期刊文献+
共找到1,423篇文章
< 1 2 72 >
每页显示 20 50 100
Quafu-Qcover:Explore combinatorial optimization problems on cloud-based quantum computers 被引量:1
1
作者 许宏泽 庄伟峰 +29 位作者 王正安 黄凯旋 时运豪 马卫国 李天铭 陈驰通 许凯 冯玉龙 刘培 陈墨 李尚书 杨智鹏 钱辰 靳羽欣 马运恒 肖骁 钱鹏 顾炎武 柴绪丹 普亚南 张翼鹏 魏世杰 增进峰 李行 龙桂鲁 金贻荣 于海峰 范桁 刘东 胡孟军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期104-115,共12页
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c... We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers. 展开更多
关键词 quantum cloud platform combinatorial optimization problems quantum software
原文传递
Learning to Branch in Combinatorial Optimization With Graph Pointer Networks
2
作者 Rui Wang Zhiming Zhou +4 位作者 Kaiwen Li Tao Zhang Ling Wang Xin Xu Xiangke Liao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期157-169,共13页
Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well wi... Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well with complex problems.Given the frequent need to solve varied combinatorial optimization problems, leveraging statistical learning to auto-tune B&B algorithms for specific problem classes becomes attractive. This paper proposes a graph pointer network model to learn the branch rules. Graph features, global features and historical features are designated to represent the solver state. The graph neural network processes graph features, while the pointer mechanism assimilates the global and historical features to finally determine the variable on which to branch. The model is trained to imitate the expert strong branching rule by a tailored top-k Kullback-Leibler divergence loss function. Experiments on a series of benchmark problems demonstrate that the proposed approach significantly outperforms the widely used expert-designed branching rules. It also outperforms state-of-the-art machine-learning-based branch-and-bound methods in terms of solving speed and search tree size on all the test instances. In addition, the model can generalize to unseen instances and scale to larger instances. 展开更多
关键词 Branch-and-bound(B&B) combinatorial optimization deep learning graph neural network imitation learning
在线阅读 下载PDF
Optimization of Linear Sequence-controlled Copolymers for Maximizing Adsorption Capacity
3
作者 Sheng-Da Zhao Qiu-Ju Chen +2 位作者 Zhi-Xin Liu Quan-Xiao Dong Xing-Hua Zhang 《Chinese Journal of Polymer Science》 2025年第10期1739-1748,共10页
The optimization of polymer structures aims to determine an optimal sequence or topology that achieves a given target property or structural performance.This inverse design problem involves searching within a vast com... The optimization of polymer structures aims to determine an optimal sequence or topology that achieves a given target property or structural performance.This inverse design problem involves searching within a vast combinatorial phase space defined by components,se-quences,and topologies,and is often computationally intractable due to its NP-hard nature.At the core of this challenge lies the need to evalu-ate complex correlations among structural variables,a classical problem in both statistical physics and combinatorial optimization.To address this,we adopt a mean-field approach that decouples direct variable-variable interactions into effective interactions between each variable and an auxiliary field.The simulated bifurcation(SB)algorithm is employed as a mean-field-based optimization framework.It constructs a Hamiltonian dynamical system by introducing generalized momentum fields,enabling efficient decoupling and dynamic evolution of strongly coupled struc-tural variables.Using the sequence optimization of a linear copolymer adsorbing on a solid surface as a case study,we demonstrate the applica-bility of the SB algorithm to high-dimensional,non-differentiable combinatorial optimization problems.Our results show that SB can efficiently discover polymer sequences with excellent adsorption performance within a reasonable computational time.Furthermore,it exhibits robust con-vergence and high parallel scalability across large design spaces.The approach developed in this work offers a new computational pathway for polymer structure optimization.It also lays a theoretical foundation for future extensions to topological design problems,such as optimizing the number and placement of side chains,as well as the co-optimization of sequence and topology. 展开更多
关键词 combinatorial optimization optimal design Sequence design COPOLYMER Adsorption problem
原文传递
Time Complexity of Evolutionary Algorithms for Combinatorial Optimization:A Decade of Results 被引量:5
4
作者 Pietro S.Oliveto 《International Journal of Automation and computing》 EI 2007年第3期281-293,共13页
Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties. The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems.... Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties. The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems. These efforts produced a deeper understanding of how EAs perform on different kinds of fitness landscapes and general mathematical tools that may be extended to the analysis of more complicated EAs on more realistic problems. In fact, in recent years, it has been possible to analyze the (1+1)-EA on combinatorial optimization problems with practical applications and more realistic population-based EAs on structured toy problems. This paper presents a survey of the results obtained in the last decade along these two research lines. The most common mathematical techniques are introduced, the basic ideas behind them are discussed and their elective applications are highlighted. Solved problems that were still open are enumerated as are those still awaiting for a solution. New questions and problems arisen in the meantime are also considered. 展开更多
关键词 Evolutionary algorithms computational complexity combinatorial optimization evolutionary computation theory.
