期刊文献+
共找到63,613篇文章
< 1 2 250 >
每页显示 20 50 100
Microwave-assisted vs.conventional hydrodistillation of Corchorus olitorius:a chemical and enzyme inhibition study
1
作者 Salma Sameh Ahmed M Elissawy +3 位作者 Eman Al-Sayed Rola M Labib Fang-Rong Chang Abdel Nasser B Singab 《Traditional Medicine Research》 2026年第1期60-74,共15页
Background:Corchorus olitorius L.(Malvaceae)is a green leafy vegetable widely consumed in the Middle East and valued for its rich nutritional content.Its essential oils,an important class of secondary metabolites,are ... Background:Corchorus olitorius L.(Malvaceae)is a green leafy vegetable widely consumed in the Middle East and valued for its rich nutritional content.Its essential oils,an important class of secondary metabolites,are of growing interest for potential use in cosmetics and fragrance industries due to their bioactive properties.Methods:Leaves of C.olitorius cultivated in Egypt were extracted using microwave-assisted hydrodistillation(MAHD)and conventional hydrodistillation(HD).The oils were analyzed by gas chromatography-mass spectrometry(GC-MS)to characterize their chemical profiles.In vitro assays were conducted to evaluate their anti-elastase and anti-collagenase activities,and in silico studies were performed to predict the pharmacokinetic and pharmacodynamic properties of major constituents.Results:GC-MS analysis showed that aldehydes,alkanes,fatty alcohols,fatty acids,and their derivatives were the predominant compound classes in both oils.Notably,oxygenated diterpenes(11.22%)were present exclusively in the MAHD oil,while triterpenoids(16.37%)were found only in the HD oil.The MAHD oil demonstrated stronger In vitro anti-elastase(IC_(50)=42.5μg/mL)and anti-collagenase(IC_(50)=131.5μg/mL)activities compared to the HD oil(IC_(50)=66.7 and 206.8μg/mL,respectively),reflecting an approximate 36.3%improvement in elastase inhibition and 36.4%improvement in collagenase inhibition.In silico docking indicated that the triterpenoidβ-amyrin acetate showed the highest predicted binding affinity for porcine pancreatic elastase(PDB ID:6QEO,ΔG=−8.1 kcal/mol)and collagenase(PDB ID:456C,ΔG=−9.1 kcal/mol)among the major compounds analyzed.Conclusion:These findings demonstrate that MAHD is a greener and more efficient extraction method,yielding oil with enhanced enzyme inhibitory activity compared to conventional HD.The promising anti-elastase and anti-collagenase properties suggest that C.olitorius MAHD oil could serve as a potential candidate for anti-aging cosmetic formulations,following further validation. 展开更多
关键词 Corchorus olitorius essential oils microwave-assisted hydrodistillation Gas chromatography enzyme COSMETIC
暂未订购
Trifunctional endogenous mediator orchestrates efficient biocathodes via synergistic electron transfer and enzyme catalytic site modulation
2
作者 Tianhao Zhao Junlan Fang +11 位作者 Yangdi Niu Kai Zhu Libo Wang Jialiang Pan Chenhong Liu Wenbo Shi Yujia Li Xiaolei Wang Qing Zhang Lin Yang Zhengyu Bai Jun Lu 《Nano Research》 2026年第1期314-323,共10页
Microbial catalysts offer compelling advantages for oxygen reduction reaction(ORR)in microbial fuel cell(MFC)cathodes,including reduced costs and extended operational lifespans.However,their practical application rema... Microbial catalysts offer compelling advantages for oxygen reduction reaction(ORR)in microbial fuel cell(MFC)cathodes,including reduced costs and extended operational lifespans.However,their practical application remains limited by insufficient intrinsic activity at catalytic protein sites and restricted charge accessibility,both of which constrain ORR kinetics.Here,we report the development of an efficient trifunctional bioendogenous system based on menaquinone-7(MK-7),enriched from Bacillus subtilis natto(natto digester strain(ND))through a straightforward fermentation strategy.The engineered MK-7 simultaneously performs three critical functions:(i)facilitating mediated electron transfer between bacteria and electrodes,(ii)regulating the in-situ formation of size-controlled conductive polydopamine nanostructures that enhance direct electron transfer pathways,and(iii)modulating the electronic structure of cytochrome c(Cyt c)to activate its catalytic center and optimize O_(2)adsorption capacity.Through these synergistic effects,our engineered nano-hybrid ND-FM@sPDA(FM is fermentation and sPDA is size-controlled conductive polydopamine)achieves an oxygen reduction current density of 3.83 mA·cm^(-2),representing a 1.54-fold enhancement over pristine ND(2.48 mA·cm^(-2)).MFCs constructed with the ND-FM@sPDA biocathode deliver a peak power density of 412μW·cm^(-2),surpassing previously reported microbial catalysts for similar applications.This work elucidates novel regulatory mechanisms for optimizing biocatalysts at the molecular level and provides critical insights for advancing sustainable bioelectrocatalytic technologies with enhanced performance. 展开更多
