Naturally degradable capsule provides a platform for sustained fragrance release.However,practical challenges such as low encapsulation efficiency and difficulty in sustained release are still limited in using fragran...Naturally degradable capsule provides a platform for sustained fragrance release.However,practical challenges such as low encapsulation efficiency and difficulty in sustained release are still limited in using fragranceloaded capsules.In this work,the natural materials sodium alginate and gelatine are dissolved and act as the aqueous phase,lavender is dissolved in caprylic/capric triglyceride(GTCC)as the oil phase,and SiO_(2) nanoparticles with neutralwettability as a solid emulsifier to form O/W Pickering emulsions simultaneously.Finally,multi-core capsules are prepared using the drop injection method with emulsions as templates.The results show that the capsules have been successfully prepared with a spherical morphology and multi-core structure,and the encapsulation rate of multi-core capsules can reach up to 99.6%.In addition,the multi-core capsules possess desirable sustained release performance,the cumulative sustained release rate of fragrance at 25℃over 49 days is only 32.5%.It is attributed to the significant protection of multi-core structure,Pickering emulsion nanoparticle membranes,and hydrogel network shell for encapsulated fragrance.This study is designed to deliver a new strategy for using sustained-release technology with fragrance in food,cosmetics,textiles,and other fields.展开更多
Real-time system timing analysis is crucial for estimating the worst-case execution time(WCET)of a program.To achieve this,static or dynamic analysis methods are used,along with targeted modeling of the actual hardwar...Real-time system timing analysis is crucial for estimating the worst-case execution time(WCET)of a program.To achieve this,static or dynamic analysis methods are used,along with targeted modeling of the actual hardware system.This literature review focuses on calculating WCET for multi-core processors,providing a survey of traditional methods used for static and dynamic analysis and highlighting the major challenges that arise from different program execution scenarios on multi-core platforms.This paper outlines the strengths and weaknesses of current methodologies and offers insights into prospective areas of research on multi-core analysis.By presenting a comprehensive analysis of the current state of research on multi-core processor analysis for WCET estimation,this review aims to serve as a valuable resource for researchers and practitioners in the field.展开更多
[Objective] The aim was to test the controlling effect of cleaning steriliza- tion system, material conveying system, and fermentation jar cooling system with equip- ments of fruit wine production line introduced in t...[Objective] The aim was to test the controlling effect of cleaning steriliza- tion system, material conveying system, and fermentation jar cooling system with equip- ments of fruit wine production line introduced in this study and its auto-control sys- tem field assembled and debugged. [Method] Based on controlling equipment and setting parameters on the configuration interface, the operation state of the control equipments could be real-time monitored and controlled with the help of configura- tion software. [Result] The result showed that the equipment system could reduce the temperature into 12 ℃ with the error of +0.5 ℃within 110 minutes when the fermentation temperature is set at 12 ℃ in real production. [Conclusion] The auto- control system of fruit wine production line was easy to be assembled and de- bugged to meet demands of different fruit wine productions.展开更多
The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS ...The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.展开更多
Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped...Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.展开更多
A novel kind of multi-core magnetic composite particles, the surfaces of which were respectively mo- dified with goat-anti-mouse IgG and antitransferrin receptor(anti-CD71), was prepared. The fetal nucleated red blo...A novel kind of multi-core magnetic composite particles, the surfaces of which were respectively mo- dified with goat-anti-mouse IgG and antitransferrin receptor(anti-CD71), was prepared. The fetal nucleated red blood cells(FNRBCs) in the peripheral blood of a gravida were rapidly and effectively enriched and separated by the mo- dified multi-core magnetic composite particles in an external magnetic field. The obtained FNRBCs were used for the identification of the fetal sex by means of fluorescence in situ hybridization(FISH) technique. The results demonstrate that the multi-core magnetic composite particles meet the requirements for the enrichment and speration of FNRBCs with a low concentration and the accuracy of detetion for the diagnosis of fetal sex reached to 95%. Moreover, the obtained FNRBCs were applied to the non-invasive diagnosis of Down syndrome and chromosome 3p21 was de- tected. The above facts indicate that the novel multi-core magnetic composite particles-based method is simple, relia- ble and cost-effective and has opened up vast vistas for the potential application in clinic non-invasive prenatal diag- nosis.展开更多
