The damped Helmholtz-Duffing oscillator is a topic of great interest in many different fields of study due to its complex dynamics.By transitioning from conventional continuous differential equations to their fractal ...The damped Helmholtz-Duffing oscillator is a topic of great interest in many different fields of study due to its complex dynamics.By transitioning from conventional continuous differential equations to their fractal counterparts,one gains insights into the system's response under new mathematical frameworks.This paper presents a novel method for converting standard continuous differential equations into their fractal equivalents.This conversion occurs after the nonlinear system is transformed into its linear equivalent.Numerical analyses show that there are several resonance sites in the fractal system,which differ from the one resonance point found in the continuous system.One important finding is that the fractal system loses some of its stabilizing power when decaying behavior is transformed into a diffuse pattern.Interestingly,a decrease in the fractal order in resonance settings shows a stabilizing impact,highlighting the dynamics'complexity inside fractal systems.This endeavor to convert to fractals is a revolutionary technique that is being employed for the first time.展开更多
More space truss construction has been planned to develop and utilize space resources.These trusses are designed in the way of large-scale,complex,modular,and on-orbit assembly.To meet the upcoming challenge of large-...More space truss construction has been planned to develop and utilize space resources.These trusses are designed in the way of large-scale,complex,modular,and on-orbit assembly.To meet the upcoming challenge of large-scale space infrastructure construction,it is necessary to study space truss automation design and robotic construction.This paper proposes an ordinal finite screw adjacency matrix model(OFSAMM),focusing on the relationship between assembly motions,to express and compute a space truss structure.In this model,a space truss is abstracted as a set of ordered assembly motions,each of which is recorded as a finite screw as the basic element of the truss and its assembly.The operation of truss transformation is also derived under this model.Therefore,the truss configuration,the assembly sequence,the truss sub-assembly,the truss components,and the on-orbit assembly task can be expressed and calculated in a unified model,which is calculated and stores the truss topology and assembly with the minimum storage cost.At the end of this paper,we introduce how to synthesize and optimize space truss design through two cases.The study will help to improve design efficiency.Furthermore,it provides a theoretical basis for the automatic construction of space truss structures,especially in the next stage.展开更多
In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter pertur...In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH.展开更多
A numerical investigation on the effectiveness of the actuator disc method in producing the interactions of multiple tidal stream devices via the 3D-RANS finite element model Telemac3D is explored. The methodology for...A numerical investigation on the effectiveness of the actuator disc method in producing the interactions of multiple tidal stream devices via the 3D-RANS finite element model Telemac3D is explored. The methodology for the implementation of the source term to represent an array of 20 m rotor diameter turbines deployed in an idealized channel is reviewed and discussed in detail. Flow interactions between multiple turbines are investigated for a single row arrangement with only two turbines and a two row arrangement containing three turbines. The results demonstrate that the non-hydrostatic solver shows better agreement when validated against published experimental data. Notably,the mesh density at the device location can strongly influence the simulated thrust from the disc. Although the actuator disc model can generally replicate the wake interactions well, the results indicate that it cannot accurately characterize the flow for regions with high turbulences. While a model setup with the largest lateral spacing(1.5D) demonstrates excellent agreement with the experimental data, the 0.5D model(smallest gap) deviates by up to 25%. These findings demonstrate the effectiveness of the applied source term in reproducing the wake profile, which is comparable with the published data, and highlight the inherent nature of the RANS and actuator disc models.展开更多
Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con...Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con-flicts among production,living and ecological land are prevalent in coastal cities in the process of maintaining sustainable wetland resources and further developing the social economy.By establishing an SD-PLUS-CCD cou-pling model,this paper analysed the evolution characteristics and driving mechanism of the production-living-ecological space(PLES)and the effects of wetland protection(WLP)on promoting or inhibiting the coordinated development of the PLES in Dongying city during 2005-2060.The results show that(1)from 2005 to 2020,the increase in urban population resulted in a significant transfer of arable land and a reduction of 914 km2 in pro-duction space(PS);(2)from 2020 to 2060,under the WLP scenario,the conversion of wetland ecological space will reduce the PS and living space(LS)by 193.92 km2 and 107.14 km2,respectively,and increase the ecological space(ES)by 327.52 km2;and(3)wetland protection has an inhibitory effect on the coordinated development of PLES in the study area,and the total proportion of noncoordinated areas of PE and living-ecological space will continue to increase during the simulation period.This paper provides a solid theoretical support for the sustain-able management and protection of wetlands in coastal cities and possible PLES conflict patterns and provides a scientific basis for future territorial spatial planning and policy balance analysis.展开更多
