The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse...The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.展开更多
Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource p...Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource plays such modeling, when well calibrated with direct maturity meas- urements from wells, can characterize and locate production sweet spots for oil, wet gas and dry gas. The transformation of kerogen to petroleum is associated with many chemical reactions, but models typically focus on first-order reactions with rates determined by the Arrhenius Equation. A miscon- ception has been perpetuated for many years that accurate thermal maturity modeling of vitrinite re- flectance using the Arrhenius Equation and a single activation energy, to derive a time-temperature index (~TTIARa), as proposed by Wood (1988), is flawed. This claim was initially made by Sweeney and Burnham (1990) in promoting their "EasyRo" method, and repeated by others. This paper dem- onstrates through detailed multi-dimensional burial and thermal modeling and direct comparison of the ~TTIARR and "EasyRo" methods that this is not the case. The ~TTIA^R method not only provides a very useful and sensitive maturity index, it can reproduce the calculated vitrinite reflectance values derived from models based on multiple activation energies (e.g., "EasyRo"). Through simple expres- sions the ~TTIAaa method can also provide oil and gas transformation factors that can be flexibly scaled and calibrated to match the oil, wet gas and dry gas generation windows. This is achieved in a more-computationally-efficient, flexible and transparent way by the ~TTIARR method than the "EasyRo" method. Analysis indicates that the "EasyRo" method, using twenty activation energies and a constant frequency factor, generates reaction rates and transformation factors that do not realisti- cally model observed kerogen behaviour and transformation factors over geologic time scales.展开更多
During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for culti...During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.展开更多
-In this paper, monthly mean SST data in a large area are used. After the spacial average of the data is carried out and the secular monthly means are substracted, a time series (Jan. 1951-Dec. 1985) of SST anomalies ...-In this paper, monthly mean SST data in a large area are used. After the spacial average of the data is carried out and the secular monthly means are substracted, a time series (Jan. 1951-Dec. 1985) of SST anomalies of the cold tongue water area in the eastern tropical Pacific Ocean is obtained. On the basis of the time series, an autoregression model, a self-exciting threshold autoregression model and an open loop autoregression model are developed respectively. The interannual variations are simulated by means of those models. The simulation results show that all the three models have made very good hindcasting for the nine El Nino events since 1951. In order to test the reliability of the open loop threshold model, extrapolated forecast was made for the period of Jan. 1986-Feb. 1987. It can be seen from the forecasting that the model could forecast well the beginning and strengthening stages of the recent El Nino event (1986-1987). Correlation coefficients of the estimations to observations are respectively 0. 84, 0. 88 and 0. 89. It is obvious that all the models work well and the open loop threshold one is the best. So the open loop threshold autoregression model is a useful tool for monitoring the SSTinterannual variation of the cold tongue water area in the Eastern Equatorial Pacific Ocean and for estimating the El Nino strength.展开更多
The classification of the stability of surrounding rock is an uncertain system with multiple indices.The Multidimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimension...The classification of the stability of surrounding rock is an uncertain system with multiple indices.The Multidimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimensional Cloud Model.Setting each index as a one-dimensional attribute,the Multi-dimensional Cloud Model can set the digital characteristics of each index according to the cloud theory.The Multi-dimensional cloud generator can calculate the certainty of each grade,and then determine the stability levels of the surrounding rock according to the principle of maximum certainty.Using this model to 5 coal mine roadway surrounding rock examples and comparing the results with those of One-dimensional and Two-dimensional Cloud Models,we find that the Multi-dimensional Cloud Model can provide a more accurate solution.Since the classification results of the Multidimensional Cloud Model are difficult to be presented intuitively and visually,we reduce the Multi-dimensional Cloud Model to One-dimensional and Two-dimensional Cloud Models in order to visualize the results achieved by the Multi-dimensional Cloud Model.This approach provides a more accurate and intuitive method for the classification of the surrounding rock stability,and it can also be applied to other types of classification problems.展开更多
Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector A...Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector Autoregression (VAR) model to forecast solar irradiance levels and weather characteristics in the San Francisco Bay Area. The results demonstrate a correlation between predicted and actual solar irradiance, indicating the effectiveness of the VAR model for this task. However, the model may not be sufficient for this region due to the requirement of additional weather features to reduce disparities between predictions and actual observations. Additionally, the current lag order in the model is relatively low, limiting its ability to capture all relevant information from past observations. As a result, the model’s forecasting capability is limited to short-term horizons, with a maximum horizon of four hours.展开更多
The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends ...The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research.展开更多