In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS relia...In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS reliability simulation process is presented incorporating the imperfect debugging and the limitation of debugging resources. Considering the effect of imperfect debugging on fault detec- tion and correction process, a CBS integration testing model is sketched by multi-queue muhichannel and finite server queuing model (MMFSQM). Compared with the analytical method based on pa- rameters and other nonparametric approaches, the simulation approach can relax more of the usual reliability modeling assumptions and effectively expound integration testing process of CBS. Then, CBS reliability process simulation procedure is developed accordingly. The proposed simulation ap- proach is validated to be sound and effective by simulation experiment studies and analysis.展开更多
Fault localization is an important topic in software testing, as it enables the developer to specify fault location in their code. One of the dynamic fault localization techniques is statistical debugging. In this stu...Fault localization is an important topic in software testing, as it enables the developer to specify fault location in their code. One of the dynamic fault localization techniques is statistical debugging. In this study, two statistical debugging algorithms are implemented, SOBER and Cause Isolation, and then the experimental works are conducted on five programs coded using Python as an example of well-known dynamic programming language. Results showed that in programs that contain only single bug, the two studied statistical debugging algorithms are very effective to localize a bug. In programs that have more than one bug, SOBER algorithm has limitations related to nested predicates, rarely observed predicates and complement predicates. The Cause Isolation has limitations related to sorting predicates based on importance and detecting bugs in predicate condition. The accuracy of both SOBER and Cause Isolation is affected by the program size. Quality comparison showed that SOBER algorithm requires more code examination than Cause Isolation to discover the bugs.展开更多
Software reliability model is the tool to measure the software reliability quantitatively. Hazard-Rate model is one of the most popular ones. The purpose of our research is to propose the hazard-rate model considering...Software reliability model is the tool to measure the software reliability quantitatively. Hazard-Rate model is one of the most popular ones. The purpose of our research is to propose the hazard-rate model considering fault level for Open Source Software (OSS). Moreover, we aim to adapt our proposed model to the hazard-rate considering the imperfect debugging environment. We have analyzed the trend of fault severity level by using fault data in Bug Tracking System (BTS) and proposed our model based on the result of analysis. Also, we have shown the numerical example for evaluating the performance of our proposed model. Furthermore, we have extended our proposed model to the hazard-rate considering the imperfect debugging environment and showed numerical example for evaluating the possibility of application. As the result, we found out that performance of our proposed model is better than typical hazard-rate models. Also, we verified the possibility of application of proposed model to hazard-rate model considering imperfect debugging.展开更多
This paper presents a debugging system for multi-pole array acoustic logging (MPAL) tools. The debugging system proposed in this study can debug the MPAL tool system, sub-system and local electronics. In the test eq...This paper presents a debugging system for multi-pole array acoustic logging (MPAL) tools. The debugging system proposed in this study can debug the MPAL tool system, sub-system and local electronics. In the test equipment, we have used principal and subordinate structures, and interconnected the host computer and the front-end machine via Ethernet. The front-end machine is based on the ARM7 (advanced reduced instruction set computing (RISC) machine) technique, the processor of which runs an embedded operating system, namely, uClinux OS. We have analyzed the system telecommunication, human-machine interface circuit, transmitter mandrel interface circuit, receiver mandrel interface circuit, and board-level test interface circuit. The software used in the system consists of the embedded front-computer software and the host application software. We have explained in detail the flow chart of the boot loader in the embedded front-computer software. The host application software is composed of four application subroutines, which match with the functional modules of the system hardware. A net communication program based on the server^client mode is implemented by means of socket programming and multi-thread programming. Test results indicate that the data transmission rate of the system is higher than 1 MB/s, which completely meets the current requirements of the data transmission rate between the tool system and the wireline telemetry device. Application of the debugging system, which includes multiple level test methods, shows that the proposed system can fully meet the test requirements of MPAL at various levels.展开更多
