Tree growth is extremely vulnerable to climate change,especially in semi-arid areas.Although the response of stem radial growth(SRG)to climate change has been extensively studied,the intra-annual regulatory mechanisms...Tree growth is extremely vulnerable to climate change,especially in semi-arid areas.Although the response of stem radial growth(SRG)to climate change has been extensively studied,the intra-annual regulatory mechanisms of SRG in trees with different water use strategies and life types remain poorly understood.This study calculated the SRG of four native species in the semi-arid area of the Loess Plateau,China,including two isohydric species(Pinus tabuliformis Carrière and Populus×hopeiensis Hu&Chow)and two anisohydric species(Prunus sibirica L.and Platycladus orientalis(L.)Franco).The results revealed that the intra-annual SRG of all the four tree species exhibited a single peak,and greater SRG was found in anisohydric species.Principal component analysis and structural equation model revealed that atmospheric water,particularly relative humidity,was the main factor affecting the SRG of coniferous species(P.tabuliformis and P.orientalis),whereas the SRG was mainly affected by soil water content in broadleaf species(P.sibirica and P.×hopeiensis).These findings suggested that water use strategies and life types play important roles in SRG and environmental response of trees in semi-arid area.Considering the high climate sensitivity of wood formation in trees,our results highlight the importance of water use strategies and life types of trees in SRG prediction in the context of future climate change in arid and semi-arid areas.展开更多
Water stress effects on stem diameter variations (SDV) were studied in a pot experiment on cotton (Gossypium hirustum L. Meimian99B). Water restriction was imposed at the flowering stage and were compared with a w...Water stress effects on stem diameter variations (SDV) were studied in a pot experiment on cotton (Gossypium hirustum L. Meimian99B). Water restriction was imposed at the flowering stage and were compared with a well-watered control treatment. The volumetric soil water content (0v) and SDV were monitored continuously. The objective was to determine the feasibility of using the parameters derived from stem diameter measurements, including maximum daily stem shrinkage (MDS), maximum daily stem diameter (MXSD), and minimum daily stem diameter (MNSD) as indicators of plant water stress. The different behavior of SDV was founded at different growth stages. At stem-maturing stage, MDS increased and MNSD decreased in deficit-irrigated plants compared with the control plants, therefore, it appeared that MDS and MNSD ccould be used as available indicators of plant water status. At stem growth stage, there were no significant differences in MDS values between treatments but MXSD and MNSD responded sharply to soil water deficits. Thus, for rapidly growing cotton, the course of MXSD or MNSD with time offered a consistent stress indicator. SDV was also closely related to atmospheric factors, solar radiation (Rs) and vapor pressure deficit (VPD) were found to be the predominant factors affecting MDS, followed by the relative humidity (RH), while air temperature (Ta) and wind velocity had the least effect. A good linear relationship was founded (r^2 = 0.921) between MDS and environmental variables (Rs, VPD, RH, and θv), which can be used to establish a reference value for detecting plant water stress based on the MDS patterns.展开更多
Research was conducted to find the relationship between deficit irrigation treatments (DIT) and stems water potential. The study was conducted on 14 years old navel orange trees grafted on sour oranges for the growi...Research was conducted to find the relationship between deficit irrigation treatments (DIT) and stems water potential. The study was conducted on 14 years old navel orange trees grafted on sour oranges for the growing season 2006/2007 at a private farm in the Northern part of Jordan Valley (latitude: 32° 50′ N, longitude: 32° 50′ E, altitude: -254 m). Three levels of irrigation treatments (IT) were applied; namely 100%, 75% and 50% of reference evapotranspiration, representing over irrigation (OIT), full irrigation (FIT), and deficit irrigation (DIT), respectively. A drip irrigation using one irrigation source line with drippers spaced 0.5 m having average discharge of 2.3 L/hr at pressure 1.5 bar, was used. Stem water potential (SWP) at 100% over irrigation treatment (OIT) of navel orange trees had less negative value during the irrigation seasons (-1.57 MPa), whereas the highest negative value (-2.17 MPa) occurred at 50% deficit irrigation treatment (DIT).展开更多
[ Objective] The aim is to research the relationship between bending property and density of wheat stem. [ Method ] The bending properties such as elastic modulus, bending strength, flexural rigidity, moment of inerti...[ Objective] The aim is to research the relationship between bending property and density of wheat stem. [ Method ] The bending properties such as elastic modulus, bending strength, flexural rigidity, moment of inertia, density and water content of the second base internodes of Zhengmai 9023 and Yumai 25 were determined. [ Result] The results show that during filling stage, there are significant differences in the elastic modulus, moment of inertia, flexural rigidity and density among wheat varieties, while there are no significant differences in the bending strength and water content among wheat varieties. The moment of inertia, flexural strength and flexural rigidity have positive relationship to density but negative relationship to water content. [ Conclusion] The study results provide some references for the research on high yield cultivation and lodging resistance of wheat.展开更多
