期刊文献+
共找到7,391篇文章
< 1 2 250 >
每页显示 20 50 100
A stochastic energy finite element method for predicting the high-frequency dynamic response of panels under aero-thermo-acoustic loads
1
作者 Zhaolin CHEN Yueming DU +1 位作者 Yingsong GU Zhichun YANG 《Chinese Journal of Aeronautics》 2025年第8期367-387,共21页
Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the stru... Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields. 展开更多
关键词 Aero-thermo-acoustic loads High frequency Multi-physics field Stochastic energy finite element method Vibration analysis
原文传递
Discrete element modeling of ice loads on ship hulls in broken ice fields 被引量:13
2
作者 JI Shunying LI Zilin +1 位作者 LI Chunhua SHANG Jie 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第11期50-58,共9页
Ice loads on a ship hull affect the safety of the hull structure and the ship maneuvering performance in ice-covered regions. A discrete element method (DEM) is used to simulate the interaction between drifting ice ... Ice loads on a ship hull affect the safety of the hull structure and the ship maneuvering performance in ice-covered regions. A discrete element method (DEM) is used to simulate the interaction between drifting ice floes and a moving ship. The pancake ice floes are modelled with three-dimensional (3-D) dilated disk elements considering the buoyancy, drag force and additional mass induced by the current. The ship hull is modelled with 3D disks with overlaps. Ice loads on the ship hull are determined through the contact detection between ice floe element and ship hull element and the contact force calculation. The influences of different ice conditions (current velocities and directions, ice thicknesses, concentrations and ice floe sizes) and ship speeds are also examined on the dynamic ice force. The simulated results are compared qualitatively well with the existing field data and other numerical results. This work can be helpful in the shil3 structure design and the navigation securitv in ice-covered fields. 展开更多
关键词 ice load ship hull discrete element method broken ice
在线阅读 下载PDF
Investigation on Skidding of Rolling Element Bearing in Loaded Zone 被引量:6
3
作者 Yi-Min Shao Wen-Bing Tu +2 位作者 Zai-Gang Chen Zhi-Jie Xie Bao-Yu Song 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第1期34-41,共8页
Skidding which occurs when rolling element entering into the loaded zone is prone to cause wear and incipient failure to the raceways and rolling elements. This paper presents a dynamic model to investigate the skiddi... Skidding which occurs when rolling element entering into the loaded zone is prone to cause wear and incipient failure to the raceways and rolling elements. This paper presents a dynamic model to investigate the skidding of a rolling element bearing under radial load when the rolling element is entering into the load zone. In this dynamic model, the effects of the contact forces, friction forces on the rolling element-race and rolling element-cage interfaces, gravity, and the centrifugal forces of rolling elements are taken into consideration. The Hertzian contact theory is applied to calculate the non-linear contact forces. The Coulomb friction law is used to calculate the friction forces. The differential equations of rotational motion of the rolling element with regard to its central axis and the central axis of the outer ring are established respectively. The dynamic equations are then solved by using a fourth-order Runge-Kutta algorithm. The skidding characteristics of rolling element at the entry into the loaded zone are exposed, and the effects of the operating parameters on skidding behavior are carefully investigated. 展开更多
关键词 rolling element bearing SKIDDING loaded zone dynamic model
在线阅读 下载PDF
High-precision solution to the moving load problem using an improved spectral element method 被引量:3
4
作者 Shu-Rui Wen Zhi-Jing Wu Nian-Li Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第1期68-81,共14页
In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means t... In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem.In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases.Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases. 展开更多
关键词 Moving load Spectral element method Improved function Dynamic response High precision
在线阅读 下载PDF
Influence of load capacity on hydrostatic journal support deformation in finite element calculation 被引量:2
5
作者 邵俊鹏 张艳芹 +2 位作者 李永海 于晓东 姜辉 《Journal of Central South University》 SCIE EI CAS 2008年第S2期245-249,共5页
Based on the application of the four-oil-pad radial hydrostatic bearing in heavy equipments, the deformation of the four-oil-pad radial hydrostatic bearing was calculated by using the finite element method. The formul... Based on the application of the four-oil-pad radial hydrostatic bearing in heavy equipments, the deformation of the four-oil-pad radial hydrostatic bearing was calculated by using the finite element method. The formula of film stiffness, film thickness and carrying capacity were established; the influence of the main parameters, such as load, load area and deformation on the supportability was analyzed; and the capacity of the two kinds of bearings was compared. The result shows that the carrying capacity of typeⅠ is prior to that of type Ⅱ . Calculations provide a theoretical basis for the bearing choosing and structure designing in the actual project. 展开更多
