposed model successfully characterizes the environmental influence on the modal frequencies. Furthermore,the estimated uncertainty of the model parameters allows for assessment of the reliability of the prediction. This study not only improves the understanding about the monitored structure,but also establishes a systematic approach for reliable health assessment of reinforced concrete buildings.展开更多
Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to effici...Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.展开更多
As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and...As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and far from maturity. Taking advantage of prevalence of digital cameras and the development of advanced computer vision technology, the paper proposes to reconstruct a building facade and recognize its surface materials from images taken from various points of view. These can serve as initial steps towards automatic generation of as-built BIM. Specifically, 3D point clouds are generated from multiple images using structure from motion method and then segmented into planar components, which are further recognized as different structural components through knowledge based reasoning. Windows are detected through a multilayered complementary strategy by combining detection results from every semantic layer. A novel machine learning based 3D material recognition strategy is presented. Binary classifiers are trained through support vector machines. Material type at a given 3D location is predicted by all its corresponding 2D feature points. Experimental results from three existing buildings validate the proposed system.展开更多
Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive venti...Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive ventilation rate,which may lead to high energy consumption.The Wells-Riley(WR)model is widely used to predict infection risk and control the ventilation rate.However,few studies compared the non-steady-state(NSS)and steady-state(SS)WR models that are used for ventilation control.To fill in this research gap,this study investigates the effects of the mechanical ventilation control strategies based on NSS/SS WR models on the required ventilation rates to prevent airborne transmission and related energy consumption.The modified NSS/SS WR models were proposed by considering many parameters that were ignored before,such as the initial quantum concentration.Based on the NSS/SS WR models,two new ventilation control strategies were proposed.A real building in Canada is used as the case study.The results indicate that under a high initial quantum concentration(e.g.,0.3 q/m^(3))and no protective measures,SS WR control underestimates the required ventilation rate.The ventilation energy consumption of NSS control is up to 2.5 times as high as that of the SS control.展开更多
Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected ...Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected images.Nevertheless,assessing the damage′s impact on structural safety requires localizing damage to specific building components with known design and function.This paper proposes a BIM-based automated inspection framework to provide context for visual surveys.A deep learning-based semantic segmentation algorithm is trained to automatically identify damage in images.The BIM automatically associates any identified damage with specific building components.Then,components are classified into damage states consistent with component fragility models for integration with a structural analysis.To demonstrate the framework,methods are developed to photorealistically simulate severe structural damage in a synthetic computer graphics environment.A graphics model of a real building in Urbana,Illinois,is generated to test the framework;the model is integrated with a structural analysis to apply earthquake damage in a physically realistic manner.A simulated UAV survey is flown of the graphics model and the framework is applied.The method achieves high accuracy in assigning damage states to visible structural components.This assignment enables integration with a performance-based earthquake assessment to classify building safety.展开更多
Dengue community capacity (DCC) is important for developing a sustainable approach to over-coming the problem of dengue. The objectives were 1) to develop and 2) evaluate a dengue community capacity building model for...Dengue community capacity (DCC) is important for developing a sustainable approach to over-coming the problem of dengue. The objectives were 1) to develop and 2) evaluate a dengue community capacity building model for the leader and non-leader group in three communities selected by purposive technique. A mixed method research design was used employing both qualitative and quantitative methods with qualitative studies conducted for community capacity building model: assessment, planning, implementation, and evaluation. DCC level was assessed by the Dengue Community Capacity Assessment Tool (DCCAT) including larval indices, and morbidity and mortality rate. To analyze the differences of the leader and non-leader’s DCC levels both pre and post-interventions in each model, the Mann-Whitney and Independent T-test were used and to analyze the difference of the DCC level among the three models (Ban Mon, Ban Nangpraya and Ban Kang), the Kruskal-Wallis Test, ANOVA, and ANCOVA were used. The findings showed that there were some differences among