期刊文献+
共找到20,229篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-component decompositions,linear superpositions,and new nonlinear integrable coupled KdV-type systems
1
作者 Xiazhi Hao S Y Lou 《Communications in Theoretical Physics》 2025年第2期1-12,共12页
In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrabilit... In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrability.By focusing on single-component decompositions within the potential BKP hierarchy,it has been observed that specific linear superpositions of decomposition solutions remain consistent with the underlying equations.Moreover,through the implementation of multi-component decompositions within the potential BKP hierarchy,successful endeavors have been undertaken to formulate linear superposition solutions and novel coupled Kd V-type systems that resist decoupling via alterations in dependent variables. 展开更多
关键词 integrable system single-component decomposition multi-component decomposition linear superposition integrable coupled KdV-type system
原文传递
A facile high-efficiency preparation strategy for Al-containing multi-component boride microcrystals with superior comprehensive performance
2
作者 Yong Fan Jinfeng Nie +7 位作者 Zhigang Ding Yujing Zhang Xiang Chen Wei Liu Sen Yang Sida Liu Xiangfa Liu Yonghao Zhao 《Journal of Materials Science & Technology》 2025年第1期190-203,共14页
Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current method... Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current methods,however,are complicated and time-consuming,the mass production remains a chal-lenge.Herein,we proposed a new high-efficiency strategy for synthesis of MMB_(2)using molten aluminum as the medium for the first time.The prepared Al-containing multi-component borides(TiZrHfNbTa)B_(2)microcrystals had a homogeneous composition with a hexagonal AlB_(2)structure and ultra-high hardness value of∼35.3 GPa,which was much higher than data reported in the literature and the rule of mix-ture estimations.Furthermore,combined with the First-principles calculation results,we found that the Poisson’s ratio(v)values exhibit a clearly ascending trend from 0.17 at VEC=3.5 to 0.18 at VEC=3.4,then to 0.201 at VEC=3.2 with the increasing of Al content.This indicates that the intrinsic toughness of multi-component boride microcrystals is obviously enhanced by the trace-doped Al elements.Besides,the fabricated Al-containing multi-component boride microcrystals have superior oxidation activation en-ergy and structural stability.The enhanced oxidation resistance is mainly attributed to the formation of a protective Al2 O3 oxide layer and the lattice distortion,both of which lead to sluggish diffusion of O_(2).These findings propose a new unexplored avenue for the fabrication of MMB_(2)materials with supe-rior comprehensive performance including ultra-hardness and intrinsically improved thermo-mechanical properties. 展开更多
关键词 multi-component borides First-principles calculations Crystal growth Mechanical properties Oxidation behavior
原文传递
Unpacking phase transitions in multi-component drug systems:A case study
3
作者 Shifang Song Chenyu Wu +3 位作者 Li Zhang Dezhi Yang Yang Lu Zhengzheng Zhou 《Chinese Chemical Letters》 2025年第7期508-512,共5页
The phase transition among different solid forms of active pharmaceutical ingredients can significantly influence their physicochemical properties,potentially leading to clinical safety risks.However,phase transition ... The phase transition among different solid forms of active pharmaceutical ingredients can significantly influence their physicochemical properties,potentially leading to clinical safety risks.However,phase transition mechanisms remain under explored,especially in multi-component drugs.Here we report a novel ciprofloxacin-diclofenac salt system and investigate phase transitions among its anhydrate,dihydrate,and methanol solvate forms.The study focused on the influence of water activity and solvent vapor conditions,elucidating the role of vip molecules in driving these transitions.These findings offer new insights into polymorphic phase transitions,advancing our understanding of stability and performance in pharmaceutical formulations. 展开更多
关键词 Phase transition Water activity solvent vapor CIPROFLOXACIN DICLOFENAC