关键词 HYDROSTATIC JOURNAL support FINITE element STIFFNESS of oil film load capacity DEFORMATION
在线阅读 下载PDF
Use of the finite elements method for modelling the dynamic load impact on hydraulic leg equipped with gas accumulator 被引量:4
6
作者 GONDEK Horst MAZUREK Krzysztof SZWEDA Stanislaw 《Journal of Coal Science & Engineering(China)》 2008年第2期171-175,共5页
Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of th... Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of the mechanical system was presented.By using the MSC.Software products the following exemplary computer simulations were made: dynamic load impact on the hydraulic leg as well as effectiveness of the hydraulic leg protection against overload with help of gas accumulator. 展开更多
关键词 finite elements dynamic load hydraulic leg equipped gas accumulator
在线阅读 下载PDF
Finite element simulation of aluminum alloy cross valve forming by multi-way loading 被引量:2
7
作者 张大伟 杨合 孙志超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期1059-1066,共8页
Deformation behavior,temperature evolution and coupled effects have a significant influence on forming process and quality of component formed,which are very complex in forming process of aluminum alloy 7075 cross val... Deformation behavior,temperature evolution and coupled effects have a significant influence on forming process and quality of component formed,which are very complex in forming process of aluminum alloy 7075 cross valve under multi-way loading due to the complexity of loading path and the multiplicity of associated processing parameters.A model of the process was developed under DFEORM-3D environment based on the coupled thermo-mechanical finite element method.The comparison between two process models,the conventional isothermal process model and the non-isothermal process model developed in this study,was carried out,and the results indicate that the thermal events play an important role in the aluminum alloy forming process under multi-way loading.The distributions and evolutions of the temperature field and strain filed are obtained by non-isothermal process simulation.The plastic zone and its extension in forming process of cross valve were analyzed.The results may provide guidelines for the determination of multi-way loading forming scheme and loading conditions of the forming cross valve components. 展开更多
关键词 bulk forming multi-way loading cross valve aluminum alloy finite element simulation
在线阅读 下载PDF
Discrete Element Simulations of Ice Load and Mooring Force on Moored Structure in Level Ice 被引量:2
8
作者 Hongri Zhu Shunying Ji 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第7期5-21,共17页
Moored structures are suitable for operations in ice-covered regions owing to their security and efficiency.This paper aims to present a new method for simulating the ice load and mooring force on the moored structure... Moored structures are suitable for operations in ice-covered regions owing to their security and efficiency.This paper aims to present a new method for simulating the ice load and mooring force on the moored structure during ice-structure interaction with a spherical Discrete Element Method(DEM).In this method,the level ice and mooring lines consist of bonded sphere elements arranged in different patterns.The level ice model has been widely validated in simulation of the ice load of fixed structures.In the mooring line simulation,a string of spherical elements was jointed with the parallel bond model to simulate the chains or cable structure.The accuracy of the mooring line model was proved by comparing the numerical results with the nonlinear FEM results and model towing experiment results.The motion of the structure was calculated in the quaternion method,considering the ice load,mooring force,and hydrodynamic force.The hydrodynamic force comprised wave-making damping,current drag,and buoyancy force.Based on the proposed model,the interaction of a semi-submersible structure with level ice was simulated,and the effect of ice thickness on the ice load was analyzed.The numerical results show that the DEM method is suitable to simulate the ice load and mooring force on moored floating structures. 展开更多
关键词 Mooring system semi-submersible structure sea ice ice load mooring line discrete element method
在线阅读 下载PDF
Effect of heterogeneity on mechanical and micro-seismic behaviors of sandstone subjected to multi-level cyclic loading: A discrete element method investigation 被引量:2
9
作者 Zhengyang Song Zhen Yang +3 位作者 Min Zhang Fei Wang Martin Herbst Heinz Konietzky 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2556-2581,共26页