The complex interactions in desert ecosystems between functional types and environmental conditions could be reflected by plant water use patterns. However, the mechanisms underlying the water use patterns as well as ...The complex interactions in desert ecosystems between functional types and environmental conditions could be reflected by plant water use patterns. However, the mechanisms underlying the water use patterns as well as the water sources of Tamarix laxa in the mega-dunes of the Badain Jaran Desert, China, remain unclear. This study investigated the water sources and water use patterns of T. laxa using the stable oxygen isotope method. The δ18O values of xylem water, soil water in different layers(0–200 cm), rainwater, snow water, lake water, atmospheric water vapor, condensate water, and groundwater were measured. The sources of water used by T. laxa were determined using the IsoSource model. The results indicate that T. laxa mainly relies on soil water. At the beginning of the growing season(in May), the species is primarily dependent on water from the middle soil layer(60–120 cm) and deep soil layer(120–200 cm). However, it mainly absorbs water from the shallow soil layer(0–60 cm) as the rainy season commences. In September, water use of T. laxa reverts to the deep soil layer(120–200 cm). The water use patterns of T. laxa are closely linked with heavy precipitation events and soil water content. These findings reveal the drought resistance mechanisms of T. laxa and are of significance for screening species for ecological restoration.展开更多
The effect of water deficit on stem reserve mobilization and sink activity in wheat (Triticum aestivum L.) cultivars, viz., C306 (drought tolerant) and PBW343 (drought sensitive) was studied. Drought was maintained in...The effect of water deficit on stem reserve mobilization and sink activity in wheat (Triticum aestivum L.) cultivars, viz., C306 (drought tolerant) and PBW343 (drought sensitive) was studied. Drought was maintained in pot raised plants by withholding irrigation at 95 days after sowing (DAS), i.e. just five days before the initiation of anthesis. Drought induced a significant reduction in mean biomass of all the internodes of sensitive cultivar as compared to those of tolerant one. Mobilized dry matter and mobilization efficiency were observed to be higher in the internodes of tolerant cultivar, both under control and stress conditions, which resulted in enhanced translocation of stem reserves to the grains. Water soluble carbohydrates (WSC), which mainly occur as fructans, were observed to be higher in the internodes of tolerant cultivar than those of sensitive one. When drought was applied, fructans were mobilized more effectively from the internodes of tolerant cultivar. A significantly higher sucrose synthase activity in the grains of tolerant cultivar, under drought conditions, increased the sink strength by unloading the assimilates in the sink, thereby increasing further mobilization of assimilates to the grains. Grains of sensitive cultivar attained maturity much earlier as compared to the tolerant one, both under control and stress conditions. The longer duration of grain maturation in tolerant cultivar supported enhanced mobilization of stem reserves, thus restricting heavy decrease in grain yield, under stress conditions, as compared to the sensitive cultivar. It may, therefore, be concluded that certain characteristics viz., enhanced capability of fructan storage, higher mobilization efficiency, stronger sink activity and longer duration of grain maturation might help the drought tolerant cultivar in coping the stress展开更多
Relationships between plant water status and gas exchange parameters at increasing levels of water stress were determined in Algerie loquats which grown in 50 I pots. Changes in soil water content and stem water poten...Relationships between plant water status and gas exchange parameters at increasing levels of water stress were determined in Algerie loquats which grown in 50 I pots. Changes in soil water content and stem water potential and their effects on stomatal conductance (Gs ) and net photosynthesis (Pn) rate were followed in control plants and in plants without irrigation until the latter reached near permanent wilting point and some leaf abscission took place. Then, the irrigation was restarted and the comparison repeated. Soil water content and stem water potential gradually diminished in response to drought reaching the minimum values of 0.9 mm and -5.0 MPa, respectively, 9 days after watering suspension. Compromised plant water status had drastic effects on Gs values that dropped by 97% in the last day of the drought period. Pn was diminished by 80% at the end of the drought period. The increasing levels of water stress did not cause a steady increase in leaf temperature in non-irrigated plants. Non-irrigated plants wilted and lost some leaves due to the severity of the water stress. However, all non-irrigated plants survived and reached similar Pn than control plants just a week after the irrigation was restarted, confirming drought tolerance of loquat and suggesting that photosynthesis machinery remained intact.展开更多
Hydrogen is considered as the promising energy carrier to substitute traditional fossil fuel,due to its cleanliness,renewability and high energy density.Water electrolysis is a simple and eonvenient technology for hyd...Hydrogen is considered as the promising energy carrier to substitute traditional fossil fuel,due to its cleanliness,renewability and high energy density.Water electrolysis is a simple and eonvenient technology for hydrogen production.The efficiency of water electrolysis for hydrogen production is limited by the electrocatalytic performances on hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The exorbitant Pt-and Ir-/Ru-based electrocatalysts as optimal HER and OER electrocatalysts,respectively,restrict water electrolysis development.Recently,non-precious metal-based high-entropy electrocatalysts have exhibited excellent electrocatalytic activities and long-term stabilities for water electrolysis,as promising precious cataly st candidates.Therefore,the construction of the high-entropy electroc atalysts is vital to water electrolysis industry.Electrodeposition technology is an efficient method for the preparation of high-entropy electrocatalysts due to its simple,fast,energy-saving and environmental-friendly advantages.Multi-component co-precipitation facilely occurs during the electroredox in electrodeposition processes.High-entropy alloys,oxides,(oxy)hydroxides,phosphides and phosphorus sulfide oxides have been successfully prepared by galvanostatic,potentiostatic electrodeposition,cyclic voltammetry,pulse,nanodroplet-mediated and cathodic plasma electrodeposition techniques.Hence,introduction of the development of high-entropy electrocatalysts synthesized by electrodeposition technology is significant to researchers and industries.Challenges and outlooks are also concluded to boost the industrial application of electrodeposition in water electrolysis and other energy conversion areas.展开更多