原文传递
Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor
4
作者 Qiang Feng Jindong Hao +3 位作者 Ya Hu Rong Fu Wei Wei Dong Yi 《Chinese Chemical Letters》 2025年第6期484-488,共5页
A convenient photocatalytic multi-component reaction of alkenes,quinoxalin-2(1H)-ones,and diazo compounds has been developed in the presence of water.A number of ester-containing quinoxalin-2(1H)-ones could be efficie... A convenient photocatalytic multi-component reaction of alkenes,quinoxalin-2(1H)-ones,and diazo compounds has been developed in the presence of water.A number of ester-containing quinoxalin-2(1H)-ones could be efficiently obtained in moderate to good yields at room temperature.This metal-free visiblelight-driven tandem reaction was conducted through proton-coupled electron transfer(PCET)process using water as the hydrogen donor and 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene(4CzIPN)as the photocatalyst. 展开更多
关键词 PHOTOCATALYTIC multi-component synthesis Diazo compounds Radical reaction Quinoxalin-2(1H)-ones
原文传递
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
5
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow multi-component Heat and mass transfer
原文传递
Highly stable strain sensor using rGO decorated with multi-component alloy nanoparticles for human motion monitoring
6
作者 Wen-Qiang Wan Kai-Ming Liang +8 位作者 Peng-Yu Zhu Xiang-Yu Chen Zhen-Feng Li Shi-Yu Liu Shuai Zhang Yang Song Peng He Yew-Hoong Wong Shu-Ye Zhang 《Rare Metals》 CSCD 2024年第12期6486-6499,共14页
Wearable,flexible devices have garnered widespread attention in the realm of human motion and life activity detection.Currently,the development of simple,green,and easily scalable methods for fabricating strain sensor... Wearable,flexible devices have garnered widespread attention in the realm of human motion and life activity detection.Currently,the development of simple,green,and easily scalable methods for fabricating strain sensors still presents significant challenges.In this study,we successfully modified the surface of reduced graphene oxide(rGO)with SnCuNiIn multi-component alloy nanoparticles(MCA NPs),with an average size of 13.29 nm,utilizing a green and facile microwave heating approach.Leveraging the SnCuNiIn MCA NPs/rGO powder,we formulated a conductive ink based on water and ethylene glycol,which,when screen-printed,yielded conductive patterns with a minimum resistivity of 4.366 mΩ·cm.Strain sensors produced using this ink demonstrate exceptional performance,demonstrating favorable resistance change rates during a single bending process that meets practical application requirements,and enduring 5000 bending cycles with a resistance change of less than 5%.These sensors exhibited a high gauge factor(GF_(max)=52.7)and outstanding cycling stability.Lastly,strain sensors are employed to monitor human normal life activities and motion states,showcasing significant potential for application in wearable electronic products. 展开更多
关键词 multi-component alloy nanoparticles rGO Strain sensor Human motion
原文传递
Organic solvent nanofiltration membranes for separation in non-polar solvent system 被引量:1
7
作者 Shuyun Gu Siyao Li Zhi Xu 《Green Energy & Environment》 2025年第2期244-267,共24页
Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltr... Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications. 展开更多
关键词 Organic solvent nanofiltration Membranes Membrane separation Non-polar solvent system Petrochemical and pharmaceutical application
在线阅读 下载PDF
Overcoming low-temperature challenges in LIBs:The role of anion-rich solvation sheath in strong solvents 被引量:1
8
作者 Xueqing Min Li Wang +3 位作者 Yanzhou Wu Zhiguo Zhang Hong Xu Xiangming He 《Journal of Energy Chemistry》 2025年第7期63-70,共8页