This paper analyzes the global competitive landscape of smartphone technological innovation capacity using the latent semantic indexing(LSI)and the vector space model(VSM).It integrates the theory of technological eco...This paper analyzes the global competitive landscape of smartphone technological innovation capacity using the latent semantic indexing(LSI)and the vector space model(VSM).It integrates the theory of technological ecological niches and evaluates four key dimensions:patent quality,energy efficiency engineering,technological modules,and intelligent computing power.The findings reveal that USA has established strong technological barriers through standard-essential patents(SEPs)in wireless communication and integrated circuits.In contrast,Chinese mainland firms rely heavily on fundamental technologies.Qualcomm Inc.in USA and Taiwan Semiconductor Manufacturing Company(TSMC)in Chineses Taiwan have built a comprehensive patent porfolio in energy efficiency engineering.While Chinese mainland faces challenges in advancing dynamic frequency modulation algorithms and high-end manufacturing processes.Huawei Inc.in Chinese mainland leads in 5G module technology but struggles with ecosystem collaboration.Semiconductor manufacturing and radio frequency(RF)components still rely on external suppliers.This highlights the urgent need for innovation in new materials and open'source architectures.To enhance intelligent computing power,Chinese mainland firms must address coordination challenges.They should adopt scenario-driven technological strategies and build a comprehensive ecosystem that includes hardware,operating systems,and developer networks.展开更多
Recent developments in micro- and nano-satellites have attracted the interest of the research community worldwide. Many colleges and corporations have launched their satellites in space. Meanwhile, the space flexible ...Recent developments in micro- and nano-satellites have attracted the interest of the research community worldwide. Many colleges and corporations have launched their satellites in space. Meanwhile, the space flexible probe-cone docking system for micro- and nano-satellites has become an attractive topic. In this paper, a dynamic model of a space flexible probe-cone dock- ing system, in which the flexible beam technology is applied, is built based on the Kane method. The curves of impact force versus time are obtained by the Lagrange model, the Kane model, and the experimental method. The Lagrange model was presented in the reference and verified by both finite element simulation and experiment. The results of the three methods show good agreements on the condition that the beam flexibility and the initial relative velocity change. It is worth mentioning that the introduction of vectorial mechanics and analytical mechanics in the Kane method leads to a large reduction of differential operations and makes the modeling process much easier than that of the Lagrange method. Moreover, the influences of the beam flexibility and the initial relative velocity are discussed. It is concluded that the initial relative velocity of space docking operation should be controlled to a certain value in order to protect the docking system.展开更多
Space robotics has been used extensively in complex space missions. Rigid-manipulator space robots may suffer from rigid-body collisions with targets. This collision is likely to cause damage to the space robot and th...Space robotics has been used extensively in complex space missions. Rigid-manipulator space robots may suffer from rigid-body collisions with targets. This collision is likely to cause damage to the space robot and the target. To overcome such a problem, a novel ContinuumManipulator Space Robot(CMSR) for performing on-orbit servicing missions is proposed in this paper. Compared with rigid-manipulator space robots, CMSRs are able to perform compliant operations and avoid rigid-body collisions with a target. The CMSR consists of two kinds of flexible components, including solar arrays and continuum manipulators. The elastic vibrations of these flexible components disturb the position and attitude of CMSRs. The beating phenomenon introduced by the energy transfer among these flexible components can cause damage to solar arrays.The complicated dynamic coupling poses enormous challenges in dynamic modeling and vibration analysis. The dynamic model for CMSRs is derived and the mechanism of the beating phenomenon is analyzed in this paper. Simulation results show that an obvious beating phenomenon occurs and the amplitude of the solar arrays increases significantly when the natural frequencies of two kinds of flexible components are close. A method is provided to avoid the beating phenomenon.展开更多
In recent years,probabilistic tracking methods have been becoming increasingly popular for solving the multi-target tracking problem in Space Situational Awareness(SSA).Bayesian frameworks have been used to describe t...In recent years,probabilistic tracking methods have been becoming increasingly popular for solving the multi-target tracking problem in Space Situational Awareness(SSA).Bayesian frameworks have been used to describe the objects’of interest states and cardinality as point processes.The inputs of the Bayesian framework filters are a probabilistic description of the scene at hand,the probability of clutter during the observation,the probability of detection of the objects,the probability of object survival and birth rates,and in the state update,the measurement uncertainty and process noise for the propagation.However,in the filter derivation,the assumptions of Poisson distributions of the object prior and the clutter model are made.Extracting the first-order moments of the full Bayesian framework leads to a so-called Probability Hypothesis Density(PHD)filter.The first moment extraction of the PHD filter process is extremely sensitive to both the input parameters and the measurements.The specifics of the SSA problem and its probabilistic description are illustrated in this paper and compared to the assumptions that the PHD filter is based on.As an example,this paper shows the response of a Cardinality only PHD filter(only the number of objects is estimated,not their corresponding states)to different input parameterizations.The very simple Cardinality only PHD filter is chosen in order to clearly show the sole effects of the model mismatch that might be blurred with state estimation effects,such as non-linearity in the dynamical model,in a full PHD filter implementation.The simulated multi-target tracking scenario entails the observation of attitude stable and unstable geostationary objects.展开更多
To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedanc...To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.展开更多
