Fuzz testing is a widely adopted technique for uncovering bugs and security vulnerabilities in embedded firmware.However,many embedded systems heavily rely on peripherals,rendering conventional fuzzing techniques inef...Fuzz testing is a widely adopted technique for uncovering bugs and security vulnerabilities in embedded firmware.However,many embedded systems heavily rely on peripherals,rendering conventional fuzzing techniques ineffective.When peripheral responses are missing or incorrect,fuzzing a firmware may crash or exit prematurely,significantly limiting code coverage.While prior re-hosting approaches have made progress in simulating Memory-Mapped Input/Output(MMIO)and interrupt-based peripherals,they either ignore Direct Memory Access(DMA)or handle it oversimplified.In this work,we present ADFEmu,a novel automated firmware re-hosting framework that enables effective fuzzing of DMA-enabled firmware.ADFEmu integrates concolic execution with large language models(LLMs)to semantically emulate DMA operations and synthesize peripheral input sequences intelligently.Specifically,it learns DMA transfer patterns from the firmware’s context and employs guided symbolic execution to explore deeper and more diverse execution paths.This approach allows firmware to operate stably without hardware dependencies while achieving higher fidelity in emulation.Evaluated on real-world embedded firmware samples,ADFEmu achieves a 100%re-hosting success rate,improves total execution path exploration by 5.31%,and triggers more crashes compared to the state-of-the-art.These results highlight ADFEmu’s effectiveness in overcoming long-standing limitations of DMA emulation and its potential to advance automated vulnerability discovery in peripheral-rich embedded environments.展开更多
The development of the Internet of Things(IoT)has brought convenience to people’s lives,but it also introduces significant security risks.Due to the limitations of IoT devices themselves and the challenges of re-host...The development of the Internet of Things(IoT)has brought convenience to people’s lives,but it also introduces significant security risks.Due to the limitations of IoT devices themselves and the challenges of re-hosting technology,existing fuzzing for IoT devices is mainly conducted through black-box methods,which lack effective execution feedback and are blind.Meanwhile,the existing static methods mainly rely on taint analysis,which has high overhead and high false alarm rates.We propose a new directed fuzz testing method for detecting bugs in web service programs of IoT devices,which can test IoT devices more quickly and efficiently.Specifically,we identify external input entry points using multiple features.Then we quickly find sensitive targets and paths affected by external input sources based on sensitive data flow analysis of decompiled code,treating them as testing objects.Finally,we performa directed fuzzing test.We use debugging interfaces to collect execution feedback and guide the programto reach sensitive targets based on programpruning techniques.We have implemented a prototype system,AntDFuzz,and evaluated it on firmware fromten devices across five well-known manufacturers.We discovered twelve potential vulnerabilities,seven of which were confirmed and assigned bug id by China National Vulnerability Database(CNVD).The results show that our approach has the ability to find unknown bugs in real devices and is more efficient compared to existing tools.展开更多
Memory leak is a common software vulnerability that can decrease the reliability of an application and,in severe cases,even cause program crashes.If there are intentionally triggerable memory leak vulnerabilities in a...Memory leak is a common software vulnerability that can decrease the reliability of an application and,in severe cases,even cause program crashes.If there are intentionally triggerable memory leak vulnerabilities in a program,attackers can exploit these bugs to launch denial-of-service attacks or induce the program to exhibit unexpected behaviors due to low memory conditions.Existing fuzzing techniques primarily focus on improving code coverage,and specialized fuzzing techniques for individual memory-related defects like uncontrolled memory allocation do not address memory leak vulnerabilities.MemLock is the first fuzzing technique to address memory consumption vulnerabilities including memory leakage.However,the coverage-centric guidance mechanism of MemLock introduces a degree of aimlessness in the testing process,that results in low seed quality and slow bug exposure speed.To address this issue,we propose a risk areas guidance-based fuzzing technique called RBZZER.First,RBZZER retains MemLock’s memory consumption-guided mechanism and introduces a novel distance-guided approach to expedite the arrival of fuzzing at the potential memory areas.Second,we introduce a new seed scheduling strategy called risk areas-based seed scheduling,which classifies seeds based on potential memory leak areas in the program and further schedules them,thereby effectively improving the efficiency of discovering memory leak vulnerabilities.Experiments demonstrate that RBZZER outperforms the state-of-the-art fuzzing techniques by finding 52%more program unique crashes than the second-best counterpart.In particular,RBZZER can discover the amount of memory leakage at least 112%more than the other baseline fuzzers.Besides,RBZZER detects memory leaks at an average speed that is 9.10x faster than MemLock.展开更多
The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed...The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.展开更多
Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial...Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.展开更多
This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses ...This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.展开更多
The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse...The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for culti...During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.展开更多
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with...This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.展开更多
Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)feat...Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.展开更多
The global surge in electric vehicle(EV)adoption is proportionally expanding the EV charging station(EVCS)infrastructure,thereby increasing the attack surface and potential impact of security breaches within this crit...The global surge in electric vehicle(EV)adoption is proportionally expanding the EV charging station(EVCS)infrastructure,thereby increasing the attack surface and potential impact of security breaches within this critical ecosystem.While ISO 15118 standardizes EV-EVCS communication,its underspecified security guidelines and the variability in manufacturers’implementations frequently result in vulnerabilities that can disrupt charging services,compromise user data,or affect power grid stability.This research introduces a systematic black-box fuzzing methodology,accompanied by an open-source tool,to proactively identify and mitigate such security flaws in EVCS firmware operating under ISO 15118.The proposed approach systematically evaluates EVCS behavior by leveraging the state machine defined in the ISO 15118 standard for test case generation and execution,enabling platform-agnostic testing at the application layer.Message sequences,corresponding to valid andmutated traversals of the protocol’s state machine,are generated to uncover logical errors and improper input handling.Themethodology comprises state-aware initial sequence generation,simulated V2G session establishment,targeted message mutation correlated with defined protocol states,and rigorous response analysis to detect anomalies and system crashes.Experimental validation on an open-source EVCS implementation identified five vulnerabilities.These included session integrity weaknesses allowing unauthorized interruptions,billing manipulation through invalid metering data acceptance,and resource exhaustion vulnerabilities from specific parameter malformations leading to denial-of-service.The findings confirm the proposed method’s capability in pinpointing vulnerabilities often overlooked by standard conformance tests,thus offering a robust and practical solution for enhancing the security and resilience of the rapidly growing EV charging infrastructure.展开更多
As one of the most effective techniques for finding software vulnerabilities,fuzzing has become a hot topic in software security.It feeds potentially syntactically or semantically malformed test data to a target progr...As one of the most effective techniques for finding software vulnerabilities,fuzzing has become a hot topic in software security.It feeds potentially syntactically or semantically malformed test data to a target program to mine vulnerabilities and crash the system.In recent years,considerable efforts have been dedicated by researchers and practitioners towards improving fuzzing,so there aremore and more methods and forms,whichmake it difficult to have a comprehensive understanding of the technique.This paper conducts a thorough survey of fuzzing,focusing on its general process,classification,common application scenarios,and some state-of-the-art techniques that have been introduced to improve its performance.Finally,this paper puts forward key research challenges and proposes possible future research directions that may provide new insights for researchers.展开更多
With the prevalence of machine learning in malware defense,hackers have tried to attack machine learning models to evade detection.It is generally difficult to explore the details of malware detection models,hackers c...With the prevalence of machine learning in malware defense,hackers have tried to attack machine learning models to evade detection.It is generally difficult to explore the details of malware detection models,hackers can adopt fuzzing attack to manipulate the features of the malware closer to benign programs on the premise of retaining their functions.In this paper,attack and defense methods on malware detection models based on machine learning algorithms were studied.Firstly,we designed a fuzzing attack method by randomly modifying features to evade detection.The fuzzing attack can effectively descend the accuracy of machine learning model with single feature.Then an adversarial malware detection model MaliFuzz is proposed to defend fuzzing attack.Different from the ordinary single feature detection model,the combined features by static and dynamic analysis to improve the defense ability are used.The experiment results show that the adversarial malware detection model with combined features can deal with the attack.The methods designed in this paper have great significance in improving the security of malware detection models and have good application prospects.展开更多
The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends ...The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research.展开更多
基金funded by the Science and Technology Project of State Grid Jiangsu Electric Power Company Ltd.,grant number J2024169.