BACKGROUND: This study was undertaken to determine the effect of mesenchymal stem cells (MSCs) engraftment on vascular endothelial cell growth factor (VEGF) in lung tissue, plasma and extravascular lung water at...BACKGROUND: This study was undertaken to determine the effect of mesenchymal stem cells (MSCs) engraftment on vascular endothelial cell growth factor (VEGF) in lung tissue, plasma and extravascular lung water at early stage of smoke inhalation injury.METHODS: A rabbit smoke inhalation injury model was established using a home-made smoke inhalation injury generator, and rabbits were divided into two groups randomly: a control group (S group, n=32) and a MSCs treatment group (M group, n=32). 10 ml PBS was injected via the ear marginal vein immediately at injury into the S group. Third generation MSCs with a concentration of 1×107/10 ml PBS were injected via the ear marginal vein immediately at injury into the M group. VEGF in peripheral blood and lung tissue were measured at 0 (baseline), 2, 4 and 6 hours after injection respectively and analyzed. The right lungs of rabbits were taken to measure lung water mass fraction.RESULTS: In the lung tissue, VEGF decreased gradually in the S group (P〈0.05) and signi? cantly decreased in the M group (P〈0.05), but it increased more signi? cantly than the values at the corresponding time points (P〈0.05). In peripheral blood, VEGF increased gradually in the S group (P〈0.05) and markedly increased in the M group (P〈0.05), but it decreased more signi? cantly than the values at corresponding time points (P〈0.05).CONCLUSION: MSCs engraftment to smoke inhalation injury could increase VEGF in lung tissue, decrease VEGF in plasma and reduce extravascular lung water, indicating its protective effect on smoke inhalation injury.展开更多
One reason for the poor therapeutic effects of stem cell transplantation in traumatic brain injury is that exogenous neural stem cells cannot effectively migrate to the local injury site,resulting in poor adhesion and...One reason for the poor therapeutic effects of stem cell transplantation in traumatic brain injury is that exogenous neural stem cells cannot effectively migrate to the local injury site,resulting in poor adhesion and proliferation of neural stem cells at the injured area.To enhance the targeted delivery of exogenous stem cells to the injury site,cell therapy combined with neural tissue engineering technology is expected to become a new strategy for treating traumatic brain injury.Collagen/heparan sulfate porous scaffolds,prepared using a freeze-drying method,have stable physical and chemical properties.These scaffolds also have good cell biocompatibility because of their high porosity,which is suitable for the proliferation and migration of neural stem cells.In the present study,collagen/heparan sulfate porous scaffolds loaded with neural stem cells were used to treat a rat model of traumatic brain injury,which was established using the controlled cortical impact method.At 2 months after the implantation of collagen/heparan sulfate porous scaffolds loaded with neural stem cells,there was significantly improved regeneration of neurons,nerve fibers,synapses,and myelin sheaths in the injured brain tissue.Furthermore,brain edema and cell apoptosis were significantly reduced,and rat motor and cognitive functions were markedly recovered.These findings suggest that the novel collagen/heparan sulfate porous scaffold loaded with neural stem cells can improve neurological function in a rat model of traumatic brain injury.This study was approved by the Institutional Ethics Committee of Characteristic Medical Center of Chinese People’s Armed Police Force,China(approval No.2017-0007.2)on February 10,2019.展开更多
Haloxylon ammodendron, with its tolerance of drought, high temperature, and salt alkali conditions, is one of the main sand-fixing plant species in the oasis-desert transition zone in China. This study used the TDP30(...Haloxylon ammodendron, with its tolerance of drought, high temperature, and salt alkali conditions, is one of the main sand-fixing plant species in the oasis-desert transition zone in China. This study used the TDP30(where TDP is the thermal dissipation probe) to measure hourly and daily variations in the stem sap flow velocity of H. ammodendron at three age-classes(10, 15, and 20 years old,which were denoted as H10, H15, and H20, respectively) in the Minqin oasis-desert transition zone,China, from May through October 2020. By simultaneously monitoring temperature, relative humidity,photosynthetically active radiation, wind speed, net radiation, rainfall, and soil moisture in this region, we comprehensively investigated the stem sap flow velocity of different-aged H. ammodendron plants(H10,H15, and H20) and revealed its response to physical factors. The results showed that, on sunny days, the hourly variation curves of the stem sap flow velocity of H. ammodendron plants at the three age-classes were mainly unimodal. In addition, the stem sap flow velocity of H. ammodendron plants decreased significantly from September to October, which also delayed its peak time of hourly variation. On rainy days, the stem sap flow velocity of H. ammodendron plants was multimodal and significantly lower than that on sunny days.Average daily water consumption of H. ammodendron plants at H10, H15, and H20 was 1.98, 2.82, and 1.91kg/d, respectively. Temperature was the key factor affecting the stem sap flow velocity of H. ammodendron at all age-classes. Net radiation was the critical factor influencing the stem sap flow velocity of H.ammodendron at H10 and H15;however, for that at H20, it was vapor pressure deficit. The stem sap flow velocity of H. ammodendron was highly significantly correlated with soil moisture at the soil depths of 50and 100 cm, and the correlation was strengthened with increasing stand age. Altogether, our results revealed the dynamic changes of the stem sap flow velocity in different-aged H. ammodendron forest stands and its response mechanism to local physical factors, which provided a theoretical basis for the construction of new protective forests as well as the restoration and protection of existing ones in this region and other similar arid regions in the world.展开更多