Our original ecological diatom mud qualities as a starting point for research, analyzes people’s consumption concept, aesthetics, environmental protection awareness. This article describes the basics and the origin o...Our original ecological diatom mud qualities as a starting point for research, analyzes people’s consumption concept, aesthetics, environmental protection awareness. This article describes the basics and the origin of diatom mud, diatom mud analyzes the features, functions and defects, the diatom mud paint and wallpaper were compared to explain the process and the market situation diatom mud, silicon Prospects algae mud were discussed. Through analysis of this environmentally friendly decorative paint diatom mud, summed diatom mud there are some problems in the conventional construction; through research and exploration of the diatom mud module series is proposed in the form of modules forming diatom mud can serialization assembly decorative product design concept.展开更多
Recently,underground space evaluation has become fundamental for a city’s long term sustainable development planning.This paper,based on the 3D-GIS tools,adopts"multi-factors comprehensive evaluation"models...Recently,underground space evaluation has become fundamental for a city’s long term sustainable development planning.This paper,based on the 3D-GIS tools,adopts"multi-factors comprehensive evaluation"models to establish a practicable underground space resources quantitative evaluation system.It sets up展开更多
In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over ...In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over large-scale and complex terrain requires additional methods. To this end, we have proposed a new topography-capable By performing a two-dimensional Fourier transform in the horizontal directions, threedimensional partial differential equations in the spatial domain were transformed into a group of independent, one-dimensional differential equations engaged with different wave numbers. These independent differential equations are highly parallel across different wave numbers. differential equations with different wave numbers, and the efficiency of solving fixedbandwidth linear equations was further improved by a chasing method. In a synthetic test, a prism model was used to verify the accuracy and reliability of the proposed algorithm by comparing the numerical solution with the analytical solution. We studied the computational precision and efficiency with and without topography using different Fourier transform methods. The results showed that the Guass-FFT method has higher numerical precision, while the standard FFT method is superior, in terms of computation time, for inversion and quantitative interpretation under complicated terrain.展开更多
The paper is focused on computer simulation of natural vegetation propagation across two selected disturbed sites. Two sites located in the different environments, the abandoned sedimentation basin of a former pyrite ...The paper is focused on computer simulation of natural vegetation propagation across two selected disturbed sites. Two sites located in the different environments, the abandoned sedimentation basin of a former pyrite ore mine and the ash deposits of a power station, were selected to illustrate the proposed spatio-temporal model. Aerial images assisted in identifying and monitoring the progress in the propagation of vegetation. Analysis of the aerial images was based on varying vegetation coverage explored by classification algorithms. A new approach is proposed entailing coupling of a local dynamic model and a spatial model for vegetation propagation. The local dynamic model describes vegetation growth using a logistic growth approach based on delayed variables. Vegetation propagation is described by rules related to seed and its dispersal phenomena on a local scale and on the scale of outlying spreading. The disturbed sites are divided into a grid of microsites. Each microsite is represented by a 5 m x 5 m square. A state variable in each microsite indicates the relative vegetation density on a scale from 0 (no vegetation) to 1 (long-term maximum of vegetation density). Growth, local vegetation propagation and the effects of outlying vegetation propagation in each cell are described by an ordinary differential equation with delayed state variables. The grid of cells forms a set of ordinary differential equations. The abandoned sedimentation basin and the ash deposits are represented by grids of 185 x 345 and 212 x 266 cells, respectively. A few case-oriented studies are provided to show various predictions of vegetation propagation across two selected disturbed sites. The first case study simulates vegetation growing without spatial propagations and delayed variables in the spatio-temporal model. The second and the third case studies extend the previous study by including local and outlying vegetation propagation, respectively. The fourth case study explores delayed impacts in the logistic growth term and the delayed outcome by vegetation propagation across the disturbed space. The performed case-oriented studies confirm the applicability of the proposed spatio-temporal model to predict vegetation propagation in short-term successions and to estimate approximate vegetation changes in long-term development. As a result, it can be concluded that remotely sensed data are a valuable source of information for estimates of model parameters and provide an effective method for monitoring the progress of vegetation propagation across the selected sites, spaces disturbed by human activities.展开更多
The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process ...The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process greatly influences the evolution of confined blast loading and the subsequent structural response,which is crucial in confined blast scenarios.Given the complex nature of the reaction process,accurate analysis of the afterburning effect remains challenging.Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation.This study introduces a three-dimensional model to effectively characterize the combustion of detonation products.The model integrates chemical reaction source terms into the governing equations to consider the combustion processes.Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces.Approximately 50%of the energy was released during the combustion of detonation products in a confined TNT explosion.Although the combustion of these products was much slower than the detonation process,it aligned with the dynamic response of the structure,which enhanced the explosive yield.Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%.Following the inclusion of afterburning,the simulated quasistatic pressure increased by approximately 45%.Subsequent comparisons highlighted the merits of the proposed approach over conventional methods.This approach eliminates the reliance on empirical parameters,such as the amount and rate of energy release during afterburning,thereby laying the foundation for understanding load evolution in more complex environments,such as ships,buildings,and underground tunnels.展开更多
