The world today is undergoing disruptive,transformative shifts driven by a new wave of technological revolutions and industrial changes.In this context,a central question for China’s innovation-driven development str...The world today is undergoing disruptive,transformative shifts driven by a new wave of technological revolutions and industrial changes.In this context,a central question for China’s innovation-driven development strategy is how to effectively identify and measure high-quality technological innovations.Drawing on the stylized facts and scenario narrative of China’s technological landscape,this paper proposes a framework and measurement system for evaluating high-quality technological innovations.While China’s top-level design for technological innovation is guided by policy documents,the increasing number of enterprises applying for“high-tech enterprise”status has coincided with a decline in the quality of patent filings.In response,this paper first underscores the challenges and necessity of measuring the quality of technological innovations.Second,we introduce the high-quality technological innovation indicators and employ them to assess the quality of tech innovations at the firm level,utilizing an approach that combines analogical narrative,gene coding,text analysis,semantic logic,and a database of granted invention patents in China.Third,we examine the systematic and individual biases inherent in citation counts,a commonly used indicator,under specific contexts,and employ a granular instrumental variable approach to validate the effectiveness of the indicators.Finally,we develop a“family tree”of the indicators and explore their application scenarios through a combination of established and extended indicators.Our findings provide a theoretical foundation for evaluating China’s technological innovation quality,inform policy incentives,and offer insights for academia to apply high-quality technological innovation indicators in different contexts.展开更多
Macular pigment(MP)is a crucial pigment in the macular region.It plays an important role in filtering blue light,and exhibits anti-inflammatory and antioxidant properties.Macular pigment optical density(MPOD)is a key ...Macular pigment(MP)is a crucial pigment in the macular region.It plays an important role in filtering blue light,and exhibits anti-inflammatory and antioxidant properties.Macular pigment optical density(MPOD)is a key indicator for assessing the density of MP in the macular area and is closely associated with eye diseases,including age-related macular degeneration,diabetic retinopathy,and glaucoma.This review aims to explore the clinical significance of MPOD and its research value in ophthalmology and other medical fields.It summarizes the current MPOD measurement techniques,categorizing them into two main types(in vivo and in vitro),and discusses their respective advantages and limitations.Additionally,given the advancements in artificial intelligence(AI)and deep-learning technologies that offer new opportunities for improving MPOD assessment,this review analyzes the significant potential and future prospects of AI-based fundus image analysis in MPOD measurement.The goal of AI-based analysis is to provide faster and more accurate detection methods,thereby promoting further research and new clinical applications of MPOD in the field of ophthalmology.展开更多
Rapid technological advancements drive miniaturization and high energy density in devices,thereby increasing nanoscale thermal management demands and urging development of higher spatial resolution technologies for th...Rapid technological advancements drive miniaturization and high energy density in devices,thereby increasing nanoscale thermal management demands and urging development of higher spatial resolution technologies for thermal imaging and transport research.Here,we introduce an approach to measure nanoscale thermal resistance using in situ inelastic scanning transmission electron microscopy.By constructing unidirectional heating flux with controlled temperature gradients and analyzing electron energy-loss/gain signals under optimized acquisition conditions,nanometer-resolution in mapping phonon apparent temperature is achieved.Thus,interfacial thermal resistance is determined by calculating the ratio of interfacial temperature difference to bulk temperature gradient.This methodology enables direct measurement of thermal transport properties for atomic-scale structural features(e.g.,defects and heterointerfaces),resolving critical structure-performance relationships,providing a useful tool for investigating thermal phenomena at the(sub-)nanoscale.展开更多
In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dy...In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dynamic mechanical property's curves of every part of welded joint were obtained. For studying the dynamic behavior of mechanical heterogeneity of welded joint, important data were offered. The method of test creates a new way of studying dynamic mechanical properties of welded joint.展开更多
Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the s...Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the system works,the SEM measuring system is equivalent to an integral image acquisition system.Firstly,a lattice measuring method is researched based on integral imaging theory.Secondly,the system parameters are calibrated by the VLSI lattice standard.Finally,the value of the lattice standard to be tested is determined based on the calibration parameters and the lattice measuring algorithm.The experimental results show that,compared with the traditional electron microscope measurement method,the relative error of the measured value of the algorithm is maintained within 0.2%,with the same level of measurement accuracy,but it expands the field of view of the electron microscope measurement system,which is suitable for the measurement of samples under high magnification.展开更多
Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as temp...Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as template, its thickness is often in the range of 10 to several tens micrometers, and the conventional measurement cannot be used. The key difficulties of the thermoelectric performance measurement for nanowire array materials include two aspects: 1) How to heat the two sides of the specimen uniformly and keep the temperature difference constantly at the same time; 2) How to measure the temperature of the two sides of the specimen with the thickness of 10 to several tens micrometers. A new type heating and temperature measuring technology has been used, and it can be simply described as liquid heating and separate temperature measurement. According to this principle, a thermoelectric performance measurement system has been established.展开更多
Hydrogen is considered as the promising energy carrier to substitute traditional fossil fuel,due to its cleanliness,renewability and high energy density.Water electrolysis is a simple and eonvenient technology for hyd...Hydrogen is considered as the promising energy carrier to substitute traditional fossil fuel,due to its cleanliness,renewability and high energy density.Water electrolysis is a simple and eonvenient technology for hydrogen production.The efficiency of water electrolysis for hydrogen production is limited by the electrocatalytic performances on hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The exorbitant Pt-and Ir-/Ru-based electrocatalysts as optimal HER and OER electrocatalysts,respectively,restrict water electrolysis development.Recently,non-precious metal-based high-entropy electrocatalysts have exhibited excellent electrocatalytic activities and long-term stabilities for water electrolysis,as promising precious cataly st candidates.Therefore,the construction of the high-entropy electroc atalysts is vital to water electrolysis industry.Electrodeposition technology is an efficient method for the preparation of high-entropy electrocatalysts due to its simple,fast,energy-saving and environmental-friendly advantages.Multi-component co-precipitation facilely occurs during the electroredox in electrodeposition processes.High-entropy alloys,oxides,(oxy)hydroxides,phosphides and phosphorus sulfide oxides have been successfully prepared by galvanostatic,potentiostatic electrodeposition,cyclic voltammetry,pulse,nanodroplet-mediated and cathodic plasma electrodeposition techniques.Hence,introduction of the development of high-entropy electrocatalysts synthesized by electrodeposition technology is significant to researchers and industries.Challenges and outlooks are also concluded to boost the industrial application of electrodeposition in water electrolysis and other energy conversion areas.展开更多
Taking the mechanism of technological construction guidance theory and mode which consists of "objective-construction-evaluation-construction-objective" as a starting point, on the basis of county agricultur...Taking the mechanism of technological construction guidance theory and mode which consists of "objective-construction-evaluation-construction-objective" as a starting point, on the basis of county agricultural technological innovation ability and its index definition, this paper researches the constructing system of county agricultural technological innovation ability. Firstly, on the basis of defining county agricultural technological innovation ability and the definition of index, according to the principle of purposefulness, scientificity, systematicness, integration of dynamic state and static state, integration of quantitativeness and qualitativeness and so on, we construct the multi-level measuring system of county agricultural technological innovation ability, including 4 first-level indices, namely technological innovation environment, technological innovation basis, technological innovation ability, and technological innovation efficiency; 15 second-level indices, such as technological policy, technological system mechanism, technological institution construction, ability of innovation subject, ability of industrial expansion, scale merit, technological contribution rate. Moreover, this system has 45 third-level indices. Then, by using unascertained mathematics method and AHM method, we establish the multi-level unascertained composite measuring model of county agricultural technological innovation ability index. Finally, by using the survey data of one county in Hebei Province, and the established county agricultural technological innovation ability index model, we get the county agricultural technological innovation ability index of 0.711 by calculation, that is, the innovation ability is at the intermediate level, namely the modern agricultural sub-stage. The empirical research proves the correctness and applicability of this model.展开更多
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati...The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.展开更多