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN....Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.展开更多
The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing acros...The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.展开更多
Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have signi...Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have significantly large absolute values across fine scale levels, the number of the jump points and locations where the jumps occur are estimated. The jump heights are also estimated. All estimators are shown to be consistent. Wavelet method ia also applied to the threshold AR(1) model(TAR(1)). The simple estimators of the thresholds are given,which are shown to be consistent.展开更多
To improve the effectiveness of dam safety monitoring database systems,the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mod...To improve the effectiveness of dam safety monitoring database systems,the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode.The optimal data model was confirmed by identifying data objects,defining relations and reviewing entities.The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely.On this basis,a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established,for which factual tables and dimensional tables have been designed.Finally,based on service design and user interface design,the dam safety monitoring system has been developed with Delphi as the development tool.This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design.It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.展开更多
In this paper, we not only construct the confidence region for parameters in a mixed integer-valued autoregressive process using the empirical likelihood method, but also establish the empirical log-likelihood ratio s...In this paper, we not only construct the confidence region for parameters in a mixed integer-valued autoregressive process using the empirical likelihood method, but also establish the empirical log-likelihood ratio statistic and obtain its limiting distribution. And then, via simulation studies we give coverage probabilities for the parameters of interest. The results show that the empirical likelihood method performs very well.展开更多
The spatiotemporal distribution and relationship between nominal catch-per-unit-ef fort(CPUE) and environment for the jumbo flying squid( Dosidicus gigas) were examined in of fshore Peruvian waters during 2009–2013. ...The spatiotemporal distribution and relationship between nominal catch-per-unit-ef fort(CPUE) and environment for the jumbo flying squid( Dosidicus gigas) were examined in of fshore Peruvian waters during 2009–2013. Three typical oceanographic factors aff ecting the squid habitat were investigated in this research, including sea surface temperature(SST), sea surface salinity(SSS) and sea surface height(SSH). We studied the CPUE-environment relationships for D. gigas using a spatially-lagged version of spatial autoregressive(SAR) model and a generalized additive model(GAM), with the latter for auxiliary and comparative purposes. The annual fishery centroids were distributed broadly in an area bounded by 79.5°–82.7°W and 11.9°–17.1°S, while the monthly fishery centroids were spatially close and lay in a smaller area bounded by 81.0°–81.2°W and 14.3°–15.4°S. Our results show that the preferred environmental ranges for D. gigas offshore Peru were 20.9°–21.9°C for SST, 35.16–35.32 for SSS and 27.2–31.5 cm for SSH in the areas bounded by 78°–80°W/82–84°W and 15°–18°S. Monthly spatial distributions during October to December were predicted using the calibrated GAM and SAR models and general similarities were found between the observed and predicted patterns for the nominal CPUE of D. gigas. The overall accuracies for the hotspots generated by the SAR model were much higher than those produced by the GAM model for all three months. Our results contribute to a better understanding of the spatiotemporal distributions of D. gigas off shore Peru, and off er a new SAR modeling method for advancing fishery science.展开更多
A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of o...A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of order p is used to approximate the flat Rayleigh fading channels; its stability is discussed, and an algorithm for solving the AR model parameters is also given. Finally, an AR channel prediction model based on particle filtering and second-order AR model is presented. Simulation results show that the performance of the proposed AR channel prediction model based on particle filtering is better than that of Kalman filtering.展开更多
This article explores the ability of multivariate autoregressive model(MAR)and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias.The class...This article explores the ability of multivariate autoregressive model(MAR)and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias.The classification performance of four different ECG feature sets based on the model coefficients are shown.The data in the analysis including normal sinus rhythm, atria premature contraction,premature ventricular contraction,ventricular tachycardia,ventricular fibrillation and superventricular tachyeardia is obtained from the MIT-BIH database.The classification is performed using a quadratic diacriminant function.The results show the MAR coefficients produce the best results among the four ECG representations and the MAR modeling is a useful classification and diagnosis tool.展开更多
In this paper, by making use of the Hadamard product of matrices, a natural and reasonable generalization of the univariate GARCH (Generalized Autoregressive Conditional heteroscedastic) process introduced by Bollersl...In this paper, by making use of the Hadamard product of matrices, a natural and reasonable generalization of the univariate GARCH (Generalized Autoregressive Conditional heteroscedastic) process introduced by Bollerslev (J. Econometrics 31(1986), 307-327) to the multivariate case is proposed. The conditions for the existence of strictly stationary and ergodic solutions and the existence of higher-order moments for this class of parametric models are derived.展开更多