Because of the inevitable debugging lag,imperfect debugging process is used to replace perfect debugging process in the analysis of software reliability growth model.Considering neither testing-effort nor testing cove...Because of the inevitable debugging lag,imperfect debugging process is used to replace perfect debugging process in the analysis of software reliability growth model.Considering neither testing-effort nor testing coverage can describe software reliability for imperfect debugging completely,by hybridizing testing-effort with testing coverage under imperfect debugging,this paper proposes a new model named GMW-LO-ID.Under the assumption that the number of faults is proportional to the current number of detected faults,this model combines generalized modified Weibull(GMW)testing-effort function with logistic(LO)testing coverage function,and inherits GMW's amazing flexibility and LO's high fitting precision.Furthermore,the fitting accuracy and predictive power are verified by two series of experiments and we can draw a conclusion that our model fits the actual failure data better and predicts the software future behavior better than other ten traditional models,which only consider one or two points of testing-effort,testing coverage and imperfect debugging.展开更多
A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time geneti...A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time genetic task mapping algorithm is proposed during the design stage to generate multiple task mapping solutions which cover a maximum range of chips. Then, during the run, one optimal task mapping solution is selected. Additionally, logical cores are mapped to physically available cores. Both core asymmetry and topological changes are considered in the proposed approach. Experimental results show that the performance yield of the proposed approach is 96% on average, and the communication cost, power consumption and peak temperature are all optimized without loss of performance yield.展开更多
Developing parallel applications on heterogeneous processors is facing the challenges of 'memory wall',due to limited capacity of local storage,limited bandwidth and long latency for memory access. Aiming at t...Developing parallel applications on heterogeneous processors is facing the challenges of 'memory wall',due to limited capacity of local storage,limited bandwidth and long latency for memory access. Aiming at this problem,a parallelization approach was proposed with six memory optimization schemes for CG,four schemes of them aiming at all kinds of sparse matrix-vector multiplication (SPMV) operation. Conducted on IBM QS20,the parallelization approach can reach up to 21 and 133 times speedups with size A and B,respectively,compared with single power processor element. Finally,the conclusion is drawn that the peak bandwidth of memory access on Cell BE can be obtained in SPMV,simple computation is more efficient on heterogeneous processors and loop-unrolling can hide local storage access latency while executing scalar operation on SIMD cores.展开更多
Decreasing mode coupling coefficient(κ) is an effective approach to suppress the inter-core crosstalk. Therefore, we deploy a low index rod and rectangle trench in the middle of two neighboring cores to reduce κ so ...Decreasing mode coupling coefficient(κ) is an effective approach to suppress the inter-core crosstalk. Therefore, we deploy a low index rod and rectangle trench in the middle of two neighboring cores to reduce κ so that the overlap of electric field distribution can be suppressed. We also propose approximate analytical solution(AAS) for κ of two crosstalk suppression models, which are two cores with one low index rod deployed in the middle and two cores with one low index rectangle trench deployed in the middle. We then do some modification for the results obtained by AAS and the modified results are proved to agree well with that obtained by finite element method(FEM). Therefore, we can use the modified AAS to get inter-core crosstalk for abovementioned two models quickly.展开更多
In view of the problems and the weaknesses of component-based software ( CBS ) reliability modeling and analysis, and a lack of consideration for real debugging circumstance of integration tes- ting, a CBS reliabili...In view of the problems and the weaknesses of component-based software ( CBS ) reliability modeling and analysis, and a lack of consideration for real debugging circumstance of integration tes- ting, a CBS reliability process analysis model is proposed incorporating debugging time delay, im- perfect debugging and limited debugging resources. CBS integration testing is formulated as a multi- queue muhichannel and finite server queuing model (MMFSQM) to illustrate fault detection process (FDP) and fault correction process (FCP). A unified FCP is sketched, given debugging delay, the diversities of faults processing and the limitations of debugging resources. Furthermore, the impacts of imperfect debugging on fault detection and correction are explicitly elaborated, and the expres- sions of the cumulative number of fault detected and corrected are illustrated. Finally, the results of numerical experiments verify the effectiveness and rationality of the proposed model. By comparison, the proposed model is superior to the other models. The proposed model is closer to real CBS testing process and facilitates software engineer' s quantitatively analyzing, measuring and predicting CBS reliability. K展开更多