In order to meet the high precision requirement of wide steel strip in industry field, a novel online measurement of roller profile based on sonic circulation and pulse-echo technology was introduced. All kinds of the...In order to meet the high precision requirement of wide steel strip in industry field, a novel online measurement of roller profile based on sonic circulation and pulse-echo technology was introduced. All kinds of the factors influencing the accuracy of roller profile online measurement were analyzed in detail and error compensation analysis of system was accordingly presented. In order to reduce count error, field program gate array(FPGA) was introduced and a highprecision data acquisition system was designed based on digital phase-shift technology. Experiments indicate that the standard deviation of measure data was 7.27 μm, which showed the feasibility and validity of the proposed method, and realized the roll profile measurement with high precision.展开更多
A measuring system for high-speed hydrogen ice pellet was introduced in this paper and the photographing of flying pellet taken therein. With the system, a pellet (minimum size of φ 0.3 mm) velocity (ranging from 50 ...A measuring system for high-speed hydrogen ice pellet was introduced in this paper and the photographing of flying pellet taken therein. With the system, a pellet (minimum size of φ 0.3 mm) velocity (ranging from 50 m/s to 2500 m/s) can be measured in the HL-1M tokamak fueling experiments. By analyzing photographs and the conditions of frozen pellets (including gas supply, gas replenishment, temperature controlling etc), the pellet-freezing technology is summarized in the paper.展开更多
The performance measurement of enterprise technology alliances is complex.In this article,evaluation mechanism of entropy has been applied to it.Above all,performance connotation of enterprise technology alliance is d...The performance measurement of enterprise technology alliances is complex.In this article,evaluation mechanism of entropy has been applied to it.Above all,performance connotation of enterprise technology alliance is defined from the aspect of self-organizatlon theory.Then,on dynamic and systerna-tical view,an entropy-based overall performance measurement model for technology alliance is established,using its life-cycle as the principal line,which includes initial condition evaluation,process e- valuation as well as benefit evaluation.Finally,a case study is carried out to the demonstration of that model.The author believes that an improved performance measurement model based on alliance life-cycle would be practicability to alliance.展开更多
3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body...3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.展开更多
Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example t...Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.展开更多
Bluetooth technology emerged over twenty years ago and has continuously improved throughout the years to meet diverse and complex applications. Initially invented to replace the need for physical data cables, Bluetoot...Bluetooth technology emerged over twenty years ago and has continuously improved throughout the years to meet diverse and complex applications. Initially invented to replace the need for physical data cables, Bluetooth offers users a quick and easy way to share data files over a wireless network. Traffic engineers and transportation engineering researchers have utilized the potential opportunities that exist with Bluetooth and have implemented this technology into traffic monitoring techniques. To gain a better understanding of Bluetooth sensors and how they work, a comprehensive literature search was conducted. Twenty-five articles were studied regarding case studies of Bluetooth sensor implementation for travel time measurement. Besides reviewing the literature and previous case studies, three new case studies in the State of Delaware, USA, were also conducted and carefully analyzed. The benefits and drawbacks associated with Bluetooth technology for travel time measurements have been identified in this paper. The overall conclusion of the authors is Bluetooth alone and by itself is not a proper technology for travel time measurements. More studies need to be conducted on the accuracy and overall application, before one can confidently utilize the Bluetooth technology for travel time measurements.展开更多
The work of quantitative studying the effect of technological progress on economic growth, being of great complexity and far-reaching significance, has become a quite popular research topic in the world. In recent yea...The work of quantitative studying the effect of technological progress on economic growth, being of great complexity and far-reaching significance, has become a quite popular research topic in the world. In recent years there are a large number of scientists who are engaged in this research both at home and abroad.展开更多
The U.S.imposition of high tariffs on Chinese goods has triggered short-term strains on China’s exports.At the same time,it has also accelerated its strategic pivot toward technological self-reliance,regional integra...The U.S.imposition of high tariffs on Chinese goods has triggered short-term strains on China’s exports.At the same time,it has also accelerated its strategic pivot toward technological self-reliance,regional integration,and domestic demand expansion.展开更多
With the global economic turmoil and the changes in Chinese economic pol- icies in 2008,small,and medium-sized enterprises(SMEs)have all felt the early-coming of a"cold season".They have been undergoing extr...With the global economic turmoil and the changes in Chinese economic pol- icies in 2008,small,and medium-sized enterprises(SMEs)have all felt the early-coming of a"cold season".They have been undergoing extreme dif- ficulties in doing businesses due to a series of factors including展开更多