It has become general for surface waters being polluted by micro organic compounds. In order to know the current pollution situation and the properties of micro organic compounds in the Changjiang River, a test was pe...It has become general for surface waters being polluted by micro organic compounds. In order to know the current pollution situation and the properties of micro organic compounds in the Changjiang River, a test was performed on micro organic compounds in the water, bottom material and fish bodies which were sampled from major city river reaches of the Changjiang River. Based on the test result, researchers described and analyzed the sorts, concentration level and distribution features of micro organic compounds. A comprehensive evaluation was conducted by adopting the method of MEG (Multimedia Environmental Goals). The study indicated that ① the water body of major city river reaches of the Changjiang River has been generally polluted. In the test, totally 12 types with 308 kinds of organic compounds were detected. The main pollutants were paraffins, PAHs and lipids; and ② micro organic pollutant content in fish bodies was generally higher than that in bottom material which is in turn higher than that in water; and ③ pollution is relatively severe in the river reaches of mid-to-large comprehensive industrial cities with fairly great TAS (Total Ambient Severity) of public health and ecological system.展开更多
Interfacial solar-driven evaporation technique is an environmental friendly and cost-effective advanced approach for water purification using solar energy.Free energy sources are effectively utilized using the structu...Interfacial solar-driven evaporation technique is an environmental friendly and cost-effective advanced approach for water purification using solar energy.Free energy sources are effectively utilized using the structural design of evaporators and functional materials.In this work,we have fabricated a solar-driven interfacial evaporation device with Banana Pseudo Stem(BPS)and a photothermal layer made up of PVA PDMS Carbon(PPC)is attached to it.High evaporation rate of 2.03 kg m^(−2) h^(−1) is achieved by the system under 1 sun illumination.Heat localization on interfacial surface,reflectance of photothermal layer,presence of micro-fluidic channels in BPS were studied using IR imaging,UV-DRS and SEM characterization techniques,respectively.Effective localization of interfacial temperature around 53℃ and very low reflectance of photothermal layer substantiates high photothermal conversion efficiency of the device.The complete purification of water containing high concentration of Rhodamine-B dye using BPS is a novel and simple approach for water purification.This is an eco-friendly,cost-efficient novel approach in fabrication of interfacial solar-driven evaporation system with high evaporation rate for purification of water containing high concentration of organic dye.展开更多
Pesticides are a well-known family of chemicals that have contaminated water systems globally. Four common subfamilies of pesticides include organochlorines, organophosphates, pyrethroids, and carbamate insecticides w...Pesticides are a well-known family of chemicals that have contaminated water systems globally. Four common subfamilies of pesticides include organochlorines, organophosphates, pyrethroids, and carbamate insecticides which have been shown to adversely affect the human nervous system. Studies have shown a link between pesticide exposure and decreased viability, proliferation, migration, and differentiation of murine neural stem cells. Besides human exposure directly through water systems, additional factors such as pesticide bioaccumulation, biomagnification and potential synergism due to co-exposure to other environmental contaminants must be considered. A possible avenue to investigate the molecular mechanisms and biomolecules impacted by the various classes of pesticides includes the field of-omics. Discovery of the precise molecular mechanisms behind pesticidemediated neurodegenerative disorders may facilitate development of targeted therapeutics.Likewise, discovery of pesticide biodegradation pathways may enable novel approaches for water system bioremediation using genetically engineered microorganisms. In this minireview, we discuss recently established harmful impacts of various categories of pesticides on the nervous system and the application of-omics field for discovery, validation, and mitigation of pesticide neurotoxicity.展开更多
Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×...Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×Poncirus Trifoliata L. Osb.). The trees were subjected to two irrigation treatments: (1) sustainable deficit irrigation (SDI) established with water supplied at 60% of the crop evapotranspiration (ETc) and (2) low frequency deficit irrigation (LFDI) irrigated according to the plant water status. In addition, a treatment irrigated at 100% of ETc was included as a control (C). Midday stem-water potential (ψUstem), stomatal conductance (gs), and micrometric trunk diameter fluctuations were measured during the maximum evapotranspirative demand period to evaluate the plant-water status, and establish the main relationships among them. The seasonal pattern of the studied variables had a behavior consistent with the contributions made by the volumes of applied irrigation water. Especially significant close relationships of ψstem with gs, and with the maximum daily shrinkage (MDS) were found. The lowest ψstem and gs values were registered in the treatments with lowest irrigations levels (SDI and LFDI), being the MDS was significative higher than in the C treatment. The LFDI showed an oscillating behavior in these parameters, which was on line with the supplied irrigation restrictions cycles. Thus, according to the results of the present experiment the physiological stress indexes based in MDS or ψstem allow establishing different irrigation restriction cycles, encouraging important water saving without significant impact on yield and the fruit quality parameters.展开更多
基金financial support from the National Natural Science Foundation of China(32125028,32192431)the Science and Technology Major Project of Gansu Province,China(23ZDKA0006).