文摘Fuzz testing is a widely adopted technique for uncovering bugs and security vulnerabilities in embedded firmware.However,many embedded systems heavily rely on peripherals,rendering conventional fuzzing techniques ineffective.When peripheral responses are missing or incorrect,fuzzing a firmware may crash or exit prematurely,significantly limiting code coverage.While prior re-hosting approaches have made progress in simulating Memory-Mapped Input/Output(MMIO)and interrupt-based peripherals,they either ignore Direct Memory Access(DMA)or handle it oversimplified.In this work,we present ADFEmu,a novel automated firmware re-hosting framework that enables effective fuzzing of DMA-enabled firmware.ADFEmu integrates concolic execution with large language models(LLMs)to semantically emulate DMA operations and synthesize peripheral input sequences intelligently.Specifically,it learns DMA transfer patterns from the firmware’s context and employs guided symbolic execution to explore deeper and more diverse execution paths.This approach allows firmware to operate stably without hardware dependencies while achieving higher fidelity in emulation.Evaluated on real-world embedded firmware samples,ADFEmu achieves a 100%re-hosting success rate,improves total execution path exploration by 5.31%,and triggers more crashes compared to the state-of-the-art.These results highlight ADFEmu’s effectiveness in overcoming long-standing limitations of DMA emulation and its potential to advance automated vulnerability discovery in peripheral-rich embedded environments.
文摘The development of the Internet of Things(IoT)has brought convenience to people’s lives,but it also introduces significant security risks.Due to the limitations of IoT devices themselves and the challenges of re-hosting technology,existing fuzzing for IoT devices is mainly conducted through black-box methods,which lack effective execution feedback and are blind.Meanwhile,the existing static methods mainly rely on taint analysis,which has high overhead and high false alarm rates.We propose a new directed fuzz testing method for detecting bugs in web service programs of IoT devices,which can test IoT devices more quickly and efficiently.Specifically,we identify external input entry points using multiple features.Then we quickly find sensitive targets and paths affected by external input sources based on sensitive data flow analysis of decompiled code,treating them as testing objects.Finally,we performa directed fuzzing test.We use debugging interfaces to collect execution feedback and guide the programto reach sensitive targets based on programpruning techniques.We have implemented a prototype system,AntDFuzz,and evaluated it on firmware fromten devices across five well-known manufacturers.We discovered twelve potential vulnerabilities,seven of which were confirmed and assigned bug id by China National Vulnerability Database(CNVD).The results show that our approach has the ability to find unknown bugs in real devices and is more efficient compared to existing tools.
基金supported by the National Key R&D Program of China(No.2021YFB3101803).
文摘Memory leak is a common software vulnerability that can decrease the reliability of an application and,in severe cases,even cause program crashes.If there are intentionally triggerable memory leak vulnerabilities in a program,attackers can exploit these bugs to launch denial-of-service attacks or induce the program to exhibit unexpected behaviors due to low memory conditions.Existing fuzzing techniques primarily focus on improving code coverage,and specialized fuzzing techniques for individual memory-related defects like uncontrolled memory allocation do not address memory leak vulnerabilities.MemLock is the first fuzzing technique to address memory consumption vulnerabilities including memory leakage.However,the coverage-centric guidance mechanism of MemLock introduces a degree of aimlessness in the testing process,that results in low seed quality and slow bug exposure speed.To address this issue,we propose a risk areas guidance-based fuzzing technique called RBZZER.First,RBZZER retains MemLock’s memory consumption-guided mechanism and introduces a novel distance-guided approach to expedite the arrival of fuzzing at the potential memory areas.Second,we introduce a new seed scheduling strategy called risk areas-based seed scheduling,which classifies seeds based on potential memory leak areas in the program and further schedules them,thereby effectively improving the efficiency of discovering memory leak vulnerabilities.Experiments demonstrate that RBZZER outperforms the state-of-the-art fuzzing techniques by finding 52%more program unique crashes than the second-best counterpart.In particular,RBZZER can discover the amount of memory leakage at least 112%more than the other baseline fuzzers.Besides,RBZZER detects memory leaks at an average speed that is 9.10x faster than MemLock.
文摘The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.
基金the financial support from the Guangxi Natural Science Foundation(grant no.2021GXNSFDA075012,2023GXNSFGA026002)National Natural Science Foundation of China(52104298,22075073,52362027,52462029)Fundamental Research Funds for the Central Universities(531107051077).
文摘Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.
文摘This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.
文摘The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
基金Sponsored by the Quality Engineering Project of Education Department of Anhui Province(2022jyxm671)Research Team Project of Anhui Xinhua University(kytd202202)+1 种基金Key Project of Scientific Research(Natural Science)of Higher Education Institutions in Anhui Province(2022AH051861)Teaching Reform Research and Practice Quality Engineering Project of Anhui Xinhua University(2024jy035).