This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration s...This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.展开更多
Understanding the complex mechanisms underlying agricultural space urbanization is essential for sustainable land management.This study identified the spatiotemporal characteristics of the agricultural space urbanizat...Understanding the complex mechanisms underlying agricultural space urbanization is essential for sustainable land management.This study identified the spatiotemporal characteristics of the agricultural space urbanization from 2000 to 2020 in China’s Yangtze River Economic Belt(YREB)using a kilometer-grid-based approach.By employing the partial least squares structural equation modeling method,the intricate drivers of agricultural space urbanization were investigated.The results revealed that from 2000 to 2020,agricultural space urbanization in the YREB covered an area of 28,198 km^(2),accounting for 84.5%of the total increase in urban space.The partial least squares structural equation modeling analysis revealed regional variations in agricultural space urbanization dynamics.In the western YREB,where urbanization is in its initial stage,natural conditions play a weak and indirect role,whereas policy incentives and socioeconomic growth are equally significant in driving agricultural space urbanization.In the eastern YREB,where urbanization is more saturated,the agricultural space urbanization is less constrained by natural factors,showing a high synergy with socioeconomic development.Conversely,in the central Yangtze River Economic Belt,policy influences surpass socioeconomic factors,whereas unfavorable natural conditions and agricultural development act as key drivers of agricultural space urbanization.This study suggests that enhancing agricultural space urbanization quality requires strengthening region-specific policies,providing targeted support for remote areas,rebalancing policy orientation in rapidly urbanizing regions,and establishing a comprehensive evaluation system to ensure policy rationality.展开更多
Phase-field modeling for three-dimensional foam structures is presented. The foam structure, which is generally applicable for porous material design, is geometrically approximated with a space-filling structure, and ...Phase-field modeling for three-dimensional foam structures is presented. The foam structure, which is generally applicable for porous material design, is geometrically approximated with a space-filling structure, and hence, the analysis of the space-filling structure was performed using the phase field model. An additional term was introduced to the conventional multi-phase field model to satisfy the volume constraint condition. Then, the equations were numerically solved using the finite difference method, and simulations were carried out for several nuclei settings. First, the nuclei were set on complete lattice points for a bcc or fcc arrangement, with a truncated hexagonal structure, which is known as a Kelvin cell, or a rhombic dodecahedron being obtained, respectively. Then, an irregularity was introduced in the initial nuclei arrangement. The results revealed that the truncated hexagonal structure was stable against a slight irregularity, whereas the rhombic polyhedral was destroyed by the instability. Finally, the nuclei were placed randomly, and the relaxation process of a certain cell was traced with the result that every cell leads to a convex polyhedron shape.展开更多
This paper presents a new transformer based multilevel inverter, with a novel pulse width modulation scheme to achieve seven-level inverter output voltage. The proposed inverter switching pattern consists of three fun...This paper presents a new transformer based multilevel inverter, with a novel pulse width modulation scheme to achieve seven-level inverter output voltage. The proposed inverter switching pattern consists of three fundamental frequency sinusoidal reference signals with an offset value, and one high frequency triangular carrier signal. This switching scheme has been implemented using an 8-bit Xilinx SPARTAN-3E field programmable gate array based controller. In addition, the state space model of the proposed inverter is developed. The significant features of the proposed topology are: reduction of the power switch count and the gate drive power supply unit, the provision of a galvanic isolation between load and sources by a centre tap transformer. An exhaustive comparison has been made of the existing multilevel inverter topologies and the proposed topology. The performances of the proposed topology with resistive, resistive-inductive loads are simulated in a MATLAB environment and validated experimentally on a laboratory prototype.展开更多
In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit so...In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit software to extract geometric information about the indoor environment.Furthermore,we proposed a method for constructing indoor elements based on parametric components.The research outcomes of this paper will offer new methods and tools for indoor space modeling and design.The approach of indoor space modeling based on 3D laser point cloud data and parametric component construction can enhance modeling efficiency and accuracy,providing architects,interior designers,and decorators with a better working platform and design reference.展开更多
文摘The damped Helmholtz-Duffing oscillator is a topic of great interest in many different fields of study due to its complex dynamics.By transitioning from conventional continuous differential equations to their fractal counterparts,one gains insights into the system's response under new mathematical frameworks.This paper presents a novel method for converting standard continuous differential equations into their fractal equivalents.This conversion occurs after the nonlinear system is transformed into its linear equivalent.Numerical analyses show that there are several resonance sites in the fractal system,which differ from the one resonance point found in the continuous system.One important finding is that the fractal system loses some of its stabilizing power when decaying behavior is transformed into a diffuse pattern.Interestingly,a decrease in the fractal order in resonance settings shows a stabilizing impact,highlighting the dynamics'complexity inside fractal systems.This endeavor to convert to fractals is a revolutionary technique that is being employed for the first time.