In numerical simulation of the mechanical responses and acoustic emission(AE)characteristics of rocks under cyclic loading,the impacts of compositional heterogeneities of mineral grains have barely been considered.Thi... In numerical simulation of the mechanical responses and acoustic emission(AE)characteristics of rocks under cyclic loading,the impacts of compositional heterogeneities of mineral grains have barely been considered.This will lead to a poor reproduction of rock’s behaviors in terms of stress-strain relationship and micro-seismic characteristics in numerical simulation.This work aims to analyze and reveal the impact of parameter heterogeneity on the rock’s fatigue and micro-seismic properties based on PFC3D.Two distribution patterns(uniform and Weibull distributions),are implemented to assign four critical parameters(i.e.tensile strength,cohesion,parallel bond stiffness and linear stiffness)for 32 sets of numerical schemes.The results show that the models with high heterogeneity of tensile strength and cohesion can better reproduce the stress-strain relationship as well as the patterns of cumulative AE counts and energy magnitude.The evolution of the proportion of three-level AE events in the laboratory test is consistent with the numerical results when the highly heterogeneous tensile strength and cohesion are distributed.The numerical results can provide practical guidance to the PFC-based modeling of rock heterogeneity when exposed to multi-level cyclic loading and AE monitoring. 展开更多
关键词 Discrete element method(DEM) HETEROGENEITY Weibull distribution PFC3D Cyclic loading Acoustic emission(AE)
在线阅读 下载PDF
A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone 被引量:4
10
作者 Lixia Fan Shaopeng Pei +1 位作者 X Lucas Lu Liyun Wang 《Bone Research》 SCIE CAS CSCD 2016年第3期154-163,共10页
The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching... The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies. 展开更多
关键词 A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone FIGURE
暂未订购
Combined load bearing capacity of rigid piles embedded in a crossanisotropic clay deposit using 3D finite element lower bound 被引量:1
11
作者 Ardavan Izadi Reza Jamshidi Chenari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期717-737,共21页
In this study,an iterative-based three-dimensional finite element lower bound in association with the second-order cone programming method is adopted to evaluate the limit load of a single pile embedded in cross-aniso... In this study,an iterative-based three-dimensional finite element lower bound in association with the second-order cone programming method is adopted to evaluate the limit load of a single pile embedded in cross-anisotropic soils under general loading condition.The lower bound solutions of the pile embedded in an anisotropic soil deposit can be found by formulating the element equilibrium,equilibrium of shear and normal stresses along discontinuities,boundary conditions,yield function,and optimizing the objective function through the second-order cone programming method in conjunction with an iterative-based update procedure.A general loading condition is considered to profile the expansion of the safe load in the vertical-horizontal-moment(V-H-M)space.The results of this study are compared and validated against three different cases including an isotropic lateral loading,anisotropic end bearing capacity,and a pile embedded in an isotropic soil deposit under general loading condition.A parametric study is conducted to evaluate the impact of different influencing factors.It was found that the effect of anisotropy on the variation of lateral limit load of a single pile is more pronounced than the corresponding vertical and bending moment limit loads,whereas the interface properties have more significant effects on the vertical and bending moment limit loads in comparison to the lateral limit load. 展开更多
关键词 Rigid pile Cross-anisotropy CLAY Combined loading Three-dimensional finite element lower BOUND
在线阅读 下载PDF
Analytical layer-element solutions for a multi-layered transversely isotropic elastic medium subjected to axisymmetric loading 被引量:1
12
作者 Zhi-yong AI Nai-rui CANG Jie HAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第1期9-17,共9页
This paper presents an analytical layer-element method used to analyze the displacement of a multi-layered transversely isotropic elastic medium of arbitrary depth subjected to axisymmetric loading.Based on the basic ... This paper presents an analytical layer-element method used to analyze the displacement of a multi-layered transversely isotropic elastic medium of arbitrary depth subjected to axisymmetric loading.Based on the basic constitutive equations and the HU Hai-chang's solutions for transversely isotropic elastic media,the state vectors of a multi-layered transversely isotropic medium were deduced.From the state vectors,an analytical layer element for a single layer(i.e.,a symmetric and exact stiffness matrix) was acquired in the Hankel transformed domain,which not only simplified the calculation but also improved the numerical efficiency and stability due to the absence of positive exponential functions.The global stiffness matrix was obtained by assembling the interrelated layer elements based on the principle of the finite layer method.By solving the algebraic equations of the global stiffness matrix which satisfy the boundary conditions,the solutions for multi-layered transversely isotropic media in the Hankel transformed domain were obtained.The actual solutions of this problem in the physical domain were acquired by inverting the Hankel transform.This paper presents numerical examples to verify the proposed solutions and investigate the influence of the properties of the multi-layered medium on the load-displacement response. 展开更多