Northeast China Electric Power Group(NEPG) has outstanding achievements in thesurvey, design, construction and regulationof power plants and power transmissionproject, the management of hydropowerProject, the construc...Northeast China Electric Power Group(NEPG) has outstanding achievements in thesurvey, design, construction and regulationof power plants and power transmissionproject, the management of hydropowerProject, the construction and maintenance ofnuclear power project. The constructioncontingents 0f it have great strength intechnical equipment, project quality andscientific payoffs. They are very experiencedin integral management 0f the design’construction and the adjustment of thepr0ject and in the international cooperationand also they have good internationalcooperation examples.展开更多
In this paper, the influencing factors that affect few-mode and multi core optical fiber channel are analyzed in a comprehensive way. The theoretical modeling and computer simulation of the information channel are car...In this paper, the influencing factors that affect few-mode and multi core optical fiber channel are analyzed in a comprehensive way. The theoretical modeling and computer simulation of the information channel are carried out and then the modeling scheme of few-mode multicore optical fiber channel based on non-uniform mode field distribution is put forward. The proposed modeling scheme can not only exponentially increases the system capacity through fewmode multi-core optical fiber channel, but has better transmission performance compared to the channel of the same type to the uniform channel revealing from the simulation results.展开更多
The developments of multi-core systems(MCS)have considerably improved the existing technologies in thefield of computer architecture.The MCS comprises several processors that are heterogeneous for resource capacities,...The developments of multi-core systems(MCS)have considerably improved the existing technologies in thefield of computer architecture.The MCS comprises several processors that are heterogeneous for resource capacities,working environments,topologies,and so on.The existing multi-core technology unlocks additional research opportunities for energy minimization by the use of effective task scheduling.At the same time,the task scheduling process is yet to be explored in the multi-core systems.This paper presents a new hybrid genetic algorithm(GA)with a krill herd(KH)based energy-efficient scheduling techni-que for multi-core systems(GAKH-SMCS).The goal of the GAKH-SMCS tech-nique is to derive scheduling tasks in such a way to achieve faster completion time and minimum energy dissipation.The GAKH-SMCS model involves a multi-objectivefitness function using four parameters such as makespan,processor utilization,speedup,and energy consumption to schedule tasks proficiently.The performance of the GAKH-SMCS model has been validated against two datasets namely random dataset and benchmark dataset.The experimental outcome ensured the effectiveness of the GAKH-SMCS model interms of makespan,pro-cessor utilization,speedup,and energy consumption.The overall simulation results depicted that the presented GAKH-SMCS model achieves energy effi-ciency by optimal task scheduling process in MCS.展开更多
This paper focuses on how to optimize the cache performance of sparse matrix-matrix multiplication(SpGEMM).It classifies the cache misses into two categories;one is caused by the irregular distribution pattern of the ...This paper focuses on how to optimize the cache performance of sparse matrix-matrix multiplication(SpGEMM).It classifies the cache misses into two categories;one is caused by the irregular distribution pattern of the multiplier-matrix,and the other is caused by the multiplicand.For each of them,the paper puts forward an optimization method respectively.The first hash based method removes cache misses of the 1 st category effectively,and improves the performance by a factor of 6 on an Intel 8-core CPU for the best cases.For cache misses of the 2nd category,it proposes a new cache replacement algorithm,which achieves a cache hit rate much higher than other historical knowledge based algorithms,and the algorithm is applicable on CELL and GPU.To further verify the effectiveness of our methods,we implement our algorithm on GPU,and the performance perfectly scales with the size of on-chip storage.展开更多