With the rapid development of China's economy, the times are also progressing. The continuous influx of various trades and industries has also promoted the rapid development of industry. Then if we want to develop...With the rapid development of China's economy, the times are also progressing. The continuous influx of various trades and industries has also promoted the rapid development of industry. Then if we want to develop economy, we must enlarge the scale of the enterprise. The development of the enterprise is mainly to enlarge its production scale and produce more economic benefits. The expansion of the scale requires the expansion of the factory, which cannot be separated from the development of various engineering projects. No matter what kind of project requires precise measurement during its construction, the relevant market supervision department should strengthen the supervision and management of the project, strictly require the technical level of its engineering measurement, confirm whether its engineering measurement technology meets the standard, and grasp the management from the policy. In addition, the enterprise itself should also do a good job of self-inspection, let engineering surveyors with sufficient experience participate in the construction, strengthen the accuracy of engineering survey, avoid some possible measurement errors, keep pace with the times, and continuously improve the engineering survey methods and measurement techniques to ensure the construction quality of the project, which is also of some important significance to the construction and management of the enterprise.展开更多
With the development of social economy, different industries in our country have achieved structural optimization and adjustment. Under the new social background, following the pace of development of the times and tak...With the development of social economy, different industries in our country have achieved structural optimization and adjustment. Under the new social background, following the pace of development of the times and taking sustainable development as the strategic goal, in the process of economic construction and development, we pay attention to environmental protection, realize the harmonious coexistence of man and nature, and change and adjust the traditional pattern of pollution first and treatment later. In the process of economic construction and development in the past, the over-exploitation and utilization of forestry resources led to the decrease of the coverage rate and the total amount of forestry resources in our country. At the same time, there were problems of resource shortage and environmental damage. Based on this, the state vigorously carried out the artificial afforestation project, which is an important measure for the construction and development of ecological engineering and an inevitable trend for the development of forestry. The forestry department and the national environmental department have paid more attention to the protection of forestry ecological environment. While vigorously carrying out forestry afforestation projects, they have optimized the forestry industrial structure, introduced advanced afforestation technology and forestry management model, and strengthened the protection and management of forest resources. In this paper, forestry forestation technology is analyzed and forestry protection measures are discussed to provide reference for the development of forestry in China.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under the following projects:“Towards High-Quality Technological Innovation in Chinese Cities:Measurement,Mechanism,and Effects”(Grant No.72073093)“Implementation Effects and Micro-Mechanisms of China’s Industrial Policy:A Study of the Steel Industry from the Perspective of Implementation Mechanisms”(Grant No.72373160)“Research on Capital Circles and Enterprise Innovation Quality:Mechanisms and Economic Effects”(Grant No.71872150).
文摘The world today is undergoing disruptive,transformative shifts driven by a new wave of technological revolutions and industrial changes.In this context,a central question for China’s innovation-driven development strategy is how to effectively identify and measure high-quality technological innovations.Drawing on the stylized facts and scenario narrative of China’s technological landscape,this paper proposes a framework and measurement system for evaluating high-quality technological innovations.While China’s top-level design for technological innovation is guided by policy documents,the increasing number of enterprises applying for“high-tech enterprise”status has coincided with a decline in the quality of patent filings.In response,this paper first underscores the challenges and necessity of measuring the quality of technological innovations.Second,we introduce the high-quality technological innovation indicators and employ them to assess the quality of tech innovations at the firm level,utilizing an approach that combines analogical narrative,gene coding,text analysis,semantic logic,and a database of granted invention patents in China.Third,we examine the systematic and individual biases inherent in citation counts,a commonly used indicator,under specific contexts,and employ a granular instrumental variable approach to validate the effectiveness of the indicators.Finally,we develop a“family tree”of the indicators and explore their application scenarios through a combination of established and extended indicators.Our findings provide a theoretical foundation for evaluating China’s technological innovation quality,inform policy incentives,and offer insights for academia to apply high-quality technological innovation indicators in different contexts.