Lithium-ion batteries(LIBs)face significant limitations in low-temperature environments,with the slow interfacial de-solvation process and the hindered Li+transport through the interphase layer emerging as key obstacl... Lithium-ion batteries(LIBs)face significant limitations in low-temperature environments,with the slow interfacial de-solvation process and the hindered Li+transport through the interphase layer emerging as key obstacles beyond the issue of ionic conductivity.This investigation unveils a novel formulation that constructs an anion-rich solvation sheath within strong solvents,effectively addressing all three of these challenges to bolster low-temperature performance.The developed electrolyte,characterized by an enhanced concentration of contact ion pairs(CIPs)and aggregates(AGGs),facilitates the formation of an inorganic-rich interphase layer on the anode and cathode particles.This promotes de-solvation at low temperatures and stabilizes the electrode-electrolyte interphase.Full cells composed of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)and graphite,when equipped with this electrolyte,showcase remarkable cycle stability and capacity retention,with 93.3% retention after 500 cycles at room temperature(RT)and 95.5%after 120 cycles at -20℃.This study validates the utility of the anion-rich solvation sheath in strong solvents as a strategy for the development of low-temperature electrolytes. 展开更多
关键词 Electrolytes Solvation structure Low temperature Strong solvents Lithium-ion batteries
在线阅读 下载PDF
Deep eutectic solvents for separation and purification applications in critical metal metallurgy:Recent advances and perspectives
9
作者 Shuo Chen Shengpeng Su +4 位作者 Yanfang Huang Bingbing Liu Hu Sun Shuzhen Yang Guihong Han 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期1-19,共19页
Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ... Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy. 展开更多
关键词 deep eutectic solvents preparations PROPERTIES separation and purification critical metal metallurgy
在线阅读 下载PDF
Advances on research of H_(2)S removal by deep eutectic solvents as green solvent
10
作者 Feng Gao Jinjin Li +4 位作者 Chaoyue Yang Wu Zhang Hongfa Huang Zicheng Peng Teng Gong 《Natural Gas Industry B》 2025年第1期26-36,共11页
H_(2)S in natural gas and other industrial gas is seriously harmful to human health,environmental protection and the downstream industries.Efficient purification of H_(2)S containing gas is the basic process in the ch... H_(2)S in natural gas and other industrial gas is seriously harmful to human health,environmental protection and the downstream industries.Efficient purification of H_(2)S containing gas is the basic process in the chemical industry.Benefiting from multiple advantages,deep eutectic solvents(DES)can be used as tailor-made green solvents,and have been booming in the fields of harmful gas removal and fuel oil desulfurization.Furthermore,significant scientific research of DES in desulfurization and purification of natural gas has accelerated the process of its practical application.This paper systematically summarizes and analyzes the removal mechanism,impact factors and challenges of DES as emerging green solvent in H_(2)S absorption and conversion.Strategies on H_(2)S removal by DES generally fall into two categories:physical absorption and chemical conversion.Although the chemical conversion of H_(2)S by DES has been less studied compared with the physical absorption,it presents great application potential.At present,the research on H_(2)S removal by DES is still in the initial stage.Therefore,it is necessary to further study the mechanism of H_(2)S removal and construct the relationship between structural properties and desulfurization performance of DES,thereby to solve the issues of sulfur blockage and low quality of sulfur paste which is suffered by conventional liquid redox desulfurization solvent system.Additionally,the methods for efficient solvent regeneration and recycling remain to be explored out to promote the practical application of iron-based DES in the field of gas desulfurization. 展开更多
关键词 Deep eutectic solvent(DES) Purification of natural gas DESULFURIZATION H_(2)S solvent regeneration
暂未订购
Hydrothermal liquefaction for preparation of liquid fuels and chemicals: Solvent effects, catalysts regulation and thermochemical conversion processes
11
作者 Bingbing Qiu Xuedong Tao +2 位作者 Yanfang Wang Donghui Zhang Huaqiang Chu 《Green Energy & Environment》 2025年第8期1727-1750,共24页