Modern shared-memory multi-core processors typically have shared Level 2(L2)or Level 3(L3)caches.Cache bottlenecks and replacement strategies are the main problems of such architectures,where multiple cores try to acc...Modern shared-memory multi-core processors typically have shared Level 2(L2)or Level 3(L3)caches.Cache bottlenecks and replacement strategies are the main problems of such architectures,where multiple cores try to access the shared cache simultaneously.The main problem in improving memory performance is the shared cache architecture and cache replacement.This paper documents the implementation of a Dual-Port Content Addressable Memory(DPCAM)and a modified Near-Far Access Replacement Algorithm(NFRA),which was previously proposed as a shared L2 cache layer in a multi-core processor.Standard Performance Evaluation Corporation(SPEC)Central Processing Unit(CPU)2006 benchmark workloads are used to evaluate the benefit of the shared L2 cache layer.Results show improved performance of the multicore processor’s DPCAM and NFRA algorithms,corresponding to a higher number of concurrent accesses to shared memory.The new architecture significantly increases system throughput and records performance improvements of up to 8.7%on various types of SPEC 2006 benchmarks.The miss rate is also improved by about 13%,with some exceptions in the sphinx3 and bzip2 benchmarks.These results could open a new window for solving the long-standing problems with shared cache in multi-core processors.展开更多
文摘Naturally degradable capsule provides a platform for sustained fragrance release.However,practical challenges such as low encapsulation efficiency and difficulty in sustained release are still limited in using fragranceloaded capsules.In this work,the natural materials sodium alginate and gelatine are dissolved and act as the aqueous phase,lavender is dissolved in caprylic/capric triglyceride(GTCC)as the oil phase,and SiO_(2) nanoparticles with neutralwettability as a solid emulsifier to form O/W Pickering emulsions simultaneously.Finally,multi-core capsules are prepared using the drop injection method with emulsions as templates.The results show that the capsules have been successfully prepared with a spherical morphology and multi-core structure,and the encapsulation rate of multi-core capsules can reach up to 99.6%.In addition,the multi-core capsules possess desirable sustained release performance,the cumulative sustained release rate of fragrance at 25℃over 49 days is only 32.5%.It is attributed to the significant protection of multi-core structure,Pickering emulsion nanoparticle membranes,and hydrogel network shell for encapsulated fragrance.This study is designed to deliver a new strategy for using sustained-release technology with fragrance in food,cosmetics,textiles,and other fields.
基金supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.2022ZTE09.
文摘Real-time system timing analysis is crucial for estimating the worst-case execution time(WCET)of a program.To achieve this,static or dynamic analysis methods are used,along with targeted modeling of the actual hardware system.This literature review focuses on calculating WCET for multi-core processors,providing a survey of traditional methods used for static and dynamic analysis and highlighting the major challenges that arise from different program execution scenarios on multi-core platforms.This paper outlines the strengths and weaknesses of current methodologies and offers insights into prospective areas of research on multi-core analysis.By presenting a comprehensive analysis of the current state of research on multi-core processor analysis for WCET estimation,this review aims to serve as a valuable resource for researchers and practitioners in the field.
基金Supported by Fundamental Research Foundation of GXAAS(GNK2013YM02)~~
文摘[Objective] The aim was to test the controlling effect of cleaning steriliza- tion system, material conveying system, and fermentation jar cooling system with equip- ments of fruit wine production line introduced in this study and its auto-control sys- tem field assembled and debugged. [Method] Based on controlling equipment and setting parameters on the configuration interface, the operation state of the control equipments could be real-time monitored and controlled with the help of configura- tion software. [Result] The result showed that the equipment system could reduce the temperature into 12 ℃ with the error of +0.5 ℃within 110 minutes when the fermentation temperature is set at 12 ℃ in real production. [Conclusion] The auto- control system of fruit wine production line was easy to be assembled and de- bugged to meet demands of different fruit wine productions.
文摘The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.
基金supported by the Pre-research Foundation of CPLA General Equipment Department
文摘Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.
文摘A novel kind of multi-core magnetic composite particles, the surfaces of which were respectively mo- dified with goat-anti-mouse IgG and antitransferrin receptor(anti-CD71), was prepared. The fetal nucleated red blood cells(FNRBCs) in the peripheral blood of a gravida were rapidly and effectively enriched and separated by the mo- dified multi-core magnetic composite particles in an external magnetic field. The obtained FNRBCs were used for the identification of the fetal sex by means of fluorescence in situ hybridization(FISH) technique. The results demonstrate that the multi-core magnetic composite particles meet the requirements for the enrichment and speration of FNRBCs with a low concentration and the accuracy of detetion for the diagnosis of fetal sex reached to 95%. Moreover, the obtained FNRBCs were applied to the non-invasive diagnosis of Down syndrome and chromosome 3p21 was de- tected. The above facts indicate that the novel multi-core magnetic composite particles-based method is simple, relia- ble and cost-effective and has opened up vast vistas for the potential application in clinic non-invasive prenatal diag- nosis.