关键词 endogenous mediator enzyme engineering biocathodes microbial fuel cell oxygen reduction reaction
原文传递
A Rh complex anchored cathode for cofactor regeneration and asymmetric reduction coupled with immobilized enzymes
3
作者 Yaoxuan Li Quan Yuan +4 位作者 Hao Zhao Guanhua Liu Xiaoyang Yue Yunting Liu Yanjun Jiang 《Nano Research》 2026年第1期268-277,共10页
Chiral compounds have a huge market demand in the fields of pharmaceuticals,pesticides,and fine chemicals.Enzymatic electrosynthesis can couple enzyme catalysis,possessing high product purity,high efficiency,and mild ... Chiral compounds have a huge market demand in the fields of pharmaceuticals,pesticides,and fine chemicals.Enzymatic electrosynthesis can couple enzyme catalysis,possessing high product purity,high efficiency,and mild conditions,with electrochemical regeneration of expensive cofactor nicotinamide adenine dinucleotide(NADH),possessing easy process monitoring and simple operation for efficient chiral synthesis.In this study,hydrophobic covalent organic framework(COF)was synthesized as the immobilized carrier,which not only enhanced the enzyme catalysis through enriching substrate but also enhanced the stability and reuse of the enzyme.Besides,Rh complex was anchored on hydrophilically-modified electrode to promote the regeneration of NADH,where the anchor of Rh complex can effectively avoid the mutual deactivation from the interference between electron mediator and enzyme,and simplify the separation of products.The immobilized enzyme catalysis and the electrochemical cofactor regeneration were coupled to construct an enzymatic electrosynthesis system for the efficient asymmetric reduction to obtain chiral alcohols,with a maximum turnover frequency(TOF)of 101.1 h^(-1).Furthermore,the relevant parameters of the system were optimized,and the substrate scope was expanded. 展开更多
关键词 enzymatic electrosynthesis asymmetric reduction immobilized enzyme nicotinamide adenine dinucleotide(NADH)regeneration electron mediator
原文传递
Controllable synthesis of hydrogen-bonded organic framework encapsulated enzyme for continuous production of chiral hydroxybutyric acid in a two-stage cascade microreactor 被引量:1
4
作者 Danyang Zhao Qiangqiang Xue +1 位作者 Yujun Wang Guangsheng Luo 《Chinese Journal of Chemical Engineering》 2025年第1期175-184,共10页
Constructing a framework carrier to stabilize protein conformation,induce high embedding efficiency,and acquire low mass-transfer resistance is an urgent issue in the development of immobilized enzymes.Hydrogen-bonded... Constructing a framework carrier to stabilize protein conformation,induce high embedding efficiency,and acquire low mass-transfer resistance is an urgent issue in the development of immobilized enzymes.Hydrogen-bonded organic frameworks(HOFs)have promising application potential for embedding enzymes.In fact,no metal involvement is required,and HOFs exhibit superior biocompatibility,and free access to substrates in mesoporous channels.Herein,a facile in situ growth approach was proposed for the self-assembly of alcohol dehydrogenase encapsulated in HOF.The micron-scale bio-catalytic composite was rapidly synthesized under mild conditions(aqueous phase and ambient temperature)with a controllable embedding rate.The high crystallinity and periodic arrangement channels of HOF were preserved at a high enzyme encapsulation efficiency of 59%.This bio-composite improved the tolerance of the enzyme to the acid-base environment and retained 81%of its initial activity after five cycles of batch hydrogenation involving NADH coenzyme.Based on this controllably synthesized bio-catalytic material and a common lipase,we further developed a two-stage cascade microchemical system and achieved the continuous production of chiral hydroxybutyric acid(R-3-HBA). 展开更多