the three models in dengue community capacity building in terms model. The participants consisted of leader (n = 26, 24 and 28) and non-leader groups (n = 200, 215 and 176 respectively). The DCC levels of both leader and non-leader groups increased post-intervention in each model (p < 0.001) and in all three models, showing a statistically significant difference between pre and post-intervention (p < 0.001). Ban Kang model demonstrated the highest DCC levels of leader and non-leader groups, the lowest larval indices (HI, BI, and CI), and no dengue morbidity. In contrast, Ban Mon and Ban Nangpraya model showed low DCC level in both leader and non-leader groups, a high rate of larval indices and high dengue morbidity rate. However, there was no mortality rate in three areas. The conclusion indicates that the model with a high DCC level showed low risk on the dengue index both entomological and epidemiology index. The model of dengue community capacity building for dengue solution was sustainability not only needs to be maintained DCC levels but also increased dependent upon the contexts of each community.展开更多
Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource p...Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource plays such modeling, when well calibrated with direct maturity meas- urements from wells, can characterize and locate production sweet spots for oil, wet gas and dry gas. The transformation of kerogen to petroleum is associated with many chemical reactions, but models typically focus on first-order reactions with rates determined by the Arrhenius Equation. A miscon- ception has been perpetuated for many years that accurate thermal maturity modeling of vitrinite re- flectance using the Arrhenius Equation and a single activation energy, to derive a time-temperature index (~TTIARa), as proposed by Wood (1988), is flawed. This claim was initially made by Sweeney and Burnham (1990) in promoting their "EasyRo" method, and repeated by others. This paper dem- onstrates through detailed multi-dimensional burial and thermal modeling and direct comparison of the ~TTIARR and "EasyRo" methods that this is not the case. The ~TTIA^R method not only provides a very useful and sensitive maturity index, it can reproduce the calculated vitrinite reflectance values derived from models based on multiple activation energies (e.g., "EasyRo"). Through simple expres- sions the ~TTIAaa method can also provide oil and gas transformation factors that can be flexibly scaled and calibrated to match the oil, wet gas and dry gas generation windows. This is achieved in a more-computationally-efficient, flexible and transparent way by the ~TTIARR method than the "EasyRo" method. Analysis indicates that the "EasyRo" method, using twenty activation energies and a constant frequency factor, generates reaction rates and transformation factors that do not realisti- cally model observed kerogen behaviour and transformation factors over geologic time scales.展开更多
To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitori...To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits.展开更多
文摘The aim of this article is to explore potential directions for the development of artificial intelligence(AI).It points out that,while current AI can handle the statistical properties of complex systems,it has difficulty effectively processing and fully representing their spatiotemporal complexity patterns.The article also discusses a potential path of AI development in the engineering domain.Based on the existing understanding of the principles of multilevel com-plexity,this article suggests that consistency among the logical structures of datasets,AI models,model-building software,and hardware will be an important AI development direction and is worthy of careful consideration.
文摘The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.
基金supported by the National Natural Science Foundation of China(Nos.61906168,62202429 and 62272267)the Zhejiang Provincial Natural Science Foundation of China(No.LY23F020023)the Construction of Hubei Provincial Key Laboratory for Intelligent Visual Monitoring of Hydropower Projects(No.2022SDSJ01)。
文摘Accurately identifying building distribution from remote sensing images with complex background information is challenging.The emergence of diffusion models has prompted the innovative idea of employing the reverse denoising process to distill building distribution from these complex backgrounds.Building on this concept,we propose a novel framework,building extraction diffusion model(BEDiff),which meticulously refines the extraction of building footprints from remote sensing images in a stepwise fashion.Our approach begins with the design of booster guidance,a mechanism that extracts structural and semantic features from remote sensing images to serve as priors,thereby providing targeted guidance for the diffusion process.Additionally,we introduce a cross-feature fusion module(CFM)that bridges the semantic gap between different types of features,facilitating the integration of the attributes extracted by booster guidance into the diffusion process more effectively.Our proposed BEDiff marks the first application of diffusion models to the task of building extraction.Empirical evidence from extensive experiments on the Beijing building dataset demonstrates the superior performance of BEDiff,affirming its effectiveness and potential for enhancing the accuracy of building extraction in complex urban landscapes.