本文以黄河利津站和浙江省白溪水库的月径流水文序列为例,在自相关分析的基础上,建立自回归autoregression模型,并参照其结构建立了相应的resilient back propagation神经网络预报模型.比较结果显示:(1)resilient back propagation模型...本文以黄河利津站和浙江省白溪水库的月径流水文序列为例,在自相关分析的基础上,建立自回归autoregression模型,并参照其结构建立了相应的resilient back propagation神经网络预报模型.比较结果显示:(1)resilient back propagation模型的模拟预报结果与序列的自相关性有密切关系;(2)当序列有较好的自相关性时,可参照autoregression模型建立相应的resilient back propagation模型;(3)与传统autoregression模型相比,resilient back propagation模型能取得更高的预报精度;且随着预报步长增加,resilient back propagation模型的优势更加明显.展开更多
In this paper, we present some iterative methods for solving lth order autoregressive models, prove global convergence for l=1 case, and the numerical results of new algorithms seem to be more efficient than the ones ...In this paper, we present some iterative methods for solving lth order autoregressive models, prove global convergence for l=1 case, and the numerical results of new algorithms seem to be more efficient than the ones of Cochrane-Orcutt iterative method.展开更多
Change monitoring of distribution in time series models is an important issue. This paper proposes a procedure for monitoring changes in the error distribution of autoregressive time series, which is based on a weighe...Change monitoring of distribution in time series models is an important issue. This paper proposes a procedure for monitoring changes in the error distribution of autoregressive time series, which is based on a weighed empirical process of residuals with weights equal to the regressors. The asymptotic properties of our monitoring statistic are derived under the null hypothesis of no change in distribution. The finite sample properties are investigated by a simulation. As it turns out, the procedure is not only able to detect distributional changes but also changes in the regression coefficient and mean, Finally, we apply the statistic to a groups of financial data.展开更多
This paper considered an autoregressive time series where the slope contains random components with non-negative values. The authors determine the stationary condition of the series to estimate its parameters by the q...This paper considered an autoregressive time series where the slope contains random components with non-negative values. The authors determine the stationary condition of the series to estimate its parameters by the quasi-maximum likelihood method. The authors also simulates and estimates the coefficients of the simulation chain. In this paper, we consider modeling and forecasting gold chain on the free market in Hanoi, Vietnam.展开更多
文摘The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.
文摘Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource plays such modeling, when well calibrated with direct maturity meas- urements from wells, can characterize and locate production sweet spots for oil, wet gas and dry gas. The transformation of kerogen to petroleum is associated with many chemical reactions, but models typically focus on first-order reactions with rates determined by the Arrhenius Equation. A miscon- ception has been perpetuated for many years that accurate thermal maturity modeling of vitrinite re- flectance using the Arrhenius Equation and a single activation energy, to derive a time-temperature index (~TTIARa), as proposed by Wood (1988), is flawed. This claim was initially made by Sweeney and Burnham (1990) in promoting their "EasyRo" method, and repeated by others. This paper dem- onstrates through detailed multi-dimensional burial and thermal modeling and direct comparison of the ~TTIARR and "EasyRo" methods that this is not the case. The ~TTIA^R method not only provides a very useful and sensitive maturity index, it can reproduce the calculated vitrinite reflectance values derived from models based on multiple activation energies (e.g., "EasyRo"). Through simple expres- sions the ~TTIAaa method can also provide oil and gas transformation factors that can be flexibly scaled and calibrated to match the oil, wet gas and dry gas generation windows. This is achieved in a more-computationally-efficient, flexible and transparent way by the ~TTIARR method than the "EasyRo" method. Analysis indicates that the "EasyRo" method, using twenty activation energies and a constant frequency factor, generates reaction rates and transformation factors that do not realisti- cally model observed kerogen behaviour and transformation factors over geologic time scales.
基金Sponsored by the Quality Engineering Project of Education Department of Anhui Province(2022jyxm671)Research Team Project of Anhui Xinhua University(kytd202202)+1 种基金Key Project of Scientific Research(Natural Science)of Higher Education Institutions in Anhui Province(2022AH051861)Teaching Reform Research and Practice Quality Engineering Project of Anhui Xinhua University(2024jy035).
文摘During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.
文摘-In this paper, monthly mean SST data in a large area are used. After the spacial average of the data is carried out and the secular monthly means are substracted, a time series (Jan. 1951-Dec. 1985) of SST anomalies of the cold tongue water area in the eastern tropical Pacific Ocean is obtained. On the basis of the time series, an autoregression model, a self-exciting threshold autoregression model and an open loop autoregression model are developed respectively. The interannual variations are simulated by means of those models. The simulation results show that all the three models have made very good hindcasting for the nine El Nino events since 1951. In order to test the reliability of the open loop threshold model, extrapolated forecast was made for the period of Jan. 1986-Feb. 1987. It can be seen from the forecasting that the model could forecast well the beginning and strengthening stages of the recent El Nino event (1986-1987). Correlation coefficients of the estimations to observations are respectively 0. 84, 0. 88 and 0. 89. It is obvious that all the models work well and the open loop threshold one is the best. So the open loop threshold autoregression model is a useful tool for monitoring the SSTinterannual variation of the cold tongue water area in the Eastern Equatorial Pacific Ocean and for estimating the El Nino strength.