文摘Tree growth is extremely vulnerable to climate change,especially in semi-arid areas.Although the response of stem radial growth(SRG)to climate change has been extensively studied,the intra-annual regulatory mechanisms of SRG in trees with different water use strategies and life types remain poorly understood.This study calculated the SRG of four native species in the semi-arid area of the Loess Plateau,China,including two isohydric species(Pinus tabuliformis Carrière and Populus×hopeiensis Hu&Chow)and two anisohydric species(Prunus sibirica L.and Platycladus orientalis(L.)Franco).The results revealed that the intra-annual SRG of all the four tree species exhibited a single peak,and greater SRG was found in anisohydric species.Principal component analysis and structural equation model revealed that atmospheric water,particularly relative humidity,was the main factor affecting the SRG of coniferous species(P.tabuliformis and P.orientalis),whereas the SRG was mainly affected by soil water content in broadleaf species(P.sibirica and P.×hopeiensis).These findings suggested that water use strategies and life types play important roles in SRG and environmental response of trees in semi-arid area.Considering the high climate sensitivity of wood formation in trees,our results highlight the importance of water use strategies and life types of trees in SRG prediction in the context of future climate change in arid and semi-arid areas.
文摘Water stress effects on stem diameter variations (SDV) were studied in a pot experiment on cotton (Gossypium hirustum L. Meimian99B). Water restriction was imposed at the flowering stage and were compared with a well-watered control treatment. The volumetric soil water content (0v) and SDV were monitored continuously. The objective was to determine the feasibility of using the parameters derived from stem diameter measurements, including maximum daily stem shrinkage (MDS), maximum daily stem diameter (MXSD), and minimum daily stem diameter (MNSD) as indicators of plant water stress. The different behavior of SDV was founded at different growth stages. At stem-maturing stage, MDS increased and MNSD decreased in deficit-irrigated plants compared with the control plants, therefore, it appeared that MDS and MNSD ccould be used as available indicators of plant water status. At stem growth stage, there were no significant differences in MDS values between treatments but MXSD and MNSD responded sharply to soil water deficits. Thus, for rapidly growing cotton, the course of MXSD or MNSD with time offered a consistent stress indicator. SDV was also closely related to atmospheric factors, solar radiation (Rs) and vapor pressure deficit (VPD) were found to be the predominant factors affecting MDS, followed by the relative humidity (RH), while air temperature (Ta) and wind velocity had the least effect. A good linear relationship was founded (r^2 = 0.921) between MDS and environmental variables (Rs, VPD, RH, and θv), which can be used to establish a reference value for detecting plant water stress based on the MDS patterns.
文摘Research was conducted to find the relationship between deficit irrigation treatments (DIT) and stems water potential. The study was conducted on 14 years old navel orange trees grafted on sour oranges for the growing season 2006/2007 at a private farm in the Northern part of Jordan Valley (latitude: 32° 50′ N, longitude: 32° 50′ E, altitude: -254 m). Three levels of irrigation treatments (IT) were applied; namely 100%, 75% and 50% of reference evapotranspiration, representing over irrigation (OIT), full irrigation (FIT), and deficit irrigation (DIT), respectively. A drip irrigation using one irrigation source line with drippers spaced 0.5 m having average discharge of 2.3 L/hr at pressure 1.5 bar, was used. Stem water potential (SWP) at 100% over irrigation treatment (OIT) of navel orange trees had less negative value during the irrigation seasons (-1.57 MPa), whereas the highest negative value (-2.17 MPa) occurred at 50% deficit irrigation treatment (DIT).
基金Supported by Natural Foundation Program of Henan Province(2009B210016)~~
文摘[ Objective] The aim is to research the relationship between bending property and density of wheat stem. [ Method ] The bending properties such as elastic modulus, bending strength, flexural rigidity, moment of inertia, density and water content of the second base internodes of Zhengmai 9023 and Yumai 25 were determined. [ Result] The results show that during filling stage, there are significant differences in the elastic modulus, moment of inertia, flexural rigidity and density among wheat varieties, while there are no significant differences in the bending strength and water content among wheat varieties. The moment of inertia, flexural strength and flexural rigidity have positive relationship to density but negative relationship to water content. [ Conclusion] The study results provide some references for the research on high yield cultivation and lodging resistance of wheat.
基金supported by the National Natural Science Foundation of China (41530745, 41371114, 41361004)the State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating,Gansu Desert Control Research Institute for providing support for sample testing
文摘The complex interactions in desert ecosystems between functional types and environmental conditions could be reflected by plant water use patterns. However, the mechanisms underlying the water use patterns as well as the water sources of Tamarix laxa in the mega-dunes of the Badain Jaran Desert, China, remain unclear. This study investigated the water sources and water use patterns of T. laxa using the stable oxygen isotope method. The δ18O values of xylem water, soil water in different layers(0–200 cm), rainwater, snow water, lake water, atmospheric water vapor, condensate water, and groundwater were measured. The sources of water used by T. laxa were determined using the IsoSource model. The results indicate that T. laxa mainly relies on soil water. At the beginning of the growing season(in May), the species is primarily dependent on water from the middle soil layer(60–120 cm) and deep soil layer(120–200 cm). However, it mainly absorbs water from the shallow soil layer(0–60 cm) as the rainy season commences. In September, water use of T. laxa reverts to the deep soil layer(120–200 cm). The water use patterns of T. laxa are closely linked with heavy precipitation events and soil water content. These findings reveal the drought resistance mechanisms of T. laxa and are of significance for screening species for ecological restoration.
文摘The effect of water deficit on stem reserve mobilization and sink activity in wheat (Triticum aestivum L.) cultivars, viz., C306 (drought tolerant) and PBW343 (drought sensitive) was studied. Drought was maintained in pot raised plants by withholding irrigation at 95 days after sowing (DAS), i.e. just five days before the initiation of anthesis. Drought induced a significant reduction in mean biomass of all the internodes of sensitive cultivar as compared to those of tolerant one. Mobilized dry matter and mobilization efficiency were observed to be higher in the internodes of tolerant cultivar, both under control and stress conditions, which resulted in enhanced translocation of stem reserves to the grains. Water soluble carbohydrates (WSC), which mainly occur as fructans, were observed to be higher in the internodes of tolerant cultivar than those of sensitive one. When drought was applied, fructans were mobilized more effectively from the internodes of tolerant cultivar. A significantly higher sucrose synthase activity in the grains of tolerant cultivar, under drought conditions, increased the sink strength by unloading the assimilates in the sink, thereby increasing further mobilization of assimilates to the grains. Grains of sensitive cultivar attained maturity much earlier as compared to the tolerant one, both under control and stress conditions. The longer duration of grain maturation in tolerant cultivar supported enhanced mobilization of stem reserves, thus restricting heavy decrease in grain yield, under stress conditions, as compared to the sensitive cultivar. It may, therefore, be concluded that certain characteristics viz., enhanced capability of fructan storage, higher mobilization efficiency, stronger sink activity and longer duration of grain maturation might help the drought tolerant cultivar in coping the stress
基金partially financed by the Junta de Andalucía with European Union(FEDER)funds(AGR-03183)
文摘Relationships between plant water status and gas exchange parameters at increasing levels of water stress were determined in Algerie loquats which grown in 50 I pots. Changes in soil water content and stem water potential and their effects on stomatal conductance (Gs ) and net photosynthesis (Pn) rate were followed in control plants and in plants without irrigation until the latter reached near permanent wilting point and some leaf abscission took place. Then, the irrigation was restarted and the comparison repeated. Soil water content and stem water potential gradually diminished in response to drought reaching the minimum values of 0.9 mm and -5.0 MPa, respectively, 9 days after watering suspension. Compromised plant water status had drastic effects on Gs values that dropped by 97% in the last day of the drought period. Pn was diminished by 80% at the end of the drought period. The increasing levels of water stress did not cause a steady increase in leaf temperature in non-irrigated plants. Non-irrigated plants wilted and lost some leaves due to the severity of the water stress. However, all non-irrigated plants survived and reached similar Pn than control plants just a week after the irrigation was restarted, confirming drought tolerance of loquat and suggesting that photosynthesis machinery remained intact.
基金financially supported by the Natural Science Foundation of Hebei Province(No.B2021208030)College Students Innovation Training Program(Nos.202206224 and S2021113409001)。
文摘Hydrogen is considered as the promising energy carrier to substitute traditional fossil fuel,due to its cleanliness,renewability and high energy density.Water electrolysis is a simple and eonvenient technology for hydrogen production.The efficiency of water electrolysis for hydrogen production is limited by the electrocatalytic performances on hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The exorbitant Pt-and Ir-/Ru-based electrocatalysts as optimal HER and OER electrocatalysts,respectively,restrict water electrolysis development.Recently,non-precious metal-based high-entropy electrocatalysts have exhibited excellent electrocatalytic activities and long-term stabilities for water electrolysis,as promising precious cataly st candidates.Therefore,the construction of the high-entropy electroc atalysts is vital to water electrolysis industry.Electrodeposition technology is an efficient method for the preparation of high-entropy electrocatalysts due to its simple,fast,energy-saving and environmental-friendly advantages.Multi-component co-precipitation facilely occurs during the electroredox in electrodeposition processes.High-entropy alloys,oxides,(oxy)hydroxides,phosphides and phosphorus sulfide oxides have been successfully prepared by galvanostatic,potentiostatic electrodeposition,cyclic voltammetry,pulse,nanodroplet-mediated and cathodic plasma electrodeposition techniques.Hence,introduction of the development of high-entropy electrocatalysts synthesized by electrodeposition technology is significant to researchers and industries.Challenges and outlooks are also concluded to boost the industrial application of electrodeposition in water electrolysis and other energy conversion areas.