文摘The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D design coordination,its static nature limits its utility in real-time construction management and operational phases.This paper proposes a novel synergistic framework that integrates the static,deep data of BIM with the dynamic,real-time capabilities of digital twin(DT)technology.The framework establishes a closed-loop data flow from design(BIM)to construction(IoT,drones,BIM 360)to operation(DT platform).We detail the technological stack required,including IoT sensors,cloud computing,and AI-driven analytics.The application of this framework is illustrated through a simulated case study of a mega-terminal airport construction project,demonstrating potential reductions in rework by 15%,improvement in labor productivity by 10%,and enhanced predictive maintenance capabilities.This research contributes to the field of construction engineering by providing a practical model for achieving full lifecycle digitalization and intelligent project management.
文摘This research focuses on using BIM modeling optimization to control construction-period risks in the pre-construction stage of industrial factory buildings.It analyzes common risk factors and limitations of traditional approaches.BIM-based methods like collision detection,4D simulation,multi-dimensional data integration,etc.,can effectively mitigate risks.Stakeholder collaboration,digital twin testing,and lean BIM integration is also crucial.Case studies show BIM can reduce risks by 32-41%,with a three phase roadmap provided.
文摘The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.
基金supported by the National Natural Science Foundation of China(No.62306281)the Natural Science Foundation of Zhejiang Province(Nos.LQ23E060006 and LTGG24E050005)the Key Research Plan of Jiaxing City(No.2024BZ20016).
文摘In the era of big data,data-driven technologies are increasingly leveraged by industry to facilitate autonomous learning and intelligent decision-making.However,the challenge of“small samples in big data”emerges when datasets lack the comprehensive information necessary for addressing complex scenarios,which hampers adaptability.Thus,enhancing data completeness is essential.Knowledge-guided virtual sample generation transforms domain knowledge into extensive virtual datasets,thereby reducing dependence on limited real samples and enabling zero-sample fault diagnosis.This study used building air conditioning systems as a case study.We innovatively used the large language model(LLM)to acquire domain knowledge for sample generation,significantly lowering knowledge acquisition costs and establishing a generalized framework for knowledge acquisition in engineering applications.This acquired knowledge guided the design of diffusion boundaries in mega-trend diffusion(MTD),while the Monte Carlo method was used to sample within the diffusion function to create information-rich virtual samples.Additionally,a noise-adding technique was introduced to enhance the information entropy of these samples,thereby improving the robustness of neural networks trained with them.Experimental results showed that training the diagnostic model exclusively with virtual samples achieved an accuracy of 72.80%,significantly surpassing traditional small-sample supervised learning in terms of generalization.This underscores the quality and completeness of the generated virtual samples.
基金Project(51178023)supported by the National Natural Science Foundation of China
文摘Multi-dimensional heat transfers modeling is crucial for building simulations of insulated buildings,which are widely used and have multi-dimensional heat transfers characteristics.For this work,state-model-reduction techniques were used to develop a reduced low-order model of multi-dimensional heat transfers.With hot box experiment of hollow block wall,heat flow relative errors between experiment and low-order model predication were less than 8% and the largest errors were less than 3%.Also,frequency responses of five typical walls,each with different thermal masses or insulation modes,the low-order model and the complete model showed that the low-order model results agree very well in the lower excitation frequency band with deviations appearing only at high frequency.Furthermore,low-order model was used on intersection thermal bridge of a floor slab and exterior wall.Results show that errors between the two models are very small.This low-order model could be coupled with most existing simulation software for different thermal mass envelope analyses to make up for differences between the multi-dimensional and one-dimensional models,simultaneously simplifying simulation calculations.
文摘The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.
基金supported by the National Natural Science Foundation of China(Nos.41230318,41074077)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130132110023)the Fundamental Research Funds for the Central Universities of China(No.201413004)
文摘In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer var- ies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is approximately hundred times faster than that of grid tomography.
基金Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), Ministry of Knowledge Economy, Republic of Korea under Grant No. 2010T100101066
文摘In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of floor response spectra at certain elevations are also in good agreement.