关键词 Transverse isotropy Analytical layer element Multi-layered elastic medium Axisymmetric loading Hankel transform
原文传递
Distinct Element Modelling of Unreinforced Masonry Wall Under Seismic Loads with and without Cable Retrofitting 被引量:1
13
作者 ZHUGE Yan 《Transactions of Tianjin University》 EI CAS 2008年第B10期471-475,共5页
To retrofit and strengthen existing unreinforced masonry (URM) structures to resist the potential earthquake damages has become an important issue in Australia. In order to secure the performance of URM under seismic ... To retrofit and strengthen existing unreinforced masonry (URM) structures to resist the potential earthquake damages has become an important issue in Australia. In order to secure the performance of URM under seismic loading in the future, a research project was carried out aimed at developing a simple and high strength seismic retrofitting technique for masonry structures. A series of experimental testing on URM walls retrofitted with an innovative technique by cable system have been conducted. The results indicated that both the strength and ductility of the tested speci-mens were significantly enhanced with the technique. An analytical model which is based on Dis-tinct Element Method (DEM) has also been developed to simulate the behaviour of URM walls be-fore and after retrofitting. The model is then further developed by applying a seismic wave to the wall to simulate the wall behavior under earthquake loads before and after retrofitting. 展开更多
关键词 unreinforced masonry distinct element method earthquake loads in-plane shear retrofitting
在线阅读 下载PDF
Discrete element method study of hysteretic behavior and deformation characteristics of rockfill material under cyclic loading 被引量:1
14
作者 Mingchun LIN Guanqi WANG +3 位作者 Jian ZHOU Wei ZHOU Ni AN Gang MA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第4期350-365,共16页
Granular geomaterials under different loading conditions manifest various behaviors,such as hysteresis.Understanding their hysteretic behavior and deformation characteristics is the basis for establishing a constituti... Granular geomaterials under different loading conditions manifest various behaviors,such as hysteresis.Understanding their hysteretic behavior and deformation characteristics is the basis for establishing a constitutive relation with excellent performance in deformation prediction.The deformation characteristics of crushable particle materials are analyzed through a series of cyclic loading tests conducted by numerical simulation.The hysteretic behavior is investigated from a particle scale.The increase in particles with contacts less than two may be responsible for the residual strain,and the particle breakage further promotes particle rearrangement and volume contraction.Both the accumulation of plastic strain and the resilient modulus are found to be related to confining pressures,stress levels,cyclic loading amplitudes,and the number of cycles.The plastic strain accumulation can be written as a function of the number of cycles and an evolution function of resilient modulus is proposed. 展开更多
关键词 Granular material Discrete element method(DEM) Plastic deformation Cyclic loading Hysteretic behavior
原文传递
Seasonal and spatial variations in rare earth elements and yttrium of dissolved load in the middle,lower reaches and estuary of the Minjiang River,southeastern China 被引量:1
15
作者 ZHU Xuxu GAO Aiguo +5 位作者 LIN Jianjie JIAN Xing YANG Yufeng ZHANG Yanpo HOU Yuting GONG Songbai 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第3期700-716,共17页
A bstract With the aim of elucidating the spatial and seasonal behaviors of rare earth elements(REEs), we investigated the dissolved REE concentrations of surface water collected during four seasons from middle, lower... A bstract With the aim of elucidating the spatial and seasonal behaviors of rare earth elements(REEs), we investigated the dissolved REE concentrations of surface water collected during four seasons from middle, lower reaches and estuary of the Minjiang River, southeastern China. The results display that the REE abundances in Minjiang River, ranging from 3.3–785.9 ng/L, were higher than those of many of the major global rivers. The total REE concentrations(∑REE) were seasonally variable, averaging in 5 937.30, 863.79, 825.65 and 1 065.75 ng/L during second highest flow(SHF), normal flow(NF), low flow(LF) and high flow(HF) season, respectively. The R_(( L/M)) and R_((H/M)) ratios reveal the spatial and temporal variations of REE patterns, and particularly vary apparently in the maximum turbidity zone and estuary. REE patterns of dissolved loads are characterized by progressing weaker LREEs-enrichment and stronger HREEsenrichment downstream from middle reaches to estuary during all four seasons. Comparing with NF and LF seasons, in which REE patterns are relatively flat, samples of SHF season have more LREE-enriched and HREE-depleted patterns that close to parent rocks, while samples of HF season are more LREEs-depleted