关键词 Hydrogen-bonded organic framework Immobilized enzyme Synthesis Chiral hydroxycarboxylic acid BIOCATALYSIS Nanostructure
在线阅读 下载PDF
Angiotensin-converting enzyme 2 and hepatic SARS-CoV-2 infection:Regulation,association,and therapeutic implications 被引量:1
5
作者 Yu-Wei Luo Ai-Long Huang Kai-Fu Tang 《World Journal of Gastroenterology》 2025年第6期8-13,共6页
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)enters host cells via the angiotensin-converting enzyme 2(ACE2)receptor.Mounting evidence has indicated the presence of hepatic SARS-CoV-2 infection and liver... Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)enters host cells via the angiotensin-converting enzyme 2(ACE2)receptor.Mounting evidence has indicated the presence of hepatic SARS-CoV-2 infection and liver injury in pa-tients with coronavirus disease 2019(COVID-19).Understanding the mechanisms of hepatic SARS-CoV-2 infection is crucial for addressing COVID-19–related liver pathology and developing targeted therapies.This editorial discusses the signi-ficance of ACE2 in hepatic SARS-CoV-2 infection,drawing on the research by Jacobs et al.Their findings indicate that hepatic ACE2 expression,frequency of hepatic SARS-CoV-2 infection,and severity of liver injury are elevated in patients with pre-existing chronic liver diseases.These data suggest that hepatic ACE2 could be a promising therapeutic target for COVID-19. 展开更多
关键词 Hepatic angiotensin-converting enzyme 2 SARS-CoV-2 Liver infection Chronic liver diseases COVID-19 treatment
暂未订购
Rhizosphere Soil Microbial Characteristics and Enzyme Activities under Cajanus cajan and Milletia laurentii Grown in Scientific Center of Brazzaville, Republic of the Congo
6
作者 Irene Marie Cécile Mboukou-Kimbatsa Angélique Esperance Lembella Boumba +2 位作者 Alvychelle Benith Banga Augustin Aimé Lebonguy Joseph Goma-Tchimbakala 《Open Journal of Applied Sciences》 2025年第1期220-238,共19页
This study was conducted at the scientific center of Brazzaville. The objective was to assess the microbial characteristics and enzymes activities in the rhizosphere soil of Cajanus cajan and Milletia lauurentii. Thes... This study was conducted at the scientific center of Brazzaville. The objective was to assess the microbial characteristics and enzymes activities in the rhizosphere soil of Cajanus cajan and Milletia lauurentii. These plants have great importance in food and forestry. Microbial diversity management in the rhizosphere is the key for sustainable crop production or forest durability. DNA metagenomic sequencing was used to analyze the whole bacterial diversity, the microbial biomass was determinate by the fumigation-extraction method and the enzymes by the p-nitrophenol-β-D-glucoside for β-glucosidase, the p-nitrophenyl-N-acetyl-β-D-glucosaminide for β-Glucosaminidase. Dehydrogenase and acid phosphatase were quantified using 2,3,5-tryphenyl tetrazolium chloride and p-nitophenylphosphate respectively. The results show that, in Cajanus cajan culturable bacteria genera were mainly Acidobacterium, Skermanella, Rhodoplanes, Bacillus, Chloroflexus, Steroidobacter, Sphingomonas and Bradyrhizobium while in Milletia laurentii: Rhodoplanes, Bradyrhizobium, Bacillus, Sphingobacterium, Acidobacterium, Mesorhizobium, Nitrospira were the principal genera. In the two rhizosphere soils investigated, the uncultured bacteria exhibited relatively higher abundance, often for the same genera, than culturable bacteria. Metagenomic studies have revealed more bacterial diversity in each compared to when culturable bacteria were taken into account alone. The MBC and MBN were higher in the rhizosphere of Milletia than in rhizosphere of Cajanus. The same trend was observed with the enzyme activities. PCA of culturable and NMDS of unculturable soil bacteria genera shows that factors mainly involved in the carbon cycle such as MBC, members of the microbial community i.e. Acidobacterium, Skermanella, Chloroflexus, sand, C, β-glucosaminidase and dehydrogenase, were strongly correlated with Cajanus cajan. On the other hand, the MBN, Mesorhizobium, Bradyrhizobium, Burkholderia, Nitrospira, Nitratireductor, N, NH4, β-glucosidase and acid phosphatase involved in the N cycling, silt and clay were predominantly founded in the rhizosphere soil of Milletia laurentii. This study showed that metagenomic sequencing could improve the assessment of the microbial diversity structure of the rhizosphere. 展开更多