基金Supported by the National High Technology Research and Development Program of China(No.2008AA01A201)the National Nature Science Foundation of China(No.60503015,90818016)
文摘In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS reliability simulation process is presented incorporating the imperfect debugging and the limitation of debugging resources. Considering the effect of imperfect debugging on fault detec- tion and correction process, a CBS integration testing model is sketched by multi-queue muhichannel and finite server queuing model (MMFSQM). Compared with the analytical method based on pa- rameters and other nonparametric approaches, the simulation approach can relax more of the usual reliability modeling assumptions and effectively expound integration testing process of CBS. Then, CBS reliability process simulation procedure is developed accordingly. The proposed simulation ap- proach is validated to be sound and effective by simulation experiment studies and analysis.
文摘Fault localization is an important topic in software testing, as it enables the developer to specify fault location in their code. One of the dynamic fault localization techniques is statistical debugging. In this study, two statistical debugging algorithms are implemented, SOBER and Cause Isolation, and then the experimental works are conducted on five programs coded using Python as an example of well-known dynamic programming language. Results showed that in programs that contain only single bug, the two studied statistical debugging algorithms are very effective to localize a bug. In programs that have more than one bug, SOBER algorithm has limitations related to nested predicates, rarely observed predicates and complement predicates. The Cause Isolation has limitations related to sorting predicates based on importance and detecting bugs in predicate condition. The accuracy of both SOBER and Cause Isolation is affected by the program size. Quality comparison showed that SOBER algorithm requires more code examination than Cause Isolation to discover the bugs.
文摘Software reliability model is the tool to measure the software reliability quantitatively. Hazard-Rate model is one of the most popular ones. The purpose of our research is to propose the hazard-rate model considering fault level for Open Source Software (OSS). Moreover, we aim to adapt our proposed model to the hazard-rate considering the imperfect debugging environment. We have analyzed the trend of fault severity level by using fault data in Bug Tracking System (BTS) and proposed our model based on the result of analysis. Also, we have shown the numerical example for evaluating the performance of our proposed model. Furthermore, we have extended our proposed model to the hazard-rate considering the imperfect debugging environment and showed numerical example for evaluating the possibility of application. As the result, we found out that performance of our proposed model is better than typical hazard-rate models. Also, we verified the possibility of application of proposed model to hazard-rate model considering imperfect debugging.
基金supported by National Science Foundation of China (61102102, 11134011, 11204380 and 11374371)Major National Science and Technology Projects (2011ZX05020-002)+2 种基金PetroChina Innovation Foundation (2014D-5006-0307)Science and Technology Project of CNPC (2014A-3912 and 2011B-4001)the Foundation of China University of Petroleum (KYJJ2012-05-07)
文摘This paper presents a debugging system for multi-pole array acoustic logging (MPAL) tools. The debugging system proposed in this study can debug the MPAL tool system, sub-system and local electronics. In the test equipment, we have used principal and subordinate structures, and interconnected the host computer and the front-end machine via Ethernet. The front-end machine is based on the ARM7 (advanced reduced instruction set computing (RISC) machine) technique, the processor of which runs an embedded operating system, namely, uClinux OS. We have analyzed the system telecommunication, human-machine interface circuit, transmitter mandrel interface circuit, receiver mandrel interface circuit, and board-level test interface circuit. The software used in the system consists of the embedded front-computer software and the host application software. We have explained in detail the flow chart of the boot loader in the embedded front-computer software. The host application software is composed of four application subroutines, which match with the functional modules of the system hardware. A net communication program based on the server^client mode is implemented by means of socket programming and multi-thread programming. Test results indicate that the data transmission rate of the system is higher than 1 MB/s, which completely meets the current requirements of the data transmission rate between the tool system and the wireline telemetry device. Application of the debugging system, which includes multiple level test methods, shows that the proposed system can fully meet the test requirements of MPAL at various levels.
基金supported by the National Natural Science Foundation of China(No.U1433116)the Aviation Science Foundation of China(No.20145752033)
文摘Because of the inevitable debugging lag,imperfect debugging process is used to replace perfect debugging process in the analysis of software reliability growth model.Considering neither testing-effort nor testing coverage can describe software reliability for imperfect debugging completely,by hybridizing testing-effort with testing coverage under imperfect debugging,this paper proposes a new model named GMW-LO-ID.Under the assumption that the number of faults is proportional to the current number of detected faults,this model combines generalized modified Weibull(GMW)testing-effort function with logistic(LO)testing coverage function,and inherits GMW's amazing flexibility and LO's high fitting precision.Furthermore,the fitting accuracy and predictive power are verified by two series of experiments and we can draw a conclusion that our model fits the actual failure data better and predicts the software future behavior better than other ten traditional models,which only consider one or two points of testing-effort,testing coverage and imperfect debugging.