基金Scientific Research Deanship,Taibah University Grant No.6363/436
文摘Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame "RC-MRF" buildings. The seismic response of such buildings is greatly dependent on the computational tools used and the inherent assumptions in the modelling process. Thus, it is essential to investigate the sensitivity of the response demands to the corresponding modelling assumption. Many parameters and assumptions are justified to generate effective structural finite element(FE) models of buildings to simulate lateral behaviour and evaluate seismic design demands. As such, the present study focuses on the development of reliable FE models with various levels of refinement. The effects of the FE modelling assumptions on the seismic response demands on the design of buildings are investigated. the predictive ability of a FE model is tied to the accuracy of numerical analysis; a numerical analysis is performed for a series of symmetric buildings in active seismic zones. The results of the seismic response demands are presented in a comparative format to confirm drift and strength limits requirements. A proposed model is formulated based on a simplified modeling approach, where the most refined model is used to calibrate the simplified model.
基金Research Committee,University of Macao,China Under Grant No.RG077/07-08S/09R/YKV/FST
文摘One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for structural damage since its square is proportional to structural stiffness. However,it has been demonstrated in various SHM projects that this indicator is substantially affected by fluctuating environmental conditions. In order to provide reliable and consistent information on the health status of the monitored structures,it is necessary to develop a method to filter this interference. This study attempts to model and quantify the environmental influence on the modal frequencies of reinforced concrete buildings. Daily structural response measurements of a twenty-two story reinforced concrete building were collected and analyzed over a one-year period. The Bayesian spectral density approach was utilized to identify the modal frequencies of this building and it was clearly seen that the temperature and humidity fluctuation induced notable variations. A mathematical model was developed to quantify the environmental effects and model complexity was taken into consideration. Based on a Timoshenko beam model,the full model class was constructed and other reduced-order model class candidates were obtained. Then,the Bayesian modal class selection approach was employed to select the one with the most suitable complexity. The proposed model successfully characterizes the environmental influence on the modal frequencies. Furthermore,the estimated uncertainty of the model parameters allows for assessment of the reliability of the prediction. This study not only improves the understanding about the monitored structure,but also establishes a systematic approach for reliable health assessment of reinforced concrete buildings.
基金supported by a grant(No.14DZ2292800,http://www.greengeo.net/)from“Technology Service Platform of Civil Engineering”of Science and Technology Commission of Shanghai Municipality.
文摘Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.
基金supported by National Natural Science Foundation of China(No.51208425)Research Foundation of Northwestern Polytechnical University(No.JCY20130127)
文摘As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and far from maturity. Taking advantage of prevalence of digital cameras and the development of advanced computer vision technology, the paper proposes to reconstruct a building facade and recognize its surface materials from images taken from various points of view. These can serve as initial steps towards automatic generation of as-built BIM. Specifically, 3D point clouds are generated from multiple images using structure from motion method and then segmented into planar components, which are further recognized as different structural components through knowledge based reasoning. Windows are detected through a multilayered complementary strategy by combining detection results from every semantic layer. A novel machine learning based 3D material recognition strategy is presented. Binary classifiers are trained through support vector machines. Material type at a given 3D location is predicted by all its corresponding 2D feature points. Experimental results from three existing buildings validate the proposed system.
基金Project(RGPIN-2019-05824)supported by the Start-up Fund of Universitéde Sherbrooke and Discovery Grants of Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive ventilation rate,which may lead to high energy consumption.The Wells-Riley(WR)model is widely used to predict infection risk and control the ventilation rate.However,few studies compared the non-steady-state(NSS)and steady-state(SS)WR models that are used for ventilation control.To fill in this research gap,this study investigates the effects of the mechanical ventilation control strategies based on NSS/SS WR models on the required ventilation rates to prevent airborne transmission and related energy consumption.The modified NSS/SS WR models were proposed by considering many parameters that were ignored before,such as the initial quantum concentration.Based on the NSS/SS WR models,two new ventilation control strategies were proposed.A real building in Canada is used as the case study.The results indicate that under a high initial quantum concentration(e.g.,0.3 q/m^(3))and no protective measures,SS WR control underestimates the required ventilation rate.The ventilation energy consumption of NSS control is up to 2.5 times as high as that of the SS control.