基金supported by the National Natural Science Foundation of China(No.52074296).
文摘The classification of the stability of surrounding rock is an uncertain system with multiple indices.The Multidimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimensional Cloud Model.Setting each index as a one-dimensional attribute,the Multi-dimensional Cloud Model can set the digital characteristics of each index according to the cloud theory.The Multi-dimensional cloud generator can calculate the certainty of each grade,and then determine the stability levels of the surrounding rock according to the principle of maximum certainty.Using this model to 5 coal mine roadway surrounding rock examples and comparing the results with those of One-dimensional and Two-dimensional Cloud Models,we find that the Multi-dimensional Cloud Model can provide a more accurate solution.Since the classification results of the Multidimensional Cloud Model are difficult to be presented intuitively and visually,we reduce the Multi-dimensional Cloud Model to One-dimensional and Two-dimensional Cloud Models in order to visualize the results achieved by the Multi-dimensional Cloud Model.This approach provides a more accurate and intuitive method for the classification of the surrounding rock stability,and it can also be applied to other types of classification problems.
文摘Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector Autoregression (VAR) model to forecast solar irradiance levels and weather characteristics in the San Francisco Bay Area. The results demonstrate a correlation between predicted and actual solar irradiance, indicating the effectiveness of the VAR model for this task. However, the model may not be sufficient for this region due to the requirement of additional weather features to reduce disparities between predictions and actual observations. Additionally, the current lag order in the model is relatively low, limiting its ability to capture all relevant information from past observations. As a result, the model’s forecasting capability is limited to short-term horizons, with a maximum horizon of four hours.
文摘The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research.
基金The National Natural Science Foundation of China(No.50479017).
文摘Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.
基金This project is supported by the 10th Five-year Plan Pre-research Project Foundation of China Weapon Industry Company, China(No.42001080701).
文摘The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.
文摘Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have significantly large absolute values across fine scale levels, the number of the jump points and locations where the jumps occur are estimated. The jump heights are also estimated. All estimators are shown to be consistent. Wavelet method ia also applied to the threshold AR(1) model(TAR(1)). The simple estimators of the thresholds are given,which are shown to be consistent.
基金supported by the National Natural Science Foundation of China(Grant No.50539010,50539110,50579010,50539030 and 50809025)
文摘To improve the effectiveness of dam safety monitoring database systems,the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode.The optimal data model was confirmed by identifying data objects,defining relations and reviewing entities.The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely.On this basis,a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established,for which factual tables and dimensional tables have been designed.Finally,based on service design and user interface design,the dam safety monitoring system has been developed with Delphi as the development tool.This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design.It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.
基金Supported by National Natural Science Foundation of China(11731015,11571051,J1310022,11501241)Natural Science Foundation of Jilin Province(20150520053JH,20170101057JC,20180101216JC)+2 种基金Program for Changbaishan Scholars of Jilin Province(2015010)Science and Technology Program of Jilin Educational Department during the "13th Five-Year" Plan Period(2016-399)Science and Technology Research Program of Education Department in Jilin Province for the 13th Five-Year Plan(2016213)
文摘In this paper, we not only construct the confidence region for parameters in a mixed integer-valued autoregressive process using the empirical likelihood method, but also establish the empirical log-likelihood ratio statistic and obtain its limiting distribution. And then, via simulation studies we give coverage probabilities for the parameters of interest. The results show that the empirical likelihood method performs very well.