Hydrothermal liquefaction technology is an effective method for the resource utilization and energy conversion of biomass under the dual-carbon context,facilitating the conversion of biomass into liquid fuels and high... Hydrothermal liquefaction technology is an effective method for the resource utilization and energy conversion of biomass under the dual-carbon context,facilitating the conversion of biomass into liquid fuels and high-value chemicals.This paper reviews the latest advancements in the production of liquid fuels and chemicals from biomass hydrothermal liquefaction.It briefly introduces the effects of different types of biomass,such as organic waste,lignocellulosic materials,and algae,on the conversion efficiency and product yield during hydrothermal liquefaction.The specific mechanisms of solvent and catalyst systems in the hydrothermal liquefaction process are analyzed in detail.Compared to water and organic solvents,the biphasic solvent system yields higher concentrations of furan platform compounds,and the addition of an appropriate amount of NaCl to the solvent significantly enhances product yield.Homogeneous catalysts exhibit advantages in reaction rate and selectivity but are limited by high costs and difficulties in separation and recovery.In contrast,heterogeneous catalysts possess good separability and regeneration capabilities and can operate under high-temperature conditions,but their mass transfer efficiency and deactivation issues may affect catalytic performance.The direct hydrothermal catalytic conversion of biomass is also discussed for the efficient production of chemicals and fuels such as hexanol,ethylene glycol,lactic acid,and C5/C6 liquid alkanes.Finally,the advantages and current challenges of producing liquid fuels and chemicals from biomass hydrothermal liquefaction are thoroughly analyzed,along with potential future research directions. 展开更多
关键词 solvents CATALYSTS Hydrothermal liquefaction Liquid fuels CHEMICALS
在线阅读 下载PDF
Electrolysis of Cu_(2) Sinto copper nanosheets and sulfur particles in ChCl-thiourea deep eutectic solvent
12
作者 Ji-hua LI Jin-feng ZHOU +4 位作者 Wei-jia CHEN Shi-wei HE Zhong-sheng HUA Shi-liang CHEN Hui KONG 《Transactions of Nonferrous Metals Society of China》 2025年第7期2386-2398,共13页
Copper nanosheets and sulfur particles were synthesized synchronously by electrolysis,after dissolving Cu_(2)S in ChCl-thiourea(TU)deep eutectic solvent(DES)system.The optimized electrolysis conditions of 0.9 V,80℃,a... Copper nanosheets and sulfur particles were synthesized synchronously by electrolysis,after dissolving Cu_(2)S in ChCl-thiourea(TU)deep eutectic solvent(DES)system.The optimized electrolysis conditions of 0.9 V,80℃,and 2 h resulted in the deposition of pure nano-sized copper sheets with a length of approximately 500 nm and a thickness of approximately 30 nm,and the production of sulfur particles with an average size of approximately 10μm.The morphology of the cathodic products was significantly influenced by the electrolysis voltage.When Cu_(2)S was introduced into ChCl-TU,it dissolved[CuCl_(2)]^(-)without disrupting the structure of the choline ion(Ch^(+)).As the electrolysis time increased,the copper deposition changed from wire to sheet growth,with the growth direction from radial to epitaxial along the substrate and back to radial. 展开更多
关键词 cuprous sulfide deep eutectic solvent separation cooper nanosheet electro-recovery
在线阅读 下载PDF
Experimental investigation on the effects of deep eutectic solvents (DES) on the wettability of sandstone samples
13
作者 Jun-Hui Guo Yun-Fei Bai +8 位作者 Lin Du Li-Ying Wei Yu Zhao Xian-Bao Zheng Er-Long Yang Zhi-Guo Wang Hai Huang Wen-Tong Zhang Hua-Zhou Li 《Petroleum Science》 2025年第3期1380-1390,共11页
Recently, deep eutectic solvents (DES) have received great attention in assisting water flooding and surfactant flooding to improve oil recovery because they can reduce the interfacial tension (IFT) between oil and wa... Recently, deep eutectic solvents (DES) have received great attention in assisting water flooding and surfactant flooding to improve oil recovery because they can reduce the interfacial tension (IFT) between oil and water, inhibit surfactant adsorption, and change the wettability of rock. However, the effects of DES on the wettability of rock surface have not been thoroughly investigated in the reported studies. In this study, the effects of various DES samples on the wettability of sandstone samples are investigated using the Amott wettability measurement method. Three