在线阅读 下载PDF
SOME COMBINATORIAL OPTIMIZATION PROBLEMS ARISING FROM VLSI CIRCUIT DESIGN 被引量:2
5
作者 刘彦佩 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1993年第2期218-235,共18页
This paper is basically a survey to show a number of combinatorial optimization problems arising from VLSI circuit design. Some of them including the existence problem, minimax problem, net representation, bend minimi... This paper is basically a survey to show a number of combinatorial optimization problems arising from VLSI circuit design. Some of them including the existence problem, minimax problem, net representation, bend minimization, area minimization, placement problem, routing problem, etc. are especially discussed with new results and theoretical ideas for treating them. Finally, a number of problems for further research are mentioned. 展开更多
关键词 VLSI Circuit Design Rectilinear Embedding Rectilinear Convexity Forbidden Configuration combinatorial optimization.
在线阅读 下载PDF
Combinatorial Optimization Based Analog Circuit Fault Diagnosis with Back Propagation Neural Network 被引量:1
6
作者 李飞 何佩 +3 位作者 王向涛 郑亚飞 郭阳明 姬昕禹 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期774-778,共5页
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of... Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN. 展开更多
关键词 analog circuit fault diagnosis back propagation(BP) neural network combinatorial optimization TOLERANCE genetic algorithm(G A) Levenberg-Marquardt algorithm(LMA)
在线阅读 下载PDF
Application of the edge of chaos in combinatorial optimization
7
作者 Yanqing Tang Nayue Zhang +2 位作者 Ping Zhu Minghu Fang Guoguang He 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期199-206,共8页
Many problems in science,engineering and real life are related to the combinatorial optimization.However,many combinatorial optimization problems belong to a class of the NP-hard problems,and their globally optimal so... Many problems in science,engineering and real life are related to the combinatorial optimization.However,many combinatorial optimization problems belong to a class of the NP-hard problems,and their globally optimal solutions are usually difficult to solve.Therefore,great attention has been attracted to the algorithms of searching the globally optimal solution or near-optimal solution for the combinatorial optimization problems.As a typical combinatorial optimization problem,the traveling salesman problem(TSP)often serves as a touchstone for novel approaches.It has been found that natural systems,particularly brain nervous systems,work at the critical region between order and disorder,namely,on the edge of chaos.In this work,an algorithm for the combinatorial optimization problems is proposed based on the neural networks on the edge of chaos(ECNN).The algorithm is then applied to TSPs of 10 cities,21 cities,48 cities and 70 cities.The results show that ECNN algorithm has strong ability to drive the networks away from local minimums.Compared with the transiently chaotic neural network(TCNN),the stochastic chaotic neural network(SCNN)algorithms and other optimization algorithms,much higher rates of globally optimal solutions and near-optimal solutions are obtained with ECNN algorithm.To conclude,our algorithm provides an effective way for solving the combinatorial optimization problems. 展开更多
关键词 edge of chaos chaotic neural networks combinatorial optimization travelling salesman problem
原文传递
MODS: A Novel Metaheuristic of Deterministic Swapping for the Multi-Objective Optimization of Combinatorials Problems
8
作者 Elias David Nifio Ruiz Carlos Julio Ardila Hemandez +2 位作者 Daladier Jabba Molinares Agustin Barrios Sarmiento Yezid Donoso Meisel 《Computer Technology and Application》 2011年第4期280-292,共13页
This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Auto... This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Automata (MDFA) is defined. MDFA allows the representation of the feasible solutions space of combinatorial problems. Second, it is defined and implemented a metaheuritic based on MDFA theory. It is named Metaheuristic of Deterministic Swapping (MODS). MODS is a local search strategy that works using a MDFA. Due to this, MODS never take into account unfeasible solutions. Hence, it is not necessary to verify the problem constraints for a new solution found. Lastly, MODS is tested using well know instances of the Bi-Objective Traveling Salesman Problem (TSP) from TSPLIB. Its results were compared with eight Ant Colony inspired algorithms and two Genetic algorithms taken from the specialized literature. The comparison was made using metrics such as Spacing, Generational Distance, Inverse Generational Distance and No-Dominated Generation Vectors. In every case, the MODS results on the metrics were always better and in some of those cases, the superiority was 100%. 展开更多
关键词 METAHEURISTIC deterministic finite automata combinatorial problem multi - objective optimization metrics.