基金Financial support for this research was provided in part by the US Army Corps of Engineers through a subaward from the University of California,San Diego,USA。
文摘Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected images.Nevertheless,assessing the damage′s impact on structural safety requires localizing damage to specific building components with known design and function.This paper proposes a BIM-based automated inspection framework to provide context for visual surveys.A deep learning-based semantic segmentation algorithm is trained to automatically identify damage in images.The BIM automatically associates any identified damage with specific building components.Then,components are classified into damage states consistent with component fragility models for integration with a structural analysis.To demonstrate the framework,methods are developed to photorealistically simulate severe structural damage in a synthetic computer graphics environment.A graphics model of a real building in Urbana,Illinois,is generated to test the framework;the model is integrated with a structural analysis to apply earthquake damage in a physically realistic manner.A simulated UAV survey is flown of the graphics model and the framework is applied.The method achieves high accuracy in assigning damage states to visible structural components.This assignment enables integration with a performance-based earthquake assessment to classify building safety.
文摘Dengue community capacity (DCC) is important for developing a sustainable approach to over-coming the problem of dengue. The objectives were 1) to develop and 2) evaluate a dengue community capacity building model for the leader and non-leader group in three communities selected by purposive technique. A mixed method research design was used employing both qualitative and quantitative methods with qualitative studies conducted for community capacity building model: assessment, planning, implementation, and evaluation. DCC level was assessed by the Dengue Community Capacity Assessment Tool (DCCAT) including larval indices, and morbidity and mortality rate. To analyze the differences of the leader and non-leader’s DCC levels both pre and post-interventions in each model, the Mann-Whitney and Independent T-test were used and to analyze the difference of the DCC level among the three models (Ban Mon, Ban Nangpraya and Ban Kang), the Kruskal-Wallis Test, ANOVA, and ANCOVA were used. The findings showed that there were some differences among the three models in dengue community capacity building in terms model. The participants consisted of leader (n = 26, 24 and 28) and non-leader groups (n = 200, 215 and 176 respectively). The DCC levels of both leader and non-leader groups increased post-intervention in each model (p < 0.001) and in all three models, showing a statistically significant difference between pre and post-intervention (p < 0.001). Ban Kang model demonstrated the highest DCC levels of leader and non-leader groups, the lowest larval indices (HI, BI, and CI), and no dengue morbidity. In contrast, Ban Mon and Ban Nangpraya model showed low DCC level in both leader and non-leader groups, a high rate of larval indices and high dengue morbidity rate. However, there was no mortality rate in three areas. The conclusion indicates that the model with a high DCC level showed low risk on the dengue index both entomological and epidemiology index. The model of dengue community capacity building for dengue solution was sustainability not only needs to be maintained DCC levels but also increased dependent upon the contexts of each community.
文摘Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource plays such modeling, when well calibrated with direct maturity meas- urements from wells, can characterize and locate production sweet spots for oil, wet gas and dry gas. The transformation of kerogen to petroleum is associated with many chemical reactions, but models typically focus on first-order reactions with rates determined by the Arrhenius Equation. A miscon- ception has been perpetuated for many years that accurate thermal maturity modeling of vitrinite re- flectance using the Arrhenius Equation and a single activation energy, to derive a time-temperature index (~TTIARa), as proposed by Wood (1988), is flawed. This claim was initially made by Sweeney and Burnham (1990) in promoting their "EasyRo" method, and repeated by others. This paper dem- onstrates through detailed multi-dimensional burial and thermal modeling and direct comparison of the ~TTIARR and "EasyRo" methods that this is not the case. The ~TTIA^R method not only provides a very useful and sensitive maturity index, it can reproduce the calculated vitrinite reflectance values derived from models based on multiple activation energies (e.g., "EasyRo"). Through simple expres- sions the ~TTIAaa method can also provide oil and gas transformation factors that can be flexibly scaled and calibrated to match the oil, wet gas and dry gas generation windows. This is achieved in a more-computationally-efficient, flexible and transparent way by the ~TTIARR method than the "EasyRo" method. Analysis indicates that the "EasyRo" method, using twenty activation energies and a constant frequency factor, generates reaction rates and transformation factors that do not realisti- cally model observed kerogen behaviour and transformation factors over geologic time scales.
基金Project 50279005 supported by the National Natural Science Foundation of China
文摘To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits.