期刊文献+
共找到3,720篇文章
< 1 2 186 >
每页显示 20 50 100
Seismic Response of Base-Isolated Structures underMulti-component Ground Motion Excitation
1
作者 Jiang Yicheng Tang Jiaxiang School of Civil Engineering , Huazhong University of Science and Technology, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2001年第1期90-94,共5页
An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square respond of the system is Obtained under different parametric variations. The effectiveness of main param... An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square respond of the system is Obtained under different parametric variations. The effectiveness of main parameters and the torsional component during an earthquake is quantified with the help of the response ratio and the root mean square response with and without base isolation. It is observed that the base isolation has considerable influence on the response and the effect of the torsional component is not ignored. 展开更多
关键词 multi-component ground motion base isolation random response root mean square response.
在线阅读 下载PDF
Highly stable strain sensor using rGO decorated with multi-component alloy nanoparticles for human motion monitoring 被引量:1
2
作者 Wen-Qiang Wan Kai-Ming Liang +8 位作者 Peng-Yu Zhu Xiang-Yu Chen Zhen-Feng Li Shi-Yu Liu Shuai Zhang Yang Song Peng He Yew-Hoong Wong Shu-Ye Zhang 《Rare Metals》 CSCD 2024年第12期6486-6499,共14页
Wearable,flexible devices have garnered widespread attention in the realm of human motion and life activity detection.Currently,the development of simple,green,and easily scalable methods for fabricating strain sensor... Wearable,flexible devices have garnered widespread attention in the realm of human motion and life activity detection.Currently,the development of simple,green,and easily scalable methods for fabricating strain sensors still presents significant challenges.In this study,we successfully modified the surface of reduced graphene oxide(rGO)with SnCuNiIn multi-component alloy nanoparticles(MCA NPs),with an average size of 13.29 nm,utilizing a green and facile microwave heating approach.Leveraging the SnCuNiIn MCA NPs/rGO powder,we formulated a conductive ink based on water and ethylene glycol,which,when screen-printed,yielded conductive patterns with a minimum resistivity of 4.366 mΩ·cm.Strain sensors produced using this ink demonstrate exceptional performance,demonstrating favorable resistance change rates during a single bending process that meets practical application requirements,and enduring 5000 bending cycles with a resistance change of less than 5%.These sensors exhibited a high gauge factor(GF_(max)=52.7)and outstanding cycling stability.Lastly,strain sensors are employed to monitor human normal life activities and motion states,showcasing significant potential for application in wearable electronic products. 展开更多
关键词 multi-component alloy nanoparticles rGO Strain sensor Human motion
原文传递
Ground Motion Simulation Via Generative Adversarial Network
3
作者 Kai Chen Hua Pan +1 位作者 Meng Zhang Zhi-Heng Li 《Applied Geophysics》 2025年第3期684-697,893,894,共16页
This study addresses the pressing challenge of generating realistic strong ground motion data for simulating earthquakes,a crucial component in pre-earthquake risk assessments and post-earthquake disaster evaluations,... This study addresses the pressing challenge of generating realistic strong ground motion data for simulating earthquakes,a crucial component in pre-earthquake risk assessments and post-earthquake disaster evaluations,particularly suited for regions with limited seismic data.Herein,we report a generative adversarial network(GAN)framework capable of simulating strong ground motions under various environmental conditions using only a small set of real earthquake records.The constructed GAN model generates ground motions based on continuous physical variables such as source distance,site conditions,and magnitude,effectively capturing the complexity and diversity of ground motions under different scenarios.This capability allows the proposed model to approximate real seismic data,making it applicable to a wide range of engineering purposes.Using the Shandong Pingyuan earthquake as an example,a specialized dataset was constructed based on regional real ground motion records.The response spectrum at target locations was obtained through inverse distance-weighted interpolation of actual response spectra,followed by continuous wavelet transform to derive the ground motion time histories at these locations.Through iterative parameter adjustments,the constructed GAN model learned the probability distribution of strong-motion data for this event.The trained model generated three-component ground-motion time histories with clear P-wave and S-wave characteristics,accurately reflecting the non-stationary nature of seismic records.Statistical comparisons between synthetic and real response spectra,waveform envelopes,and peak ground acceleration show a high degree of similarity,underscoring the effectiveness of the model in replicating both the statistical and physical characteristics of real ground motions.These findings validate the feasibility of GANs for generating realistic earthquake data in data-scarce regions,providing a reliable approach for enriching regional ground motion databases.Additionally,the results suggest that GAN-based networks are a powerful tool for building predictive models in seismic hazard analysis. 展开更多
关键词 ground motion simulation Machine learning Generative adversarial networks Wavelet transform
在线阅读 下载PDF
Empirical correlation between the elastic input energy and typical intensity measures for offshore ground motions
4
作者 Hu Jinjun Tian Hao +2 位作者 Tan Jingyang Liu Mingji Jin Chaoyue 《Earthquake Engineering and Engineering Vibration》 2025年第3期653-674,I0002-I0012,共33页
To analyze the correlation between the input energy parameters(V_(E))and typical intensity measures(IMs)of offshore ground motions,based on 273 earthquake events recorded by the K-NET in Japan,892 offshore ground moti... To analyze the correlation between the input energy parameters(V_(E))and typical intensity measures(IMs)of offshore ground motions,based on 273 earthquake events recorded by the K-NET in Japan,892 offshore ground motion records with moment magnitudes from 4.0 to 7.0 were used in this study.Residuals obtained through a ground motion model were calculated and analyzed for the correlation between V_(E) and amplitude,duration,frequency content and cumulative IMs.The results indicate that PGV and PGD have strong correlation with the V_(E)(T>0.2 s and T>0.4 s),the duration IMs have weakly negative correlation with the V_(E),Sd_(1) has a strong correlation with the V_(E) in the periods of T>0.4 s,T_(g) has a weak correlation with V_(E) and the cumulative IMs have strong correlation with the V_(E).The parametric predictive equations between typical IMs and V_(E) was proposed,and the differences between the prediction equations from the onshore ground motion records were compared.The differences in parametric predicted equations between offshore and onshore ground motions were confirmed in this study.Proposed correlation equations can be applied to offshore probabilistic seismic hazard analysis and the selection of ground motion records by generalized conditional intensity measures. 展开更多
关键词 input energy offshore ground motion intensity measures empirical correlation parametric prediction equations
在线阅读 下载PDF
Seismic isolation design and resilience improvement of railway station considering the influence of near-fault pulse-like ground motions
5
作者 Pan Yi Song Jiayu +1 位作者 Chen Qi Liu Yongxin 《Earthquake Engineering and Engineering Vibration》 2025年第1期257-270,共14页
To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The s... To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience. 展开更多
关键词 railway station near-fault pulse-like ground motion isolation design seismic resilience resilience improvement
在线阅读 下载PDF
Integrated source-site effects on seismic intensity in the 2025 Myanmar earthquake from the three-component ground motion simulations by stochastic finite-fault method
6
作者 Wang Hongwei Wen Ruizhi +3 位作者 Peng Zhong Ren Yefei Qiang Shengyin Liu Ye 《Earthquake Engineering and Engineering Vibration》 2025年第4期901-915,共15页
The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improv... The March 28,2025 Myanmar earthquake generated ground shaking that was perceptible throughout Myanmar and adjacent regions.This study simulated three-component ground motions across the affected region using an improved stochastic finite-fault method to systematically assess seismic impacts.Observed near-field recordings at MM.NGU station was used to determine the reliability of the theoretically derived stress drop as input for simulation.Far-field recordings constrained the frequency-dependent S-wave quality factors(Q(f)=283.305f^(0.588))for anelastic attenuation modeling.Comparisons of peak accelerations between simulation and empirical ground-motion models showed good agreement at moderate-to-large distances.However,lower near-fault simulations indicate a weaker-than-average source effect.Analysis of simulated instrumental seismic intensity revealed key patterns.Maximum intensity(Ⅹ)occurred in isolated patches within the ruptured fault projection,correlating with shallow high-slip areas.TheⅨ-intensity zone formed a north-south elongated band centered on fault projection.Significant asymmetry inⅧ-intensity distribution perpendicular to the fault strike was observed,with a wider western extension attributed to lower shear-wave velocities west of the fault.Supershear rupture behavior enhanced ground motions,expanding intensity ranges by~20%compared to sub-shear rupture.This study reveals the integrated effects of fault geometry,slip spatial distribution,rupture velocity,and site condition in governing ground motion patterns. 展开更多
关键词 2025 Myanmar earthquake stochastic finite-fault method ground motion simulation seismic intensity source-site effects
在线阅读 下载PDF
Multi-parameter modeling and analysis of ground motion amplification in the Quaternary sedimentary basin of the Beijing-Tianjin-Hebei region
7
作者 Hong Zhou 《Earthquake Science》 2025年第2期136-151,共16页
Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and severa... Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and several unique phenomena,such as the basin edge effect,basin focusing effect,and basin-induced secondary waves,have been observed.Understanding and quantitatively predicting these phenomena are crucial for earthquake disaster reduction.Some pioneering studies in this field have proposed a quantitative relationship between the basin effect on ground motion and basin depth.Unfortunately,basin effect phenomena predicted using a model based only on basin depth exhibit large deviations from actual distributions,implying the severe shortcomings of single-parameter basin effect modeling.Quaternary sediments are thick and widely distributed in the Beijing-Tianjin-Hebei region.The seismic media inside and outside of this basin have significantly different physical properties,and the basin bottom forms an interface with strong seismic reflections.In this study,we established a three-dimensional structure model of the Quaternary sedimentary basin based on the velocity structure model of the North China Craton and used it to simulate the ground motion under a strong earthquake following the spectral element method,obtaining the spatial distribution characteristics of the ground motion amplification ratio throughout the basin.The back-propagation(BP)neural network algorithm was then introduced to establish a multi-parameter mathematical model for predicting ground motion amplification ratios,with the seismic source location,physical property ratio of the media inside and outside the basin,seismic wave frequency,and basin shape as the input parameters.We then examined the main factors influencing the amplification of seismic ground motion in basins based on the prediction results,and concluded that the main factors influencing the basin effect are basin shape and differences in the physical properties of media inside and outside the basin. 展开更多
关键词 three-dimensional basin effect ground motion modeling BP neural network algorithm spectral element method
在线阅读 下载PDF
Peak earthquake response of structures under multi-component excitations 被引量:2
8
作者 Jianwei Song Zach Liang Yi-Lun Chu George C. Lee 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第4期357-370,共14页
Accurate estimation of the peak seismic responses of structures is important in earthquake resistant design. The internal force distributions and the seismic responses of structures are quite complex, since ground mot... Accurate estimation of the peak seismic responses of structures is important in earthquake resistant design. The internal force distributions and the seismic responses of structures are quite complex, since ground motions are multidirectional. One key issue is the uncertainty of the incident angle between the directions of ground motion and the reference axes of the structure. Different assumed seismic incidences can result in different peak values within the scope of design spectrum analysis for a given structure and earthquake ground motion record combination. Using time history analysis to determine the maximum structural responses excited by a given earthquake record requires repetitive calculations to determine the critical incident angle. This paper presents a transformation approach for relatively accurate and rapid determination of the maximum peak responses of a linear structure subjected to three-dimensional excitations within all possible seismic incident angles. The responses can be deformations, internal forces, strains and so on. An irregular building structure model is established using SAP2000 program. Several typical earthquake records and an artificial white noise are applied to the structure model to illustrate the variation of the maximum structural responses for different incident angles. Numerical results show that for many structural parameters, the variation can be greater than 100%. This method can be directly applied to time history analysis of structures using existing computer software to determine the peak responses without carrying out the analyses for all possible incident angles. It can also be used to verify and/or modify aseismic designs by using response spectrum analysis. 展开更多
关键词 multi-component ground motion time history analysis peak structural response axis rotation
在线阅读 下载PDF
Spatial distribution of near-fault ground motion 被引量:17
9
作者 刘启方 袁一凡 金星 《地震学报》 CSCD 北大核心 2004年第2期183-192,共10页
Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground ... Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates. There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA. 展开更多
关键词 近场强地面运动 断层 方向性 近场修正因子 震源位错模型 空间分布
在线阅读 下载PDF
Effect of seawater on incident plane P and SV waves at ocean bottom and engineering characteristics of offshore ground motion records off the coast of southern California, USA 被引量:37
10
作者 Diao Hongqi Hu Jinjun Xie Lili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期181-194,共14页
The effect of seawater on vertical ground motions is studied via a theoretical method and then actual offshore ground motion records are analyzed using a statistical method. A theoretical analysis of the effect of sea... The effect of seawater on vertical ground motions is studied via a theoretical method and then actual offshore ground motion records are analyzed using a statistical method. A theoretical analysis of the effect of seawater on incident plane P and SV waves at ocean bottom indicate that on one hand, the affected frequency range of vertical ground motions is prominent due to P wave resonance in the water layer if the impedance ratio between the seawater and the underlying medium is large, but it is greatly suppressed if the impedance ratio is small; on the other hand, for the ocean bottom interface model selected herein, vertical ground motions consisting of mostly P waves are more easily affected by seawater than those dominated by SV waves. The statistical analysis of engineering parameters of offshore ground motion records indicate that:(1) Under the infl uence of softer surface soil at the seafl oor, both horizontal and vertical spectral accelerations of offshore motions are exaggerated at long period components, which leads to the peak spectral values moving to a longer period.(2) The spectral ratios(V/H) of offshore ground motions are much smaller than onshore ground motions near the P wave resonant frequencies in the water layer; and as the period becomes larger, the effect of seawater becomes smaller, which leads to a similar V/H at intermediate periods(near 2 s). These results are consistent with the conclusions of Boore and Smith(1999), but the V/H of offshore motion may be smaller than the onshore ground motions at longer periods(more than 5 s). 展开更多
关键词 offshore ground motion seawater P and SV waves vertical ground motions spectral ratio
在线阅读 下载PDF
Dominant pulse simulation of near fault ground motions 被引量:12
11
作者 S.R. Hoseini Vaez M.K. Sharbatdar +2 位作者 G. Ghodrati Amiri H. Naderpour A. Kheyroddin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期267-278,共12页
In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed ve... In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility. 展开更多
关键词 dominant pulse near fault ground motions forward directivity response spectra SIMULATION
在线阅读 下载PDF
Time-frequency response spectrum of rotational ground motion and its application 被引量:16
12
作者 Wei Che Qifeng Luo 《Earthquake Science》 CSCD 2010年第1期71-77,共7页
The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS... The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable. 展开更多
关键词 Jiji (Chi-Chi) earthquake ground motion rotational component time-frequency response spectrum damage line
在线阅读 下载PDF
Vertical coherency function model of spatial ground motion 被引量:6
13
作者 Ye Jihong Pan Jinlong Liu Xianming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第3期403-415,共13页
Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events ... Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected. 展开更多
关键词 spatial ground motion vertical coherency model coherence law of vertical ground motion coherence law of horizontal ground motion
在线阅读 下载PDF
Direct use of peak ground motion parameters for the estimation of inelastic displacement ratio of SDOF systems subjected to repeated far fault ground motions 被引量:6
14
作者 Cengizhan Durucan Muhammed Gümüs 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期771-785,共15页
This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion par... This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion parameters are used to define the scatter of the original data. The ratio of peak ground acceleration to peak ground velocity, and peak ground velocity of the ground motion records and structural parameters such as period of vibration and lateral strength ratio are used in the proposed equations. For the development of the equations, nonlinear time history analyses of single-degree-offreedom systems are conducted. Then, the results are used in a multivariate regression procedure. The equations are verified by comparing the estimated results with the calculated results. The average error and coefficient of variation of the proposed equations are presented. The analyses results revealed that the direct use of peak ground motion parameters for the estimation of inelastic displacement ratio significantly reduced the scatter in the original data and yielded accurate results. From the comparative results it is also observed that results obtained using equations specific to peak ground velocity or peak ground acceleration to peak ground velocity ratio are similar. 展开更多
关键词 C1 peak ground velocity peak ground acceleration far fault ground motions sequential ground motions
在线阅读 下载PDF
Influence of earthquake ground motion incoherency on multi-support structures 被引量:9
15
作者 杨庆山 M.Saiid Saiidi +1 位作者 王航 Ahmad Itani 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第2期167-180,共14页
A linear response history analysis method is used to determine the influence of three factors:geometric incoherency,wave-passage,and local site characteristics on the response of lnulti-support structures subjected to... A linear response history analysis method is used to determine the influence of three factors:geometric incoherency,wave-passage,and local site characteristics on the response of lnulti-support structures subjected to differential ground motions.A one-span frame and a reduced model of a 24-span bridge,located in Las Vegas,Nevada are studied,in which the influence of each of the three factors and their combinations are analyzed.It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response,which does not exist in structures subjected to uniform excitation.The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation. 展开更多
关键词 EARTHQUAKE BRIDGES ground motion incoherency wave passage local site characteristics multi-support structures
在线阅读 下载PDF
Traveling wave effect on the seismic response of a steel arch bridge subjected to near fault ground motions 被引量:12
16
作者 徐艳 George C Lee 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第3期245-257,共13页