文摘A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time genetic task mapping algorithm is proposed during the design stage to generate multiple task mapping solutions which cover a maximum range of chips. Then, during the run, one optimal task mapping solution is selected. Additionally, logical cores are mapped to physically available cores. Both core asymmetry and topological changes are considered in the proposed approach. Experimental results show that the performance yield of the proposed approach is 96% on average, and the communication cost, power consumption and peak temperature are all optimized without loss of performance yield.
基金Project(2008AA01A201) supported the National High-tech Research and Development Program of ChinaProjects(60833004, 60633050) supported by the National Natural Science Foundation of China
文摘Developing parallel applications on heterogeneous processors is facing the challenges of 'memory wall',due to limited capacity of local storage,limited bandwidth and long latency for memory access. Aiming at this problem,a parallelization approach was proposed with six memory optimization schemes for CG,four schemes of them aiming at all kinds of sparse matrix-vector multiplication (SPMV) operation. Conducted on IBM QS20,the parallelization approach can reach up to 21 and 133 times speedups with size A and B,respectively,compared with single power processor element. Finally,the conclusion is drawn that the peak bandwidth of memory access on Cell BE can be obtained in SPMV,simple computation is more efficient on heterogeneous processors and loop-unrolling can hide local storage access latency while executing scalar operation on SIMD cores.
基金supported by National B a-sic Research Program of China(Grant No.2012CB315905)National Natural Science Foundation of China(Grant No.61501027)+1 种基金China Postdoctoral Science Foundation(Grant No.2015M570934)Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-15-031A1)
文摘Decreasing mode coupling coefficient(κ) is an effective approach to suppress the inter-core crosstalk. Therefore, we deploy a low index rod and rectangle trench in the middle of two neighboring cores to reduce κ so that the overlap of electric field distribution can be suppressed. We also propose approximate analytical solution(AAS) for κ of two crosstalk suppression models, which are two cores with one low index rod deployed in the middle and two cores with one low index rectangle trench deployed in the middle. We then do some modification for the results obtained by AAS and the modified results are proved to agree well with that obtained by finite element method(FEM). Therefore, we can use the modified AAS to get inter-core crosstalk for abovementioned two models quickly.
基金Supported by the National High Technology Research and Development Program of China(No.2008AA01A201)the National Natural Science Foundation of China(No.60503015)+1 种基金the National Key R&D Program of China(No.2013BA17F02)the Shandong Province Science and Technology Program of China(No.2011GGX10108,2010GGX10104)
文摘In view of the problems and the weaknesses of component-based software ( CBS ) reliability modeling and analysis, and a lack of consideration for real debugging circumstance of integration tes- ting, a CBS reliability process analysis model is proposed incorporating debugging time delay, im- perfect debugging and limited debugging resources. CBS integration testing is formulated as a multi- queue muhichannel and finite server queuing model (MMFSQM) to illustrate fault detection process (FDP) and fault correction process (FCP). A unified FCP is sketched, given debugging delay, the diversities of faults processing and the limitations of debugging resources. Furthermore, the impacts of imperfect debugging on fault detection and correction are explicitly elaborated, and the expres- sions of the cumulative number of fault detected and corrected are illustrated. Finally, the results of numerical experiments verify the effectiveness and rationality of the proposed model. By comparison, the proposed model is superior to the other models. The proposed model is closer to real CBS testing process and facilitates software engineer' s quantitatively analyzing, measuring and predicting CBS reliability. K
文摘Northeast China Electric Power Group(NEPG) has outstanding achievements in thesurvey, design, construction and regulationof power plants and power transmissionproject, the management of hydropowerProject, the construction and maintenance ofnuclear power project. The constructioncontingents 0f it have great strength intechnical equipment, project quality andscientific payoffs. They are very experiencedin integral management 0f the design’construction and the adjustment of thepr0ject and in the international cooperationand also they have good internationalcooperation examples.