基金Supported by Ganzhou Science and Technology Bureau“Science and Technology+Healthcare”Leading Talent Project(No.GZ2024YLJ020)Jiangxi Provincial Department of Science and Technology Key Research and Development Plan Projects(No.20203BBGL73133)Jiangxi Province“ShuangQian Plan”Innovation Talents Project(No.S2021CQKJ2297).
文摘Macular pigment(MP)is a crucial pigment in the macular region.It plays an important role in filtering blue light,and exhibits anti-inflammatory and antioxidant properties.Macular pigment optical density(MPOD)is a key indicator for assessing the density of MP in the macular area and is closely associated with eye diseases,including age-related macular degeneration,diabetic retinopathy,and glaucoma.This review aims to explore the clinical significance of MPOD and its research value in ophthalmology and other medical fields.It summarizes the current MPOD measurement techniques,categorizing them into two main types(in vivo and in vitro),and discusses their respective advantages and limitations.Additionally,given the advancements in artificial intelligence(AI)and deep-learning technologies that offer new opportunities for improving MPOD assessment,this review analyzes the significant potential and future prospects of AI-based fundus image analysis in MPOD measurement.The goal of AI-based analysis is to provide faster and more accurate detection methods,thereby promoting further research and new clinical applications of MPOD in the field of ophthalmology.
基金supported by the National Natural Science Foundation of China(Grant No.52125307)the National Key R&D Program of China(Grant No.2021YFB3501500)the support from the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘Rapid technological advancements drive miniaturization and high energy density in devices,thereby increasing nanoscale thermal management demands and urging development of higher spatial resolution technologies for thermal imaging and transport research.Here,we introduce an approach to measure nanoscale thermal resistance using in situ inelastic scanning transmission electron microscopy.By constructing unidirectional heating flux with controlled temperature gradients and analyzing electron energy-loss/gain signals under optimized acquisition conditions,nanometer-resolution in mapping phonon apparent temperature is achieved.Thus,interfacial thermal resistance is determined by calculating the ratio of interfacial temperature difference to bulk temperature gradient.This methodology enables direct measurement of thermal transport properties for atomic-scale structural features(e.g.,defects and heterointerfaces),resolving critical structure-performance relationships,providing a useful tool for investigating thermal phenomena at the(sub-)nanoscale.
文摘In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dynamic mechanical property's curves of every part of welded joint were obtained. For studying the dynamic behavior of mechanical heterogeneity of welded joint, important data were offered. The method of test creates a new way of studying dynamic mechanical properties of welded joint.
基金supported by the National Key Research and Development Program(No.2019YFB2005503)。
文摘Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the system works,the SEM measuring system is equivalent to an integral image acquisition system.Firstly,a lattice measuring method is researched based on integral imaging theory.Secondly,the system parameters are calibrated by the VLSI lattice standard.Finally,the value of the lattice standard to be tested is determined based on the calibration parameters and the lattice measuring algorithm.The experimental results show that,compared with the traditional electron microscope measurement method,the relative error of the measured value of the algorithm is maintained within 0.2%,with the same level of measurement accuracy,but it expands the field of view of the electron microscope measurement system,which is suitable for the measurement of samples under high magnification.
文摘Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as template, its thickness is often in the range of 10 to several tens micrometers, and the conventional measurement cannot be used. The key difficulties of the thermoelectric performance measurement for nanowire array materials include two aspects: 1) How to heat the two sides of the specimen uniformly and keep the temperature difference constantly at the same time; 2) How to measure the temperature of the two sides of the specimen with the thickness of 10 to several tens micrometers. A new type heating and temperature measuring technology has been used, and it can be simply described as liquid heating and separate temperature measurement. According to this principle, a thermoelectric performance measurement system has been established.