In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering stru... In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed. 展开更多
关键词 traveling wave effect arch bridge near fault ground motion fling step long period pulses
在线阅读 下载PDF
Simulation of multi-support depth-varying earthquake ground motions within heterogeneous onshore and offshore sites 被引量:8
17
作者 Li Chao Li Hongnan +2 位作者 Hao Hong Bi Kaiming Tian Li 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期475-490,共16页
This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimens... This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures. 展开更多
关键词 seismic motion simulation onshore and offshore sites ground motion spatial variation depth-varying motions transfer function
在线阅读 下载PDF
A note on near-field site amplification effects of ground motion from a radially inhomogeneous valley 被引量:9
18
作者 Zhang Ning Gao Yufeng +1 位作者 Wu Yongxin Zhang Fei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期707-718,共12页
To improve the understanding of the near-field soil and topographic amplification effects, an analytical solution by the authors for the scattering of plane SH waves by a radially inhomogeneous semi-cylindrical valley... To improve the understanding of the near-field soil and topographic amplification effects, an analytical solution by the authors for the scattering of plane SH waves by a radially inhomogeneous semi-cylindrical valley is extended to the case of a line source of cylindrical SH waves. Upon confirmation of its accuracy with past exact solutions for a homogeneous and an inhomogeneous semi-cylindrical valley under far-field plane SH waves, the extended solution is used to calculate the ground motion amplification factors for both the homogeneous and inhomogeneous valleys subjected to near-field waves. A comprehensive parametric study is conducted with respect to the location of the wave source, the dimensionless frequency of the incident waves, and the inhomogeneity degree of the covering soil layer. It is found that more amplifications and reductions of ground motions will occur within a certain range in and around the valley as the sources are located further. Consistent with the far-field case, it is confirmed that an increase of the degree of inhomogeneity of the covering soil layer generally amplifies the ground motions significantly. 展开更多
关键词 elastic SH-waves wave scattering and diffraction ground motion amplification VALLEY CANYON
在线阅读 下载PDF
Ground motion attenuation of M_s8.0 Wenchuan earthquake 被引量:7
19
作者 Dawei Lu Jianwen Cui +1 位作者 Xiaojun Li Weiping Lian 《Earthquake Science》 CSCD 2010年第1期95-100,共6页
The great Ms8.0 Wenchuan earthquake has been the most destructive earthquake since 1949 in China. The earthquake occurred no more than half a year after the establishment of the National Strong Motion Observation Netw... The great Ms8.0 Wenchuan earthquake has been the most destructive earthquake since 1949 in China. The earthquake occurred no more than half a year after the establishment of the National Strong Motion Observation Network System (NSMONS) of China; what is more, the epicenter was located in the area with dense strong motion observation sta- tions so that a large number of strong motion records of the main shock were obtained. In this paper, 501 strong motion re- cords from 167 observation stations are utilized to establish the ground motion attenuation relations in three directions in the range of fault distance less than 600 km. The result shows the difference of seismic motion attenuation in two horizontal di- rections is insignificant. It is the first time that strong-motion records are used to establish the ground motion attenuation relations of the Ms8.0 earthquake in China. 展开更多
关键词 Wenchuan earthquake strong motion record ground motion attenuation response spectrum
在线阅读 下载PDF
Artificial ground motion compatible with specified ground shaking peaks and target response spectrum 被引量:6
20
作者 赵凤新 张郁山 吕红山 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期41-48,共8页
This article describes a hybrid simulation method to generate artificial ground motion time histories that are compatible with specified peak seismic acceleration, velocity and displacement as well as the target respo... This article describes a hybrid simulation method to generate artificial ground motion time histories that are compatible with specified peak seismic acceleration, velocity and displacement as well as the target response spectrum of absolute acceleration. First, based on traditional methods that match the target spectrum in the frequency domain, an initial acceleration time history was synthesized to satisfy the specified peak acceleration, target spectral acceleration and intensity envelope. Second, by using the inversion formula of the seismic input to a linear single-degree-of-freedom system and by superimposing a series of narrow-band time histories in the time domain, the initial time history is further modified to allow its peak velocity and displacement to approach the targets and improve its matching precision with the target spectrum. Numerical examples are provided to demonstrate that the proposed method achieves good agreement with the target values. 展开更多
关键词 artificial ground motion acceleration response spectrum ground shaking peaks spectrum matching
在线阅读 下载PDF
上一页 1 2 186 下一页 到第
使用帮助 返回顶部