在线阅读 下载PDF
Combinatorial Discovery and Optimization of New Materials
9
作者 Gao Chen, Zhang Xinyi(National Synchrotron Radiation Lab., University of Science and Technology of China)Yan Dongsheng(Shanghai Institute of Ceramics, the CAS) 《Bulletin of the Chinese Academy of Sciences》 2001年第3期162-165,共4页
The concept of the combinatorial discovery and optimization of new materials, and its background,importance, and application, as well as its current status in the world, are briefly reviewed in this paper.
关键词 combinatorial Discovery and optimization of New Materials IMC
在线阅读 下载PDF
A LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION WITH MULTI-CONSTRAINTS AND MULTI-MATERIALS 被引量:9
10
作者 梅玉林 王晓明 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第5期507-518,共12页
Combining the vector level set model,the shape sensitivity analysis theory with the gradient projection technique,a level set method for topology optimization with multi-constraints and multi-materials is presented in... Combining the vector level set model,the shape sensitivity analysis theory with the gradient projection technique,a level set method for topology optimization with multi-constraints and multi-materials is presented in this paper.The method implicitly describes structural material in- terfaces by the vector level set and achieves the optimal shape and topology through the continuous evolution of the material interfaces in the structure.In order to increase computational efficiency for a fast convergence,an appropriate nonlinear speed mapping is established in the tangential space of the active constraints.Meanwhile,in order to overcome the numerical instability of general topology opti- mization problems,the regularization with the mean curvature flow is utilized to maintain the interface smoothness during the optimization process.The numerical examples demonstrate that the approach possesses a good flexibility in handling topological changes and gives an interface representation in a high fidelity,compared with other methods based on explicit boundary variations in the literature. 展开更多
关键词 level set method topology optimization multi-constraintS multi-materials mean curvature flow
在线阅读 下载PDF
The Information Modeling and Intelligent Optimization Method for Logistics Vehicle Routing and Scheduling with Multi-objective and Multi-constraint 被引量:2
11
作者 李蓓智 周亚勤 +1 位作者 兰世海 杨建国 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期455-459,466,共6页
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering... The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint. 展开更多
关键词 modern logistics vehicle scheduling routing optimization MULTI-OBJECTIVE multi-constraint biologic immunity information modeling
在线阅读 下载PDF
A Combinatorial Optimized Knapsack Linear Space for Information Retrieval
12
作者 Varghese S.Chooralil Vinodh P.Vijayan +3 位作者 Biju Paul M.M.Anishin Raj B.Karthikeyan G.Manikandan 《Computers, Materials & Continua》 SCIE EI 2021年第3期2891-2903,共13页
Key information extraction can reduce the dimensional effects while evaluating the correct preferences of users during semantic data analysis.Currently,the classifiers are used to maximize the performance of web-page ... Key information extraction can reduce the dimensional effects while evaluating the correct preferences of users during semantic data analysis.Currently,the classifiers are used to maximize the performance of web-page recommendation in terms of precision and satisfaction.The recent method disambiguates contextual sentiment using conceptual prediction with robustness,however the conceptual prediction method is not able to yield the optimal solution.Context-dependent terms are primarily evaluated by constructing linear space of context features,presuming that if the terms come together in certain consumerrelated reviews,they are semantically reliant.Moreover,the more frequently they coexist,the greater the semantic dependency is.However,the influence of the terms that coexist with each other can be part of the frequency of the terms of their semantic dependence,as they are non-integrative and their individual meaning cannot be derived.In this work,we consider the strength of a term and the influence of a term as a combinatorial optimization,called Combinatorial Optimized Linear Space Knapsack for Information Retrieval(COLSK-IR).The COLSK-IR is considered as a knapsack problem with the total weight being the“term influence”or“influence of term”and the total value being the“term frequency”or“frequency of term”for semantic data analysis.The method,by which the term influence and the term frequency are considered to identify the optimal solutions,is called combinatorial optimizations.Thus,we choose the knapsack for performing an integer programming problem and perform multiple experiments using the linear space through combinatorial optimization to identify the possible optimum solutions.It is evident from our experimental results that the COLSK-IR provides better results than previous methods to detect strongly dependent snippets with minimum ambiguity that are related to inter-sentential context during semantic data analysis. 展开更多
关键词 Key information extraction web-page context-dependent nonintegrative combinatorial optimization KNAPSACK
在线阅读 下载PDF
RM-MOCO:A Fast-Solving Model for Neural Multi-Objective Combinatorial Optimization Based on Retention
13
作者 Huiqing Wei Fei Han +1 位作者 Qing Liu Henry Han 《Complex System Modeling and Simulation》 2025年第2期125-137,共13页
Multiobjective combinatorial optimization(MOCO)problems have a wide range of applications in the real world.Recently,learning-based methods have achieved good results in solving MOCO problems.However,most of these met... Multiobjective combinatorial optimization(MOCO)problems have a wide range of applications in the real world.Recently,learning-based methods have achieved good results in solving MOCO problems.However,most of these methods use attention mechanisms and their variants,which have room for further improvement in the speed of solving MOCO problems.In this paper,following the idea of decomposition strategy and neural combinatorial optimization,a novel fast-solving model for MOCO based on retention is proposed.A brand new calculation of retention is proposed,causal masking and exponential decay are deprecated in retention,so that our model could better solve MOCO problems.During model training,a parallel computation of retention is applied,allowing for fast parallel training.When using the model to solve MOCO problems,a recurrent computation of retention is applied,enabling quicker problem-solving.In order to make our model more practical and flexible,a preference-based retention decoder is proposed,which allows generating approximate Pareto solutions for any trade-off preferences directly.An industry-standard deep reinforcement learning algorithm is used to train RM-MOCO.Experimental results show that,while ensuring the quality of problem solving,the proposed method significantly outperforms some other methods in terms of the speed of solving MOCO problems. 展开更多
关键词 multiobjective combinatorial optimization learning-based method retention model deep reinforcement learning
原文传递
Combinatorial optimization:From deep learning to large language models
14
作者 Peng Tao Luonan Chen 《Science China Mathematics》 2025年第10期2519-2537,共19页
Traditional operational research methods have been the primary means of solving combinatorial optimization problems(COPs)for the past few decades.However,with the rapid increase in the scale of problems in real-world ... Traditional operational research methods have been the primary means of solving combinatorial optimization problems(COPs)for the past few decades.However,with the rapid increase in the scale of problems in real-world scenarios and the demand for online optimization,these methods face persistent challenges including computational complexity and optimality.In recent years,combinatorial optimization methods based on deep learning have rapidly evolved,progressing from tackling solely small-scale problems(e.g.,the traveling salesman problem(TSP)with fewer than 100 cities)to swiftly delivering high-quality solutions for graphs containing up to a million nodes.Particularly,in the last two years,a multitude of studies has surfaced,demonstrating the ability to generalize learned models to large-scale problems with diverse distributions.This capability empowers deep learning-based methods to demonstrate robust competitiveness,even when challenged by professional solvers.Consequently,this review summarizes the methods employed in recent years for solving COPs through deep learning(including prompt learning),scrutinizes the strengths and weaknesses of these methods,and concludes by highlighting potential directions for mitigating these weaknesses. 展开更多
关键词 combinatorial optimization deep learning prompt learning traveling salesman problem chaotic backpropagation chaotic simulated annealing
原文传递
Hybrid Optimization Algorithm Based on Wolf Pack Search and Local Search for Solving Traveling Salesman Problem 被引量:13
15
作者 DONG Ruyi WANG Shengsheng +1 位作者 WANG Guangyao WANG Xinying 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第1期41-47,共7页