and HREE-enriched. REE fractionations from the middle to lower reaches are stronger in the SHF and HF seasons than those in NF and LF seasons. Generally, spatial and seasonal variations in REE abundance and pattern are presumably due to several factors, such as chemical weathering, mixture with rainfall and groundwater, estuarine mixing, runoff, biological production and mountain river characters, such as strong hydrodynamic forces and steep slopes. The highest Gd/Gd* always occurs at north ports during all four seasons, where most of the large hospitals are located. This suggests Gd anomalies are depended on the density of modern medical facilities. Y/Ho ratios fl uctuate and positively correlate to salinity in estuary, probably because of the geochemical behavior differences between Y and Ho. 展开更多
关键词 rare earth elements(REEs) Minjiang River estuarine mixing process dissolved load online pre-concentration system
在线阅读 下载PDF
Examining the influence of the loading path on the cracking characteristics of a pre-fractured rock specimen with discrete element method simulation 被引量:1
16
作者 Kang DUAN Ri-hua JIANG +2 位作者 Xue-jian LI Lu-chao WANG Ze-ying YANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第4期332-349,共18页
Damage in a rock mass is heavily dependent on the existence and growth of joints,which are also influenced by the complex stress states induced by human activities(e.g.,tunneling and excavation).A proper representatio... Damage in a rock mass is heavily dependent on the existence and growth of joints,which are also influenced by the complex stress states induced by human activities(e.g.,tunneling and excavation).A proper representation of the loading path is essential for understanding the mechanical behaviors of rock masses.Based on the discrete element method(DEM),the influence of the loading path on the cracking process of a rock specimen containing an open flaw is examined.The effectiveness of the model is confirmed by comparing the simulation results under a uniaxial compression test to existing research findings,where wing crack initiates first and secondary cracks contribute to the failure of the specimen.Simulation results confirm that the cracking process is dependent upon both the confining pressure and the loading path.Under the axial loading test,a higher confining pressure suppresses the development of tensile wing cracks and forces the formation of secondary cracks in the form of shear bands perpendicular to the flaw.Increase of confining pressure also decreases the influence of the loading path on the cracking process.Reduction of confining pressure during an unloading test amplifies the concentration of tensile stress and ultimately promotes the appearance of a tensile splitting fracture at meso-scale.Confining pressure at the failure stage is well predicted by the Hoek-Brown failure criterion under quasi-static conditions. 展开更多
关键词 Cracking process loading path Fractured rock mass Discrete element method(DEM) Local stress concentration
原文传递
Determination of rare earth elements in geological samples by adsorption and separation with P507 foam loaded plastic-neutron activation analysis 被引量:9
17
作者 姜怀坤 吕振生 +3 位作者 成学海 周长祥 赵伟 姜云 《分析试验室》 CAS CSCD 北大核心 2014年第6期737-740,共4页
研究了P507负载泡塑萃取柱吸附、分离和富集稀土元素的条件,确定了地学样品中微量稀土元素的化学前处理方法和中子活化测量条件。方法的RSD在3.4%~10%之间,回收率大于92%。用国家标准物质进行分析验证,测定结果与推荐值相符。
关键词 稀土元素 P507负载泡塑吸附分离 中子活化分析
原文传递
Strength reduction and step-loading finite element approaches in geotechnical engineering 被引量:23
18
作者 Yingren Zheng Xiaosong Tang +2 位作者 Shangyi Zhao Chujian Deng Wenjie Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期21-30,共10页
The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in Ch... The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling. 展开更多
关键词 finite element limit analysis method strength reduction step-loading embedded anti-slide piles reservoir slope FOUNDATION
在线阅读 下载PDF
Finite Element Analysis for the Structure Optimization Design of the CPUE Load-Bearing Wheel of Tracked Vehicle
19
作者 于立彪 郑慕侨 张英 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期162-165,共4页
A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operatin... A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operating conditions, the structure of wheel flange is optimized by zero order finite element method. A detailed three dimensional finite element model of flange of load bearing wheel is developed and utilized to optimize structure of wheel flange. Its service life, which is affected by flange structure parameter, is analyzed by comparing the optimization results with those of prototype of wheel. The results of optimization are presented and the stress field of load bearing wheel in optimal dimension obtained by using finite element analysis method is demonstrated. The finite element analysis and optimization results show that the CPUE load bearing wheel is feasible and suitable for the tracked vehicle and has a guiding value in practice of the weighting design of the whole tracked vehicle. 展开更多
关键词 zero order finite element analysis structure optimization cast polyurethane elastomers(CPUE) load bearing wheel durability
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部