基金Supported by the National Natural Science Foundation of China(Nos.41406146,41476129)the Natural Science Foundation of Shanghai Municipality(No.13ZR1419300)the Shanghai Universities FirstClass Disciplines Project-Fisheries(A)
文摘The spatiotemporal distribution and relationship between nominal catch-per-unit-ef fort(CPUE) and environment for the jumbo flying squid( Dosidicus gigas) were examined in of fshore Peruvian waters during 2009–2013. Three typical oceanographic factors aff ecting the squid habitat were investigated in this research, including sea surface temperature(SST), sea surface salinity(SSS) and sea surface height(SSH). We studied the CPUE-environment relationships for D. gigas using a spatially-lagged version of spatial autoregressive(SAR) model and a generalized additive model(GAM), with the latter for auxiliary and comparative purposes. The annual fishery centroids were distributed broadly in an area bounded by 79.5°–82.7°W and 11.9°–17.1°S, while the monthly fishery centroids were spatially close and lay in a smaller area bounded by 81.0°–81.2°W and 14.3°–15.4°S. Our results show that the preferred environmental ranges for D. gigas offshore Peru were 20.9°–21.9°C for SST, 35.16–35.32 for SSS and 27.2–31.5 cm for SSH in the areas bounded by 78°–80°W/82–84°W and 15°–18°S. Monthly spatial distributions during October to December were predicted using the calibrated GAM and SAR models and general similarities were found between the observed and predicted patterns for the nominal CPUE of D. gigas. The overall accuracies for the hotspots generated by the SAR model were much higher than those produced by the GAM model for all three months. Our results contribute to a better understanding of the spatiotemporal distributions of D. gigas off shore Peru, and off er a new SAR modeling method for advancing fishery science.
基金Supported by National Natural Science Foundation of China (No. 60972038)The Open Research Fund of Na-tional Mobile Communications Research Laboratory, Southeast University (N200911)+3 种基金The Jiangsu Province Universities Natural Science Research Key Grant Project (No. 07KJA51006)ZTE Communications Co., Ltd. (Shenzhen) Huawei Technology Co., Ltd. (Shenzhen)The Research Fund of Nanjing College of Traffic Voca-tional Technology (JY0903)
文摘A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of order p is used to approximate the flat Rayleigh fading channels; its stability is discussed, and an algorithm for solving the AR model parameters is also given. Finally, an AR channel prediction model based on particle filtering and second-order AR model is presented. Simulation results show that the performance of the proposed AR channel prediction model based on particle filtering is better than that of Kalman filtering.
基金Supported by Natural Science Foundation of Zhejiang Province of P.R.China(Y104284)
文摘This article explores the ability of multivariate autoregressive model(MAR)and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias.The classification performance of four different ECG feature sets based on the model coefficients are shown.The data in the analysis including normal sinus rhythm, atria premature contraction,premature ventricular contraction,ventricular tachycardia,ventricular fibrillation and superventricular tachyeardia is obtained from the MIT-BIH database.The classification is performed using a quadratic diacriminant function.The results show the MAR coefficients produce the best results among the four ECG representations and the MAR modeling is a useful classification and diagnosis tool.
文摘In this paper, by making use of the Hadamard product of matrices, a natural and reasonable generalization of the univariate GARCH (Generalized Autoregressive Conditional heteroscedastic) process introduced by Bollerslev (J. Econometrics 31(1986), 307-327) to the multivariate case is proposed. The conditions for the existence of strictly stationary and ergodic solutions and the existence of higher-order moments for this class of parametric models are derived.
文摘本文以黄河利津站和浙江省白溪水库的月径流水文序列为例,在自相关分析的基础上,建立自回归autoregression模型,并参照其结构建立了相应的resilient back propagation神经网络预报模型.比较结果显示:(1)resilient back propagation模型的模拟预报结果与序列的自相关性有密切关系;(2)当序列有较好的自相关性时,可参照autoregression模型建立相应的resilient back propagation模型;(3)与传统autoregression模型相比,resilient back propagation模型能取得更高的预报精度;且随着预报步长增加,resilient back propagation模型的优势更加明显.
基金Supported by the National Natural Science Foundation of China
文摘In this paper, we present some iterative methods for solving lth order autoregressive models, prove global convergence for l=1 case, and the numerical results of new algorithms seem to be more efficient than the ones of Cochrane-Orcutt iterative method.
基金Supported by the National Natural Science Foundation of China(Grant No.11301291)the Open Fund of State Key Laboratory of Remote Sensing Science of China(Grant No.OFSLRSS201206)
文摘Change monitoring of distribution in time series models is an important issue. This paper proposes a procedure for monitoring changes in the error distribution of autoregressive time series, which is based on a weighed empirical process of residuals with weights equal to the regressors. The asymptotic properties of our monitoring statistic are derived under the null hypothesis of no change in distribution. The finite sample properties are investigated by a simulation. As it turns out, the procedure is not only able to detect distributional changes but also changes in the regression coefficient and mean, Finally, we apply the statistic to a groups of financial data.
文摘This paper considered an autoregressive time series where the slope contains random components with non-negative values. The authors determine the stationary condition of the series to estimate its parameters by the quasi-maximum likelihood method. The authors also simulates and estimates the coefficients of the simulation chain. In this paper, we consider modeling and forecasting gold chain on the free market in Hanoi, Vietnam.