Traveling salesman problem(TSP) is one of the typical NP-hard problems, and it has been used in many engineering applications. However, the previous swarm intelligence(SI) based algorithms for TSP cannot coordinate wi... Traveling salesman problem(TSP) is one of the typical NP-hard problems, and it has been used in many engineering applications. However, the previous swarm intelligence(SI) based algorithms for TSP cannot coordinate with the exploration and exploitation abilities and are easily trapped into local optimum. In order to deal with this situation, a new hybrid optimization algorithm based on wolf pack search and local search(WPS-LS)is proposed for TSP. The new method firstly simulates the predatory process of wolf pack from the broad field to a specific place so that it allows for a search through all possible solution spaces and prevents wolf individuals from getting trapped into local optimum. Then, local search operation is used in the algorithm to improve the speed of solving and the accuracy of solution. The test of benchmarks selected from TSPLIB shows that the results obtained by this algorithm are better and closer to the theoretical optimal values with better robustness than those obtained by other methods. 展开更多
关键词 TRAVELING SALESMAN problem(TSP) SWARM intelligence(SI) WOLF PACK search(WPS) combinatorial optimization
原文传递
A Predator-prey Particle Swarm Optimization Approach to Multiple UCAV Air Combat Modeled by Dynamic Game Theory 被引量:29
16
作者 Haibin Duan Pei Li Yaxiang Yu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期11-18,共8页
Dynamic game theory has received considerable attention as a promising technique for formulating control actions for agents in an extended complex enterprise that involves an adversary. At each decision making step, e... Dynamic game theory has received considerable attention as a promising technique for formulating control actions for agents in an extended complex enterprise that involves an adversary. At each decision making step, each side seeks the best scheme with the purpose of maximizing its own objective function. In this paper, a game theoretic approach based on predatorprey particle swarm optimization (PP-PSO) is presented, and the dynamic task assignment problem for multiple unmanned combat aerial vehicles (UCAVs) in military operation is decomposed and modeled as a two-player game at each decision stage. The optimal assignment scheme of each stage is regarded as a mixed Nash equilibrium, which can be solved by using the PP-PSO. The effectiveness of our proposed methodology is verified by a typical example of an air military operation that involves two opposing forces: the attacking force Red and the defense force Blue. © 2014 Chinese Association of Automation. 展开更多
关键词 Aircraft control AIRSHIPS combinatorial optimization Computation theory Decision making Military operations Military vehicles Particle swarm optimization (PSO)
在线阅读 下载PDF
A COMBINAT0RIAL ALGORITHM FOR THE DISCRETE OPTIMIZATION OF STRUCTURES
17
作者 柴山 孙焕纯 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第9期847-856,共10页
The definition of local optimum solution of the discrete optimization is first given.and then a comprehensive combinatorial algorithm is proposed in this paper. Two-leveloptimum method is used in the algorithm. In t... The definition of local optimum solution of the discrete optimization is first given.and then a comprehensive combinatorial algorithm is proposed in this paper. Two-leveloptimum method is used in the algorithm. In the first level optimization, anapproximate local optimum solution X is found by using the heuristic algorithm,relative difference quotient algorithm. with high computational efficiency and highperformance demonstrated by the performance test of random samples. In the secondlevel, a mathematical model of (- 1, 0, 1) programming is established first, and then itis changed into (0, 1) programming model. The local optimum solution X will befrom the (0. 1) programming by using the delimitative and combinatorial algorithm orthe relative difference quotient algorithm. By this algorithm, the local optimumsolution can be obtained certainly, and a method is provnded to judge whether or notthe approximate optimum solution obtained by heuristic algorithm is an optimumsolution. The above comprehensive combinatorial algorithm has higher computationalefficiency. 展开更多
关键词 discrete variables structural optimization combinatorial optimization local optimum solution
在线阅读 下载PDF
A unified pre-training and adaptation framework for combinatorial optimization on graphs 被引量:1
18
作者 Ruibin Zeng Minglong Lei +1 位作者 Lingfeng Niu Lan Cheng 《Science China Mathematics》 SCIE CSCD 2024年第6期1439-1456,共18页