DES samples and several DES solutions and DES-surfactant solutions are firstly synthesized. Then, the wettability of the sandstone samples is measured using pure saline water, DES solutions, and DES-surfactant solutions, respectively. The effects of the DES samples on the wettability of the sandstone samples are investigated by comparing the measured wettability parameters, including oil displacement ratio (I_(o)), water displacement ratio (I_(w)), and wettability index (I_(A)). The Berea rock sample used in this study is weakly hydrophilic with I_(o), I_(w), and I_(A) of 0.318, 0.032, and 0.286, respectively. Being processed by the prepared DES samples, the wettability of the Berea sandstone samples is altered to hydrophilic (0.7 > I_(A) > 0.3) by increasing I_(w) but lowering Io. Similarly, DES-surfactant solutions can also modify the wettability of the Berea sandstone samples from weakly hydrophilic to hydrophilic. However, some DES-surfactant solutions can not only increase I_(w) but also increase I_(o), suggesting that the lipophilicity of those sandstone samples will be improved by the DES-surfactant solutions. In addition, micromodel flooding tests confirm the promising performance of a DES-surfactant solution in improving oil recovery and altering wettability. Moreover, the possible mechanisms of DES and DES-surfactant solutions in altering the wettability of the Berea sandstone samples are proposed. DES samples may improve the hydrophilicity by forming hydrogen bonds between rock surface and water molecules. For DES-surfactant solutions, surfactant micelles can capture oil molecules to improve the lipophilicity of those sandstone samples. 展开更多
关键词 Deep eutectic solvents SURFACTANT Wettability alteration Sandstone rock
原文传递
Intelligent prediction of ionic liquids and deep eutectic solvents by machine learning
14
作者 Yuan Tian Honghua Zhang +3 位作者 Yueyang Qiao Han Yang Yanrong Liu Xiaoyan Ji 《Chinese Journal of Chemical Engineering》 2025年第8期227-243,共17页
Ionic liquids (ILs) and deep eutectic solvents (DESs) as green solvents have attracted dramatic attention recently due to their highly tunable properties. However, traditional experimental screening methods are ineffi... Ionic liquids (ILs) and deep eutectic solvents (DESs) as green solvents have attracted dramatic attention recently due to their highly tunable properties. However, traditional experimental screening methods are inefficient and resource-intensive. The article provides a comprehensive overview of various ML algorithms, including artificial neural network (ANN), support vector machine (SVM), random forest (RF), and gradient boosting trees (GBT), etc., which have demonstrated exceptional performance in handling complex and high-dimensional data. Furthermore, the integration of ML with quantum chemical calculations and conductor-like screening model-real solvent (COSMO-RS) has significantly enhanced predictive accuracy, enabling the rapid screening and design of novel solvents. Besides, recent ML applications in the prediction and design of ILs and DESs focused on solubility, melting point, electrical conductivity, and other physicochemical properties become more and more. This paper emphasizes the potential of ML in solvent design, overviewing an efficient approach to accelerate the development of sustainable and high-performance materials, providing guidance for their widespread application in a variety of industrial processes. 展开更多
关键词 Intelligent prediction lonic liquids Deep eutectic solvents Machine learning
在线阅读 下载PDF
Design principles of fluoroether solvents for lithium metal battery electrolytes unveiled by extensive molecular simulation and machine learning
15
作者 Xueying Yuan Xiupeng Chen +2 位作者 Yuanxin Zhou Zhiao Yu Xian Kong 《Journal of Energy Chemistry》 2025年第3期52-62,共11页