文摘BACKGROUND: This study was undertaken to determine the effect of mesenchymal stem cells (MSCs) engraftment on vascular endothelial cell growth factor (VEGF) in lung tissue, plasma and extravascular lung water at early stage of smoke inhalation injury.METHODS: A rabbit smoke inhalation injury model was established using a home-made smoke inhalation injury generator, and rabbits were divided into two groups randomly: a control group (S group, n=32) and a MSCs treatment group (M group, n=32). 10 ml PBS was injected via the ear marginal vein immediately at injury into the S group. Third generation MSCs with a concentration of 1×107/10 ml PBS were injected via the ear marginal vein immediately at injury into the M group. VEGF in peripheral blood and lung tissue were measured at 0 (baseline), 2, 4 and 6 hours after injection respectively and analyzed. The right lungs of rabbits were taken to measure lung water mass fraction.RESULTS: In the lung tissue, VEGF decreased gradually in the S group (P〈0.05) and signi? cantly decreased in the M group (P〈0.05), but it increased more signi? cantly than the values at the corresponding time points (P〈0.05). In peripheral blood, VEGF increased gradually in the S group (P〈0.05) and markedly increased in the M group (P〈0.05), but it decreased more signi? cantly than the values at corresponding time points (P〈0.05).CONCLUSION: MSCs engraftment to smoke inhalation injury could increase VEGF in lung tissue, decrease VEGF in plasma and reduce extravascular lung water, indicating its protective effect on smoke inhalation injury.
基金supported by the National Natural Science Foundation of China,Nos.11672332,11932013(both to XYC)the National Key Research and Development Plan of China,No.2016YFC1101500(to HTS)the Key Science and Technology Support Foundation of Tianjin of China,No.17YFZCSY00620(to HTS).
文摘One reason for the poor therapeutic effects of stem cell transplantation in traumatic brain injury is that exogenous neural stem cells cannot effectively migrate to the local injury site,resulting in poor adhesion and proliferation of neural stem cells at the injured area.To enhance the targeted delivery of exogenous stem cells to the injury site,cell therapy combined with neural tissue engineering technology is expected to become a new strategy for treating traumatic brain injury.Collagen/heparan sulfate porous scaffolds,prepared using a freeze-drying method,have stable physical and chemical properties.These scaffolds also have good cell biocompatibility because of their high porosity,which is suitable for the proliferation and migration of neural stem cells.In the present study,collagen/heparan sulfate porous scaffolds loaded with neural stem cells were used to treat a rat model of traumatic brain injury,which was established using the controlled cortical impact method.At 2 months after the implantation of collagen/heparan sulfate porous scaffolds loaded with neural stem cells,there was significantly improved regeneration of neurons,nerve fibers,synapses,and myelin sheaths in the injured brain tissue.Furthermore,brain edema and cell apoptosis were significantly reduced,and rat motor and cognitive functions were markedly recovered.These findings suggest that the novel collagen/heparan sulfate porous scaffold loaded with neural stem cells can improve neurological function in a rat model of traumatic brain injury.This study was approved by the Institutional Ethics Committee of Characteristic Medical Center of Chinese People’s Armed Police Force,China(approval No.2017-0007.2)on February 10,2019.
基金supported by the National Natural Science Foundation of China Subsidization Project (32260425, 31860238)the Natural Science Foundation of Gansu Province, China (32060246, 21JR7RA733)。
文摘Haloxylon ammodendron, with its tolerance of drought, high temperature, and salt alkali conditions, is one of the main sand-fixing plant species in the oasis-desert transition zone in China. This study used the TDP30(where TDP is the thermal dissipation probe) to measure hourly and daily variations in the stem sap flow velocity of H. ammodendron at three age-classes(10, 15, and 20 years old,which were denoted as H10, H15, and H20, respectively) in the Minqin oasis-desert transition zone,China, from May through October 2020. By simultaneously monitoring temperature, relative humidity,photosynthetically active radiation, wind speed, net radiation, rainfall, and soil moisture in this region, we comprehensively investigated the stem sap flow velocity of different-aged H. ammodendron plants(H10,H15, and H20) and revealed its response to physical factors. The results showed that, on sunny days, the hourly variation curves of the stem sap flow velocity of H. ammodendron plants at the three age-classes were mainly unimodal. In addition, the stem sap flow velocity of H. ammodendron plants decreased significantly from September to October, which also delayed its peak time of hourly variation. On rainy days, the stem sap flow velocity of H. ammodendron plants was multimodal and significantly lower than that on sunny days.Average daily water consumption of H. ammodendron plants at H10, H15, and H20 was 1.98, 2.82, and 1.91kg/d, respectively. Temperature was the key factor affecting the stem sap flow velocity of H. ammodendron at all age-classes. Net radiation was the critical factor influencing the stem sap flow velocity of H.ammodendron at H10 and H15;however, for that at H20, it was vapor pressure deficit. The stem sap flow velocity of H. ammodendron was highly significantly correlated with soil moisture at the soil depths of 50and 100 cm, and the correlation was strengthened with increasing stand age. Altogether, our results revealed the dynamic changes of the stem sap flow velocity in different-aged H. ammodendron forest stands and its response mechanism to local physical factors, which provided a theoretical basis for the construction of new protective forests as well as the restoration and protection of existing ones in this region and other similar arid regions in the world.