基金financially supported by the Natural Science Foundation of Hebei Province(No.B2021208030)College Students Innovation Training Program(Nos.202206224 and S2021113409001)。
文摘Hydrogen is considered as the promising energy carrier to substitute traditional fossil fuel,due to its cleanliness,renewability and high energy density.Water electrolysis is a simple and eonvenient technology for hydrogen production.The efficiency of water electrolysis for hydrogen production is limited by the electrocatalytic performances on hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The exorbitant Pt-and Ir-/Ru-based electrocatalysts as optimal HER and OER electrocatalysts,respectively,restrict water electrolysis development.Recently,non-precious metal-based high-entropy electrocatalysts have exhibited excellent electrocatalytic activities and long-term stabilities for water electrolysis,as promising precious cataly st candidates.Therefore,the construction of the high-entropy electroc atalysts is vital to water electrolysis industry.Electrodeposition technology is an efficient method for the preparation of high-entropy electrocatalysts due to its simple,fast,energy-saving and environmental-friendly advantages.Multi-component co-precipitation facilely occurs during the electroredox in electrodeposition processes.High-entropy alloys,oxides,(oxy)hydroxides,phosphides and phosphorus sulfide oxides have been successfully prepared by galvanostatic,potentiostatic electrodeposition,cyclic voltammetry,pulse,nanodroplet-mediated and cathodic plasma electrodeposition techniques.Hence,introduction of the development of high-entropy electrocatalysts synthesized by electrodeposition technology is significant to researchers and industries.Challenges and outlooks are also concluded to boost the industrial application of electrodeposition in water electrolysis and other energy conversion areas.
基金Supported by Hebei Provincial Science&Technology Department Soft Sciences Research Program (10457204D-18)
文摘Taking the mechanism of technological construction guidance theory and mode which consists of "objective-construction-evaluation-construction-objective" as a starting point, on the basis of county agricultural technological innovation ability and its index definition, this paper researches the constructing system of county agricultural technological innovation ability. Firstly, on the basis of defining county agricultural technological innovation ability and the definition of index, according to the principle of purposefulness, scientificity, systematicness, integration of dynamic state and static state, integration of quantitativeness and qualitativeness and so on, we construct the multi-level measuring system of county agricultural technological innovation ability, including 4 first-level indices, namely technological innovation environment, technological innovation basis, technological innovation ability, and technological innovation efficiency; 15 second-level indices, such as technological policy, technological system mechanism, technological institution construction, ability of innovation subject, ability of industrial expansion, scale merit, technological contribution rate. Moreover, this system has 45 third-level indices. Then, by using unascertained mathematics method and AHM method, we establish the multi-level unascertained composite measuring model of county agricultural technological innovation ability index. Finally, by using the survey data of one county in Hebei Province, and the established county agricultural technological innovation ability index model, we get the county agricultural technological innovation ability index of 0.711 by calculation, that is, the innovation ability is at the intermediate level, namely the modern agricultural sub-stage. The empirical research proves the correctness and applicability of this model.
文摘The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.
文摘In order to meet the high precision requirement of wide steel strip in industry field, a novel online measurement of roller profile based on sonic circulation and pulse-echo technology was introduced. All kinds of the factors influencing the accuracy of roller profile online measurement were analyzed in detail and error compensation analysis of system was accordingly presented. In order to reduce count error, field program gate array(FPGA) was introduced and a highprecision data acquisition system was designed based on digital phase-shift technology. Experiments indicate that the standard deviation of measure data was 7.27 μm, which showed the feasibility and validity of the proposed method, and realized the roll profile measurement with high precision.
文摘A measuring system for high-speed hydrogen ice pellet was introduced in this paper and the photographing of flying pellet taken therein. With the system, a pellet (minimum size of φ 0.3 mm) velocity (ranging from 50 m/s to 2500 m/s) can be measured in the HL-1M tokamak fueling experiments. By analyzing photographs and the conditions of frozen pellets (including gas supply, gas replenishment, temperature controlling etc), the pellet-freezing technology is summarized in the paper.