Electrolyte engineering with fluoroethers as solvents offers promising potential for high-performance lithium metal batteries.Despite recent progresses achieved in designing and synthesizing novel fluoroether solvents... Electrolyte engineering with fluoroethers as solvents offers promising potential for high-performance lithium metal batteries.Despite recent progresses achieved in designing and synthesizing novel fluoroether solvents,a systematic understanding of how fluorination patterns impact electrolyte performance is still lacking.We investigate the effects of fluorination patterns on properties of electrolytes using fluorinated 1,2-diethoxyethane(FDEE)as single solvents.By employing quantum calculations,molecular dynamics simulations,and interpretable machine learning,we establish significant correlations between fluorination patterns and electrolyte properties.Higher fluorination levels enhance FDEE stability but decrease conductivity.The symmetry of fluorination sites is critical for stability and viscosity,while exerting minimal influence on ionic conductivity.FDEEs with highly symmetric fluorination sites exhibit favorable viscosity,stability,and overall electrolyte performance.Conductivity primarily depends on lithium-anion dissociation or association.These findings provide design principles for rational fluoroether electrolyte design,emphasizing the trade-offs between stability,viscosity,and conductivity.Our work underscores the significance of considering fluorination patterns and molecular symmetry in the development of fluoroether-based electrolytes for advanced lithium batteries. 展开更多
关键词 Electrolyte engineering Fluoroether solvent Molecular simulation Machine learning
在线阅读 下载PDF
Superhydrophobic ceramic membrane coupled with a biphasic solvent for efficient CO_(2)capture
16
作者 Kaili Xue Zhen Chen +3 位作者 Xiaona Wu Heng Zhang Haiping Chen Junhua Li 《Green Energy & Environment》 2025年第4期834-844,共11页
An innovative strategy was proposed by integration of membrane contactor(MC)with biphasic solvent for efficient CO_(2) capture from flue gas.The accessible fly ash-based ceramic membrane(CM)underwent hydrophobic modif... An innovative strategy was proposed by integration of membrane contactor(MC)with biphasic solvent for efficient CO_(2) capture from flue gas.The accessible fly ash-based ceramic membrane(CM)underwent hydrophobic modification through silane grafting,followed by fluoroalkylsilane decoration,to prepare the superhydrophobic membrane(CSCM).The CSCM significantly improved resistance to wetting by the biphasic solvent,consisting of amine(DETA)and sulfolane(TMS).Morphological characterizations and chemical analysis revealed the notable enhancements in pore structure and hydrophobic chemical groups for the modified membrane.Predictions of wetting/bubbling behavior based on static wetting theory referred the liquid entry pressure(LEP)of CSCM increased by 20 kPa compared to pristine CM.Compared with traditional amine solvents,the biphasic solvent presented the expected phase separation.Performance experiments demonstrated that the CO_(2) capture efficiency of the biphasic solvent increased by 7%,and the electrical energy required for desorption decreased by 32%.The 60-h continuous testing and supplemental characterization of used membrane confirmed the excellent adaptability and durability of the CSCMs.This study provides a potential approach for accessing hydrophobic ceramic membranes and biphasic solvents for industrial CO_(2) capture. 展开更多
关键词 Carbon capture Membrane contactor Hydrophobic modification Membrane wetting Biphasic solvent
在线阅读 下载PDF
Enhancing electrochemo-mechanical properties of graphite-silicon anode in all-solid-state batteries via solvent-induced polar interactions in nitrile binders
17
作者 Jaecheol Choi Cheol Bak +4 位作者 Ju Young Kim Dong Ok Shin Seok Hun Kang Yong Min Lee Young-Gi Lee 《Journal of Energy Chemistry》 2025年第6期514-524,I0012,共12页
All-solid-state batteries(ASSBs)with sulfide-type solid electrolytes(SEs)are gaining significant attention due to their potential for the enhanced safety and energy density.In the slurry-coating process for ASSBs,nitr... All-solid-state batteries(ASSBs)with sulfide-type solid electrolytes(SEs)are gaining significant attention due to their potential for the enhanced safety and energy density.In the slurry-coating process for ASSBs,nitrile rubber(NBR)is primarily used as a binder due to its moderate solubility in non-polar solvents,which exhibites minimal chemical reactivity with sulfide SEs.However,the NBR binder,composed of butadiene and acrylonitrile units with differing polarities,exhibits different chemical compatibility depending on the subtle