基金financial support under the Manned Aerospace Research Project(Grant No.040102)。
文摘More space truss construction has been planned to develop and utilize space resources.These trusses are designed in the way of large-scale,complex,modular,and on-orbit assembly.To meet the upcoming challenge of large-scale space infrastructure construction,it is necessary to study space truss automation design and robotic construction.This paper proposes an ordinal finite screw adjacency matrix model(OFSAMM),focusing on the relationship between assembly motions,to express and compute a space truss structure.In this model,a space truss is abstracted as a set of ordered assembly motions,each of which is recorded as a finite screw as the basic element of the truss and its assembly.The operation of truss transformation is also derived under this model.Therefore,the truss configuration,the assembly sequence,the truss sub-assembly,the truss components,and the on-orbit assembly task can be expressed and calculated in a unified model,which is calculated and stores the truss topology and assembly with the minimum storage cost.At the end of this paper,we introduce how to synthesize and optimize space truss design through two cases.The study will help to improve design efficiency.Furthermore,it provides a theoretical basis for the automatic construction of space truss structures,especially in the next stage.
基金supported by the National Natural Science Foundation of China(No.52275090)the Fundamental Research Funds for the Central Universities(No.N2103025)+1 种基金the National Key Research and Development Program of China(No.2020YFB2007802)the Applied Basic Research Program of Liaoning Province(No.2023JH2/101300159)。
文摘In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH.
文摘A numerical investigation on the effectiveness of the actuator disc method in producing the interactions of multiple tidal stream devices via the 3D-RANS finite element model Telemac3D is explored. The methodology for the implementation of the source term to represent an array of 20 m rotor diameter turbines deployed in an idealized channel is reviewed and discussed in detail. Flow interactions between multiple turbines are investigated for a single row arrangement with only two turbines and a two row arrangement containing three turbines. The results demonstrate that the non-hydrostatic solver shows better agreement when validated against published experimental data. Notably,the mesh density at the device location can strongly influence the simulated thrust from the disc. Although the actuator disc model can generally replicate the wake interactions well, the results indicate that it cannot accurately characterize the flow for regions with high turbulences. While a model setup with the largest lateral spacing(1.5D) demonstrates excellent agreement with the experimental data, the 0.5D model(smallest gap) deviates by up to 25%. These findings demonstrate the effectiveness of the applied source term in reproducing the wake profile, which is comparable with the published data, and highlight the inherent nature of the RANS and actuator disc models.
基金supported by the Joint Research program for Eco-logical Conservation and High-quality Development of the Yellow River Basin(Grant No.2022-YRUC-01-0103)Watershed Non-point Source Pollution Prevention and Control Technology and Application Demon-stration Project(Grant No.2021YFC3201505)+3 种基金the National Key Re-search and Development Project(Grant No.2016YFC0502106)the Natural Science Foundation of China(Grant No.41476161)the Spe-cial Project of National Natural Science Foundation of China(Grant No.42442035)the Fundamental Research Funds for the Central Uni-versities.
文摘Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con-flicts among production,living and ecological land are prevalent in coastal cities in the process of maintaining sustainable wetland resources and further developing the social economy.By establishing an SD-PLUS-CCD cou-pling model,this paper analysed the evolution characteristics and driving mechanism of the production-living-ecological space(PLES)and the effects of wetland protection(WLP)on promoting or inhibiting the coordinated development of the PLES in Dongying city during 2005-2060.The results show that(1)from 2005 to 2020,the increase in urban population resulted in a significant transfer of arable land and a reduction of 914 km2 in pro-duction space(PS);(2)from 2020 to 2060,under the WLP scenario,the conversion of wetland ecological space will reduce the PS and living space(LS)by 193.92 km2 and 107.14 km2,respectively,and increase the ecological space(ES)by 327.52 km2;and(3)wetland protection has an inhibitory effect on the coordinated development of PLES in the study area,and the total proportion of noncoordinated areas of PE and living-ecological space will continue to increase during the simulation period.This paper provides a solid theoretical support for the sustain-able management and protection of wetlands in coastal cities and possible PLES conflict patterns and provides a scientific basis for future territorial spatial planning and policy balance analysis.