文摘During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.
基金supported by the National Natural Science Foundation of China(72101025,72271049),the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-24-024)the Hebei Natural Science Foundation(F2023501011)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the R&D Program of Beijing Municipal Education Commission(KM202411232015).
文摘This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.
基金supported by the National Key R&D Program of China(No.2021YFC2103600)the National Natural Science Foundation of China(Nos.21878156,21978131,22275085,and 22278224)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20200089 and BK20200691)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(No.KL21-08).
文摘Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.
基金support of the Korea Internet&Security Agency(KISA)—Information Security Specialized University Support Project(50%)supported by a grant from the Korea Electric Power Corporation(R24XO01-4,50%)for basic research and development projects starting in 2024.
文摘The global surge in electric vehicle(EV)adoption is proportionally expanding the EV charging station(EVCS)infrastructure,thereby increasing the attack surface and potential impact of security breaches within this critical ecosystem.While ISO 15118 standardizes EV-EVCS communication,its underspecified security guidelines and the variability in manufacturers’implementations frequently result in vulnerabilities that can disrupt charging services,compromise user data,or affect power grid stability.This research introduces a systematic black-box fuzzing methodology,accompanied by an open-source tool,to proactively identify and mitigate such security flaws in EVCS firmware operating under ISO 15118.The proposed approach systematically evaluates EVCS behavior by leveraging the state machine defined in the ISO 15118 standard for test case generation and execution,enabling platform-agnostic testing at the application layer.Message sequences,corresponding to valid andmutated traversals of the protocol’s state machine,are generated to uncover logical errors and improper input handling.Themethodology comprises state-aware initial sequence generation,simulated V2G session establishment,targeted message mutation correlated with defined protocol states,and rigorous response analysis to detect anomalies and system crashes.Experimental validation on an open-source EVCS implementation identified five vulnerabilities.These included session integrity weaknesses allowing unauthorized interruptions,billing manipulation through invalid metering data acceptance,and resource exhaustion vulnerabilities from specific parameter malformations leading to denial-of-service.The findings confirm the proposed method’s capability in pinpointing vulnerabilities often overlooked by standard conformance tests,thus offering a robust and practical solution for enhancing the security and resilience of the rapidly growing EV charging infrastructure.
基金supported in part by the National Natural Science Foundation of China under Grants 62273272,62303375,and 61873277in part by the Key Research and Development Program of Shaanxi Province under Grant 2023-YBGY-243+1 种基金in part by the Natural Science Foundation of Shaanxi Province under Grant 2020JQ-758in part by the Youth Innovation Team of Shaanxi Universities,and in part by the Special Fund for Scientific and Technological Innovation Strategy of Guangdong Province under Grant 2022A0505030025.
文摘As one of the most effective techniques for finding software vulnerabilities,fuzzing has become a hot topic in software security.It feeds potentially syntactically or semantically malformed test data to a target program to mine vulnerabilities and crash the system.In recent years,considerable efforts have been dedicated by researchers and practitioners towards improving fuzzing,so there aremore and more methods and forms,whichmake it difficult to have a comprehensive understanding of the technique.This paper conducts a thorough survey of fuzzing,focusing on its general process,classification,common application scenarios,and some state-of-the-art techniques that have been introduced to improve its performance.Finally,this paper puts forward key research challenges and proposes possible future research directions that may provide new insights for researchers.
文摘With the prevalence of machine learning in malware defense,hackers have tried to attack machine learning models to evade detection.It is generally difficult to explore the details of malware detection models,hackers can adopt fuzzing attack to manipulate the features of the malware closer to benign programs on the premise of retaining their functions.In this paper,attack and defense methods on malware detection models based on machine learning algorithms were studied.Firstly,we designed a fuzzing attack method by randomly modifying features to evade detection.The fuzzing attack can effectively descend the accuracy of machine learning model with single feature.Then an adversarial malware detection model MaliFuzz is proposed to defend fuzzing attack.Different from the ordinary single feature detection model,the combined features by static and dynamic analysis to improve the defense ability are used.The experiment results show that the adversarial malware detection model with combined features can deal with the attack.The methods designed in this paper have great significance in improving the security of malware detection models and have good application prospects.
文摘The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research.