文摘The performance measurement of enterprise technology alliances is complex.In this article,evaluation mechanism of entropy has been applied to it.Above all,performance connotation of enterprise technology alliance is defined from the aspect of self-organizatlon theory.Then,on dynamic and systerna-tical view,an entropy-based overall performance measurement model for technology alliance is established,using its life-cycle as the principal line,which includes initial condition evaluation,process e- valuation as well as benefit evaluation.Finally,a case study is carried out to the demonstration of that model.The author believes that an improved performance measurement model based on alliance life-cycle would be practicability to alliance.
基金item of significant subject construction in Shanghai
文摘3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.
文摘Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.
文摘Bluetooth technology emerged over twenty years ago and has continuously improved throughout the years to meet diverse and complex applications. Initially invented to replace the need for physical data cables, Bluetooth offers users a quick and easy way to share data files over a wireless network. Traffic engineers and transportation engineering researchers have utilized the potential opportunities that exist with Bluetooth and have implemented this technology into traffic monitoring techniques. To gain a better understanding of Bluetooth sensors and how they work, a comprehensive literature search was conducted. Twenty-five articles were studied regarding case studies of Bluetooth sensor implementation for travel time measurement. Besides reviewing the literature and previous case studies, three new case studies in the State of Delaware, USA, were also conducted and carefully analyzed. The benefits and drawbacks associated with Bluetooth technology for travel time measurements have been identified in this paper. The overall conclusion of the authors is Bluetooth alone and by itself is not a proper technology for travel time measurements. More studies need to be conducted on the accuracy and overall application, before one can confidently utilize the Bluetooth technology for travel time measurements.
文摘The work of quantitative studying the effect of technological progress on economic growth, being of great complexity and far-reaching significance, has become a quite popular research topic in the world. In recent years there are a large number of scientists who are engaged in this research both at home and abroad.
文摘The U.S.imposition of high tariffs on Chinese goods has triggered short-term strains on China’s exports.At the same time,it has also accelerated its strategic pivot toward technological self-reliance,regional integration,and domestic demand expansion.
文摘With the global economic turmoil and the changes in Chinese economic pol- icies in 2008,small,and medium-sized enterprises(SMEs)have all felt the early-coming of a"cold season".They have been undergoing extreme dif- ficulties in doing businesses due to a series of factors including
文摘With the rapid development of China's economy, the times are also progressing. The continuous influx of various trades and industries has also promoted the rapid development of industry. Then if we want to develop economy, we must enlarge the scale of the enterprise. The development of the enterprise is mainly to enlarge its production scale and produce more economic benefits. The expansion of the scale requires the expansion of the factory, which cannot be separated from the development of various engineering projects. No matter what kind of project requires precise measurement during its construction, the relevant market supervision department should strengthen the supervision and management of the project, strictly require the technical level of its engineering measurement, confirm whether its engineering measurement technology meets the standard, and grasp the management from the policy. In addition, the enterprise itself should also do a good job of self-inspection, let engineering surveyors with sufficient experience participate in the construction, strengthen the accuracy of engineering survey, avoid some possible measurement errors, keep pace with the times, and continuously improve the engineering survey methods and measurement techniques to ensure the construction quality of the project, which is also of some important significance to the construction and management of the enterprise.
文摘With the development of social economy, different industries in our country have achieved structural optimization and adjustment. Under the new social background, following the pace of development of the times and taking sustainable development as the strategic goal, in the process of economic construction and development, we pay attention to environmental protection, realize the harmonious coexistence of man and nature, and change and adjust the traditional pattern of pollution first and treatment later. In the process of economic construction and development in the past, the over-exploitation and utilization of forestry resources led to the decrease of the coverage rate and the total amount of forestry resources in our country. At the same time, there were problems of resource shortage and environmental damage. Based on this, the state vigorously carried out the artificial afforestation project, which is an important measure for the construction and development of ecological engineering and an inevitable trend for the development of forestry. The forestry department and the national environmental department have paid more attention to the protection of forestry ecological environment. While vigorously carrying out forestry afforestation projects, they have optimized the forestry industrial structure, introduced advanced afforestation technology and forestry management model, and strengthened the protection and management of forest resources. In this paper, forestry forestation technology is analyzed and forestry protection measures are discussed to provide reference for the development of forestry in China.