基金supported in part by the National Social Science Foundation of China(No.20BGL203).
文摘This paper analyzes the global competitive landscape of smartphone technological innovation capacity using the latent semantic indexing(LSI)and the vector space model(VSM).It integrates the theory of technological ecological niches and evaluates four key dimensions:patent quality,energy efficiency engineering,technological modules,and intelligent computing power.The findings reveal that USA has established strong technological barriers through standard-essential patents(SEPs)in wireless communication and integrated circuits.In contrast,Chinese mainland firms rely heavily on fundamental technologies.Qualcomm Inc.in USA and Taiwan Semiconductor Manufacturing Company(TSMC)in Chineses Taiwan have built a comprehensive patent porfolio in energy efficiency engineering.While Chinese mainland faces challenges in advancing dynamic frequency modulation algorithms and high-end manufacturing processes.Huawei Inc.in Chinese mainland leads in 5G module technology but struggles with ecosystem collaboration.Semiconductor manufacturing and radio frequency(RF)components still rely on external suppliers.This highlights the urgent need for innovation in new materials and open'source architectures.To enhance intelligent computing power,Chinese mainland firms must address coordination challenges.They should adopt scenario-driven technological strategies and build a comprehensive ecosystem that includes hardware,operating systems,and developer networks.
基金supported in part by the National Natural Science Foundation of China (Nos. 91216201, 51205403)
文摘Recent developments in micro- and nano-satellites have attracted the interest of the research community worldwide. Many colleges and corporations have launched their satellites in space. Meanwhile, the space flexible probe-cone docking system for micro- and nano-satellites has become an attractive topic. In this paper, a dynamic model of a space flexible probe-cone dock- ing system, in which the flexible beam technology is applied, is built based on the Kane method. The curves of impact force versus time are obtained by the Lagrange model, the Kane model, and the experimental method. The Lagrange model was presented in the reference and verified by both finite element simulation and experiment. The results of the three methods show good agreements on the condition that the beam flexibility and the initial relative velocity change. It is worth mentioning that the introduction of vectorial mechanics and analytical mechanics in the Kane method leads to a large reduction of differential operations and makes the modeling process much easier than that of the Lagrange method. Moreover, the influences of the beam flexibility and the initial relative velocity are discussed. It is concluded that the initial relative velocity of space docking operation should be controlled to a certain value in order to protect the docking system.
基金supported by the National Natural Science Foundation of China(Nos.91748203,11922203,11772074)。
文摘Space robotics has been used extensively in complex space missions. Rigid-manipulator space robots may suffer from rigid-body collisions with targets. This collision is likely to cause damage to the space robot and the target. To overcome such a problem, a novel ContinuumManipulator Space Robot(CMSR) for performing on-orbit servicing missions is proposed in this paper. Compared with rigid-manipulator space robots, CMSRs are able to perform compliant operations and avoid rigid-body collisions with a target. The CMSR consists of two kinds of flexible components, including solar arrays and continuum manipulators. The elastic vibrations of these flexible components disturb the position and attitude of CMSRs. The beating phenomenon introduced by the energy transfer among these flexible components can cause damage to solar arrays.The complicated dynamic coupling poses enormous challenges in dynamic modeling and vibration analysis. The dynamic model for CMSRs is derived and the mechanism of the beating phenomenon is analyzed in this paper. Simulation results show that an obvious beating phenomenon occurs and the amplitude of the solar arrays increases significantly when the natural frequencies of two kinds of flexible components are close. A method is provided to avoid the beating phenomenon.
文摘In recent years,probabilistic tracking methods have been becoming increasingly popular for solving the multi-target tracking problem in Space Situational Awareness(SSA).Bayesian frameworks have been used to describe the objects’of interest states and cardinality as point processes.The inputs of the Bayesian framework filters are a probabilistic description of the scene at hand,the probability of clutter during the observation,the probability of detection of the objects,the probability of object survival and birth rates,and in the state update,the measurement uncertainty and process noise for the propagation.However,in the filter derivation,the assumptions of Poisson distributions of the object prior and the clutter model are made.Extracting the first-order moments of the full Bayesian framework leads to a so-called Probability Hypothesis Density(PHD)filter.The first moment extraction of the PHD filter process is extremely sensitive to both the input parameters and the measurements.The specifics of the SSA problem and its probabilistic description are illustrated in this paper and compared to the assumptions that the PHD filter is based on.As an example,this paper shows the response of a Cardinality only PHD filter(only the number of objects is estimated,not their corresponding states)to different input parameterizations.The very simple Cardinality only PHD filter is chosen in order to clearly show the sole effects of the model mismatch that might be blurred with state estimation effects,such as non-linearity in the dynamical model,in a full PHD filter implementation.The simulated multi-target tracking scenario entails the observation of attitude stable and unstable geostationary objects.