文摘It has become general for surface waters being polluted by micro organic compounds. In order to know the current pollution situation and the properties of micro organic compounds in the Changjiang River, a test was performed on micro organic compounds in the water, bottom material and fish bodies which were sampled from major city river reaches of the Changjiang River. Based on the test result, researchers described and analyzed the sorts, concentration level and distribution features of micro organic compounds. A comprehensive evaluation was conducted by adopting the method of MEG (Multimedia Environmental Goals). The study indicated that ① the water body of major city river reaches of the Changjiang River has been generally polluted. In the test, totally 12 types with 308 kinds of organic compounds were detected. The main pollutants were paraffins, PAHs and lipids; and ② micro organic pollutant content in fish bodies was generally higher than that in bottom material which is in turn higher than that in water; and ③ pollution is relatively severe in the river reaches of mid-to-large comprehensive industrial cities with fairly great TAS (Total Ambient Severity) of public health and ecological system.
基金The work was supported by Department of Science and Technology,Government of India(Grant No.-“DST/TMD/CERI/RES/2020/52”)authors acknowledge the IR camera facility from the project(DST/TWF Divi-sion/AFW for EM/C/2017/121)by DST,India.
文摘Interfacial solar-driven evaporation technique is an environmental friendly and cost-effective advanced approach for water purification using solar energy.Free energy sources are effectively utilized using the structural design of evaporators and functional materials.In this work,we have fabricated a solar-driven interfacial evaporation device with Banana Pseudo Stem(BPS)and a photothermal layer made up of PVA PDMS Carbon(PPC)is attached to it.High evaporation rate of 2.03 kg m^(−2) h^(−1) is achieved by the system under 1 sun illumination.Heat localization on interfacial surface,reflectance of photothermal layer,presence of micro-fluidic channels in BPS were studied using IR imaging,UV-DRS and SEM characterization techniques,respectively.Effective localization of interfacial temperature around 53℃ and very low reflectance of photothermal layer substantiates high photothermal conversion efficiency of the device.The complete purification of water containing high concentration of Rhodamine-B dye using BPS is a novel and simple approach for water purification.This is an eco-friendly,cost-efficient novel approach in fabrication of interfacial solar-driven evaporation system with high evaporation rate for purification of water containing high concentration of organic dye.
文摘Pesticides are a well-known family of chemicals that have contaminated water systems globally. Four common subfamilies of pesticides include organochlorines, organophosphates, pyrethroids, and carbamate insecticides which have been shown to adversely affect the human nervous system. Studies have shown a link between pesticide exposure and decreased viability, proliferation, migration, and differentiation of murine neural stem cells. Besides human exposure directly through water systems, additional factors such as pesticide bioaccumulation, biomagnification and potential synergism due to co-exposure to other environmental contaminants must be considered. A possible avenue to investigate the molecular mechanisms and biomolecules impacted by the various classes of pesticides includes the field of-omics. Discovery of the precise molecular mechanisms behind pesticidemediated neurodegenerative disorders may facilitate development of targeted therapeutics.Likewise, discovery of pesticide biodegradation pathways may enable novel approaches for water system bioremediation using genetically engineered microorganisms. In this minireview, we discuss recently established harmful impacts of various categories of pesticides on the nervous system and the application of-omics field for discovery, validation, and mitigation of pesticide neurotoxicity.
文摘Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×Poncirus Trifoliata L. Osb.). The trees were subjected to two irrigation treatments: (1) sustainable deficit irrigation (SDI) established with water supplied at 60% of the crop evapotranspiration (ETc) and (2) low frequency deficit irrigation (LFDI) irrigated according to the plant water status. In addition, a treatment irrigated at 100% of ETc was included as a control (C). Midday stem-water potential (ψUstem), stomatal conductance (gs), and micrometric trunk diameter fluctuations were measured during the maximum evapotranspirative demand period to evaluate the plant-water status, and establish the main relationships among them. The seasonal pattern of the studied variables had a behavior consistent with the contributions made by the volumes of applied irrigation water. Especially significant close relationships of ψstem with gs, and with the maximum daily shrinkage (MDS) were found. The lowest ψstem and gs values were registered in the treatments with lowest irrigations levels (SDI and LFDI), being the MDS was significative higher than in the C treatment. The LFDI showed an oscillating behavior in these parameters, which was on line with the supplied irrigation restrictions cycles. Thus, according to the results of the present experiment the physiological stress indexes based in MDS or ψstem allow establishing different irrigation restriction cycles, encouraging important water saving without significant impact on yield and the fruit quality parameters.