Combinatorial optimization(CO)on graphs is a classic topic that has been extensively studied across many scientific and industrial fields.Recently,solving CO problems on graphs through learning methods has attracted g... Combinatorial optimization(CO)on graphs is a classic topic that has been extensively studied across many scientific and industrial fields.Recently,solving CO problems on graphs through learning methods has attracted great attention.Advanced deep learning methods,e.g.,graph neural networks(GNNs),have been used to effectively assist the process of solving COs.However,current frameworks based on GNNs are mainly designed for certain CO problems,thereby failing to consider their transferable and generalizable abilities among different COs on graphs.Moreover,simply using original graphs to model COs only captures the direct correlations among objects,which does not consider the mathematical logicality and properties of COs.In this paper,we propose a unified pre-training and adaptation framework for COs on graphs with the help of the maximum satisfiability(Max-SAT)problem.We first use Max-SAT to bridge different COs on graphs since they can be converted to Max-SAT problems represented by standard formulas and clauses with logical information.Then we further design a pre-training and domain adaptation framework to extract the transferable and generalizable features so that different COs can benefit from them.In the pre-training stage,Max-SAT instances are generated to initialize the parameters of the model.In the fine-tuning stage,instances from CO and Max-SAT problems are used for adaptation so that the transferable ability can be further improved.Numerical experiments on several datasets show that features extracted by our framework exhibit superior transferability and Max-SAT can boost the ability to solve COs on graphs. 展开更多
关键词 combinatorial optimization graph neural networks domain adaptation maximum satisfiability problem
原文传递
Whale Optimization Algorithm Strategies for Higher Interaction Strength T-Way Testing
19
作者 Ali Abdullah Hassan Salwani Abdullah +1 位作者 Kamal Z.Zamli Rozilawati Razali 《Computers, Materials & Continua》 SCIE EI 2022年第10期2057-2077,共21页
Much of our daily tasks have been computerized by machines and sensors communicating with each other in real-time.There is a reasonable risk that something could go wrong because there are a lot of sensors producing a... Much of our daily tasks have been computerized by machines and sensors communicating with each other in real-time.There is a reasonable risk that something could go wrong because there are a lot of sensors producing a lot of data.Combinatorial testing(CT)can be used in this case to reduce risks and ensure conformance to specifications.Numerous existing metaheuristic-based solutions aim to assist the test suite generation for combinatorial testing,also known as t-way testing(where t indicates the interaction strength),viewed as an optimization problem.Much previous research,while helpful,only investigated a small number of interaction strengths up to t=6.For lightweight applications,research has demonstrated good fault-finding ability.However,the number of interaction strengths considered must be higher in the case of interactions that generate large amounts of data.Due to resource restrictions and the combinatorial explosion challenge,little work has been done to produce high-order interaction strength.In this context,the Whale Optimization Algorithm(WOA)is proposed to generate high-order interaction strength.To ensure that WOA conquers premature convergence and avoids local optima for large search spaces(owing to high-order interaction),three variants of WOA have been developed,namely Structurally Modified Whale Optimization Algorithm(SWOA),Tolerance Whale Optimization Algorithm(TWOA),and Tolerance Structurally Modified Whale Optimization Algorithm(TSWOA).Our experiments show that the third strategy gives the best performance and is comparable to existing state-of-thearts based strategies. 展开更多
关键词 Software testing optimization problem swarm intelligence algorithm combinatorial optimization IOT
在线阅读 下载PDF
Solving Combinatorial Optimization Problems with Deep Neural Network:A Survey 被引量:1
20
作者 Feng Wang Qi He Shicheng Li 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1266-1282,共17页
Combinatorial Optimization Problems(COPs)are a class of optimization problems that are commonly encountered in industrial production and everyday life.Over the last few decades,traditional algorithms,such as exact alg... Combinatorial Optimization Problems(COPs)are a class of optimization problems that are commonly encountered in industrial production and everyday life.Over the last few decades,traditional algorithms,such as exact algorithms,approximate algorithms,and heuristic algorithms,have been proposed to solve COPs.However,as COPs in the real world become more complex,traditional algorithms struggle to generate optimal solutions in a limited amount of time.Since Deep Neural Networks(DNNs)are not heavily dependent on expert knowledge and are adequately flexible for generalization to various COPs,several DNN-based algorithms have been proposed in the last ten years for solving COPs.Herein,we categorize these algorithms into four classes and provide a brief overview of their applications in real-world problems. 展开更多
关键词 combinatorial optimization Problem(COPs) pointer network Transformer Graph Neural Network(GNN) Reinforcement Learning(RL)
原文传递
上一页 1 2 72 下一页 到第
使用帮助 返回顶部