基金National Natural Science Foundation of China(52307127)State Key Laboratory of Power System Operation and Control(SKLD23KZ07)。
文摘To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.
文摘Our original ecological diatom mud qualities as a starting point for research, analyzes people’s consumption concept, aesthetics, environmental protection awareness. This article describes the basics and the origin of diatom mud, diatom mud analyzes the features, functions and defects, the diatom mud paint and wallpaper were compared to explain the process and the market situation diatom mud, silicon Prospects algae mud were discussed. Through analysis of this environmentally friendly decorative paint diatom mud, summed diatom mud there are some problems in the conventional construction; through research and exploration of the diatom mud module series is proposed in the form of modules forming diatom mud can serialization assembly decorative product design concept.
文摘Recently,underground space evaluation has become fundamental for a city’s long term sustainable development planning.This paper,based on the 3D-GIS tools,adopts"multi-factors comprehensive evaluation"models to establish a practicable underground space resources quantitative evaluation system.It sets up
基金supported by the Natural Science Foundation of China(No.41574127)the China Postdoctoral Science Foundation(No.2017M622608)the project for the independent exploration of graduate students at Central South University(No.2017zzts008)
文摘In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over large-scale and complex terrain requires additional methods. To this end, we have proposed a new topography-capable By performing a two-dimensional Fourier transform in the horizontal directions, threedimensional partial differential equations in the spatial domain were transformed into a group of independent, one-dimensional differential equations engaged with different wave numbers. These independent differential equations are highly parallel across different wave numbers. differential equations with different wave numbers, and the efficiency of solving fixedbandwidth linear equations was further improved by a chasing method. In a synthetic test, a prism model was used to verify the accuracy and reliability of the proposed algorithm by comparing the numerical solution with the analytical solution. We studied the computational precision and efficiency with and without topography using different Fourier transform methods. The results showed that the Guass-FFT method has higher numerical precision, while the standard FFT method is superior, in terms of computation time, for inversion and quantitative interpretation under complicated terrain.
文摘The paper is focused on computer simulation of natural vegetation propagation across two selected disturbed sites. Two sites located in the different environments, the abandoned sedimentation basin of a former pyrite ore mine and the ash deposits of a power station, were selected to illustrate the proposed spatio-temporal model. Aerial images assisted in identifying and monitoring the progress in the propagation of vegetation. Analysis of the aerial images was based on varying vegetation coverage explored by classification algorithms. A new approach is proposed entailing coupling of a local dynamic model and a spatial model for vegetation propagation. The local dynamic model describes vegetation growth using a logistic growth approach based on delayed variables. Vegetation propagation is described by rules related to seed and its dispersal phenomena on a local scale and on the scale of outlying spreading. The disturbed sites are divided into a grid of microsites. Each microsite is represented by a 5 m x 5 m square. A state variable in each microsite indicates the relative vegetation density on a scale from 0 (no vegetation) to 1 (long-term maximum of vegetation density). Growth, local vegetation propagation and the effects of outlying vegetation propagation in each cell are described by an ordinary differential equation with delayed state variables. The grid of cells forms a set of ordinary differential equations. The abandoned sedimentation basin and the ash deposits are represented by grids of 185 x 345 and 212 x 266 cells, respectively. A few case-oriented studies are provided to show various predictions of vegetation propagation across two selected disturbed sites. The first case study simulates vegetation growing without spatial propagations and delayed variables in the spatio-temporal model. The second and the third case studies extend the previous study by including local and outlying vegetation propagation, respectively. The fourth case study explores delayed impacts in the logistic growth term and the delayed outcome by vegetation propagation across the disturbed space. The performed case-oriented studies confirm the applicability of the proposed spatio-temporal model to predict vegetation propagation in short-term successions and to estimate approximate vegetation changes in long-term development. As a result, it can be concluded that remotely sensed data are a valuable source of information for estimates of model parameters and provide an effective method for monitoring the progress of vegetation propagation across the selected sites, spaces disturbed by human activities.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171318 and 12202329)Joint Foundation of the Ministry of Education(Grant No.8091B022105)。
文摘The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process greatly influences the evolution of confined blast loading and the subsequent structural response,which is crucial in confined blast scenarios.Given the complex nature of the reaction process,accurate analysis of the afterburning effect remains challenging.Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation.This study introduces a three-dimensional model to effectively characterize the combustion of detonation products.The model integrates chemical reaction source terms into the governing equations to consider the combustion processes.Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces.Approximately 50%of the energy was released during the combustion of detonation products in a confined TNT explosion.Although the combustion of these products was much slower than the detonation process,it aligned with the dynamic response of the structure,which enhanced the explosive yield.Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%.Following the inclusion of afterburning,the simulated quasistatic pressure increased by approximately 45%.Subsequent comparisons highlighted the merits of the proposed approach over conventional methods.This approach eliminates the reliance on empirical parameters,such as the amount and rate of energy release during afterburning,thereby laying the foundation for understanding load evolution in more complex environments,such as ships,buildings,and underground tunnels.