基金supports from National High Technology 863 Program of China(No.2013AA013403,2015AA015501,2015AA015502,2015AA015504)National NSFC(No.61425022/61522501/61307086/61475024/61275158/61201151/61275074/61372109)+4 种基金Beijing Nova Program(No.Z141101001814048)Beijing Excellent Ph.D.Thesis Guidance Foundation(No.20121001302)the Universities Ph.D.Special Research Funds(No.20120005110003/20120005120007)Fund of State Key Laboratory of IPOC(BUPT)P.R.China
文摘In this paper, the influencing factors that affect few-mode and multi core optical fiber channel are analyzed in a comprehensive way. The theoretical modeling and computer simulation of the information channel are carried out and then the modeling scheme of few-mode multicore optical fiber channel based on non-uniform mode field distribution is put forward. The proposed modeling scheme can not only exponentially increases the system capacity through fewmode multi-core optical fiber channel, but has better transmission performance compared to the channel of the same type to the uniform channel revealing from the simulation results.
基金supported by Taif University Researchers Supporting Program(Project Number:TURSP-2020/195)Taif University,Saudi Arabia.Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R203)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The developments of multi-core systems(MCS)have considerably improved the existing technologies in thefield of computer architecture.The MCS comprises several processors that are heterogeneous for resource capacities,working environments,topologies,and so on.The existing multi-core technology unlocks additional research opportunities for energy minimization by the use of effective task scheduling.At the same time,the task scheduling process is yet to be explored in the multi-core systems.This paper presents a new hybrid genetic algorithm(GA)with a krill herd(KH)based energy-efficient scheduling techni-que for multi-core systems(GAKH-SMCS).The goal of the GAKH-SMCS tech-nique is to derive scheduling tasks in such a way to achieve faster completion time and minimum energy dissipation.The GAKH-SMCS model involves a multi-objectivefitness function using four parameters such as makespan,processor utilization,speedup,and energy consumption to schedule tasks proficiently.The performance of the GAKH-SMCS model has been validated against two datasets namely random dataset and benchmark dataset.The experimental outcome ensured the effectiveness of the GAKH-SMCS model interms of makespan,pro-cessor utilization,speedup,and energy consumption.The overall simulation results depicted that the presented GAKH-SMCS model achieves energy effi-ciency by optimal task scheduling process in MCS.
基金Supported by the National High Technology Research and Development Programme of China(No.2010AA012302,2009AA01 A134)Tsinghua National Laboratory for Information Science and Technology(TNList)Cross-discipline Foundation
文摘This paper focuses on how to optimize the cache performance of sparse matrix-matrix multiplication(SpGEMM).It classifies the cache misses into two categories;one is caused by the irregular distribution pattern of the multiplier-matrix,and the other is caused by the multiplicand.For each of them,the paper puts forward an optimization method respectively.The first hash based method removes cache misses of the 1 st category effectively,and improves the performance by a factor of 6 on an Intel 8-core CPU for the best cases.For cache misses of the 2nd category,it proposes a new cache replacement algorithm,which achieves a cache hit rate much higher than other historical knowledge based algorithms,and the algorithm is applicable on CELL and GPU.To further verify the effectiveness of our methods,we implement our algorithm on GPU,and the performance perfectly scales with the size of on-chip storage.
文摘Modern shared-memory multi-core processors typically have shared Level 2(L2)or Level 3(L3)caches.Cache bottlenecks and replacement strategies are the main problems of such architectures,where multiple cores try to access the shared cache simultaneously.The main problem in improving memory performance is the shared cache architecture and cache replacement.This paper documents the implementation of a Dual-Port Content Addressable Memory(DPCAM)and a modified Near-Far Access Replacement Algorithm(NFRA),which was previously proposed as a shared L2 cache layer in a multi-core processor.Standard Performance Evaluation Corporation(SPEC)Central Processing Unit(CPU)2006 benchmark workloads are used to evaluate the benefit of the shared L2 cache layer.Results show improved performance of the multicore processor’s DPCAM and NFRA algorithms,corresponding to a higher number of concurrent accesses to shared memory.The new architecture significantly increases system throughput and records performance improvements of up to 8.7%on various types of SPEC 2006 benchmarks.The miss rate is also improved by about 13%,with some exceptions in the sphinx3 and bzip2 benchmarks.These results could open a new window for solving the long-standing problems with shared cache in multi-core processors.