differences in polarity of solvents.Herein,we systematically demonstrate how the chemical compatibility of solvents with the NBR binder influences the performance of ASSBs.Anisole is found to activate the acrylonitrile units,inducing an elongated polymer chain configuration in the binder solution,which gives an opportunity to strongly interact with the solid components of the electrode and the current collector.Consequently,selecting anisole as a solvent for the NBR binder enables the fabrication of a mechanically robust graphite-silicon anode,allowing ASSBs to operate at a lower stacking pressure of 16 MPa.This approach achieves an initial capacity of 480 mAh g^(-1),significantly higher than the 390 mAh g^(-1)achieved with the NBR/toluene binder that has less chemical compatibility.Furthermore,internal stress variations during battery operation are monitored,revealing that the enhanced mechanical properties,achieved through acrylonitrile activation,effectively mitigate internal stress in the graphite/silicon composite anode. 展开更多
关键词 Solid-state batteries Nitrile rubber solvents Silicon Sulfide solid electrolytes
在线阅读 下载PDF
Correction to Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors
18
《Energy & Environmental Materials》 2025年第3期327-327,共1页
Yongtao Yu,Yuelin Yu et al.Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors.Energy Environ.Mater.2024,7,e12700.On page 4 of this article,the first paragraph of 2.4,... Yongtao Yu,Yuelin Yu et al.Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors.Energy Environ.Mater.2024,7,e12700.On page 4 of this article,the first paragraph of 2.4,line 14(PDF version,same below),there is a spelling mistake of“sui,”.It should be changed to“suitable”.The denominator“dt”in the Equation(3)should be changed to“dt”. 展开更多
关键词 WEARABLE self powered sensors triboelectric nanogenerator solvent resistant energy harvesting
在线阅读 下载PDF
Synergistic solvent extraction system of bis(pyridin-2-ylmethyl)dodecan-1-amine and dinonylnaphthalene for enhanced selective extraction of nickel and cobalt
19
作者 Bharat Prasad Sharma Tianzhang Wang +3 位作者 Yufeng Liang Jinping Xiong Liangrong Yang Zheng Li 《Chinese Journal of Chemical Engineering》 2025年第1期10-18,共9页
Simultaneous recovery of Ni and Co from Fe(Ⅲ)and AI is a critical challenge in hydrometallurgical processes.Recognized solvent extraction systems often struggle with selectivity and effective performance in mixed met... Simultaneous recovery of Ni and Co from Fe(Ⅲ)and AI is a critical challenge in hydrometallurgical processes.Recognized solvent extraction systems often struggle with selectivity and effective performance in mixed metal ion environments.Herein,a new synergistic solvent extraction(SSX)system comprised of a novel pyridine analog,N,N-bis(pyridin-2-ylmethyl)dodecan-1-amine(BPMDA),and dinonylnaphthalene sulfonic acid(DNNSA)with tributyl phosphate as phase modifier is introduced.The SSX system demonstrates high extraction performance achieving>90%for Ni and>97%for Co in a singlestage extraction process,with high selectivity.Under optimal conditions,the selectivity sequence is observed as Co^(2+)(>97%)>Ni^(2+)(>90%)>Mn^(2+)(<20%)>Fe^(3+)(<10%)>Mg^(2+)(<5%)>Al^(3+)(<2%)>Ca^(2+)(<1%).Spectroscopic analysis evidences the preferential binding of BPMDA with Ni and Co in the presence of DNNSA,concurrently achieving a significant reduction in the co-extraction of Fe(Ⅲ)and Al.The selective complexation of Ni and Co using the SSX system offers a highly efficient and selective approach for their extraction,with promising potential for applications in recovery-based processes. 展开更多
关键词 Nickel and cobalt extraction Synergistic solvent extraction DNNSA Pyridine HYDROMETALLURGY
在线阅读 下载PDF
Generative discovery of safer chemical alternatives using diffusion modeling:A case study in green solvent design for cyclohexane/benzene extractive distillation
20
作者 Zhichao Tan Kunsen Lin +1 位作者 Youcai Zhao Tao Zhou 《Journal of Environmental Sciences》 2025年第8期390-401,共12页
Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasin... Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research. 展开更多
关键词 Chemical alternatives Inverse design Green solvent design Generative models
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部