基金funded by the National Natural Science Foundation of China(12102487)Basic and Applied Basic Research Foundation of Guangdong Province,China(2023A1515012339)+1 种基金Shenzhen Science and Technology Program(ZDSYS20210623091808026)the Discovery Grant(RGPIN-2024-06290)of the Natural Sciences and Engineering Research Council of Canada。
文摘This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.
基金Fellowship Program of the CPSF,No.GZC20231970National Natural Science Foundation of China,No.41871182。
文摘Understanding the complex mechanisms underlying agricultural space urbanization is essential for sustainable land management.This study identified the spatiotemporal characteristics of the agricultural space urbanization from 2000 to 2020 in China’s Yangtze River Economic Belt(YREB)using a kilometer-grid-based approach.By employing the partial least squares structural equation modeling method,the intricate drivers of agricultural space urbanization were investigated.The results revealed that from 2000 to 2020,agricultural space urbanization in the YREB covered an area of 28,198 km^(2),accounting for 84.5%of the total increase in urban space.The partial least squares structural equation modeling analysis revealed regional variations in agricultural space urbanization dynamics.In the western YREB,where urbanization is in its initial stage,natural conditions play a weak and indirect role,whereas policy incentives and socioeconomic growth are equally significant in driving agricultural space urbanization.In the eastern YREB,where urbanization is more saturated,the agricultural space urbanization is less constrained by natural factors,showing a high synergy with socioeconomic development.Conversely,in the central Yangtze River Economic Belt,policy influences surpass socioeconomic factors,whereas unfavorable natural conditions and agricultural development act as key drivers of agricultural space urbanization.This study suggests that enhancing agricultural space urbanization quality requires strengthening region-specific policies,providing targeted support for remote areas,rebalancing policy orientation in rapidly urbanizing regions,and establishing a comprehensive evaluation system to ensure policy rationality.
文摘Phase-field modeling for three-dimensional foam structures is presented. The foam structure, which is generally applicable for porous material design, is geometrically approximated with a space-filling structure, and hence, the analysis of the space-filling structure was performed using the phase field model. An additional term was introduced to the conventional multi-phase field model to satisfy the volume constraint condition. Then, the equations were numerically solved using the finite difference method, and simulations were carried out for several nuclei settings. First, the nuclei were set on complete lattice points for a bcc or fcc arrangement, with a truncated hexagonal structure, which is known as a Kelvin cell, or a rhombic dodecahedron being obtained, respectively. Then, an irregularity was introduced in the initial nuclei arrangement. The results revealed that the truncated hexagonal structure was stable against a slight irregularity, whereas the rhombic polyhedral was destroyed by the instability. Finally, the nuclei were placed randomly, and the relaxation process of a certain cell was traced with the result that every cell leads to a convex polyhedron shape.
文摘This paper presents a new transformer based multilevel inverter, with a novel pulse width modulation scheme to achieve seven-level inverter output voltage. The proposed inverter switching pattern consists of three fundamental frequency sinusoidal reference signals with an offset value, and one high frequency triangular carrier signal. This switching scheme has been implemented using an 8-bit Xilinx SPARTAN-3E field programmable gate array based controller. In addition, the state space model of the proposed inverter is developed. The significant features of the proposed topology are: reduction of the power switch count and the gate drive power supply unit, the provision of a galvanic isolation between load and sources by a centre tap transformer. An exhaustive comparison has been made of the existing multilevel inverter topologies and the proposed topology. The performances of the proposed topology with resistive, resistive-inductive loads are simulated in a MATLAB environment and validated experimentally on a laboratory prototype.
基金supported by the Innovation and Entrepreneurship Training Program Topic for College Students of North China University of Technology in 2023.
文摘In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit software to extract geometric information about the indoor environment.Furthermore,we proposed a method for constructing indoor elements based on parametric components.The research outcomes of this paper will offer new methods and tools for indoor space modeling and design.The approach of indoor space modeling based on 3D laser point cloud data and parametric component construction can enhance modeling efficiency and accuracy,providing architects,interior designers,and decorators with a better working platform and design reference.