关键词 METAGENOMIC Microbial Diversity Uncultured Bacteria Microbial Biomass enzyme
在线阅读 下载PDF
Chiral inorganic nanocatalysts for electrochemical and enzyme⁃mimicked biosensing
7
作者 LIU Chuang SUN Lichao ZHANG Qingfeng 《无机化学学报》 北大核心 2025年第1期59-78,共20页
In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intrig... In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas. 展开更多
关键词 chiral inorganic nanomaterial chiral plasmonic electrochemical biosensing enzyme‑mimicked biosensing asymmetric nanocatalysis
在线阅读 下载PDF
UBE2O: A Unique Ubiquitin-conjugating Enzyme with Diverse Biological and Pathophysiological Activities
8
作者 MAO Chen-Yu WANG Ya-Li MAO Xin-Liang 《中国生物化学与分子生物学报》 北大核心 2025年第6期783-797,共15页
UBE2O is a distinctive ubiquitin-conjugating enzyme characterized by its large size(1292 residues)and dual E2/E3 enzymatic activities,enabling diverse ubiquitylation types.Unlike typical E2 enzymes(150~200 residues),U... UBE2O is a distinctive ubiquitin-conjugating enzyme characterized by its large size(1292 residues)and dual E2/E3 enzymatic activities,enabling diverse ubiquitylation types.Unlike typical E2 enzymes(150~200 residues),UBE2O’s multifunctionality allows it to regulate substrate degradation,subcellular localization,and functional modulation.Emerging studies highlight its critical roles in protein quality control,erythroid differentiation,metabolic regulation,and maintenance of circadian rhythm.Dysregulation of UBE2O is implicated in various diseases,including cancers,neurodegenerative disorders,and metabolic diseases.This review extensively discusses the unique structural features,diverse biological functions,and pathological roles of UBE2O,as well as its therapeutic potential for associated diseases. 展开更多
关键词 protein ubiquitylation ubiquitin-conjugating enzyme E2O(UBE2O) monoubiquitylation multi-monoubiquitylation polyubiquitylation
原文传递
Feeding amylolytic and fibrolytic exogenous enzymes in feedlot diets:effects on ruminal parameters,nitrogen balance and microbial diversity of Nellore cattle
9
作者 Igor Machado Ferreira Hilario Cuquetto Mantovani +12 位作者 Fiorella Viquez-Umana Yury Tatiana Granja-Salcedo Luiz Fernando Costa e Silva Anne Koontz Vaughn Holder James Eugene Pettigrew Arlan Araujo Rodrigues Aline Naime Rodrigues Mateus Jose Inacio de Abreu Saulo Teixeira Rodrigues de Almeida Pedro Marcus Pereira Vidigal Gustavo Rezende Siqueira Flavio Dutra de Resende 《Journal of Animal Science and Biotechnology》 2025年第6期2802-2819,共18页
Background The environmental impact of feedlot operations is a growing concern,as cattle excrete a significant portion of feed nutrients as waste.Exogenous feed enzymes(EFE)have gained interest for their potential to ... Background The environmental impact of feedlot operations is a growing concern,as cattle excrete a significant portion of feed nutrients as waste.Exogenous feed enzymes(EFE)have gained interest for their potential to enhance feed efficiency in ruminants by improving nutrient digestion.However,EFE effects on ruminal parameters have shown inconsistencies,with limited research on nitrogen metabolism and rumen microbiome impacts.Moreover,the synergistic effects of combining different EFEs remain unclear.This study aimed to evaluate the effects of individual and combined EFE products in feedlot diets on ruminal fermentation parameters,nitrogen metabolism,and ruminal microbial communities.Ten rumen-cannulated Nellore steers[543±28.6 kg of body weight(BW)]were distributed in a replicated Latin-square design(5×5)in individual pens.Treatments included:control(CON,no EFE supplementation),amylase[AML,0.5 g/kg of diet dry matter(DM)],xylanase(FBL,0.9 g/kg DM),half dose combination(HD,0.25 g of AML+0.45 g of FBL/kg of DM),and full dose combination(FD,0.5 g of AML+0.90 g of FBL/kg of DM).The experimental period lasted 19 d and included total urine and feces collection(d 15 to 18)and rumen fluid sampling(d 19)at 0,4,8,12,and 16 h post-feeding for ammonia,volatile fatty acids(VFA),pH and microbiome analysis.Results EFE supplemented animals exhibited lower ruminal ammonia concentrations(P=0.040),and higher acetate proportions(P<0.001)compared to the control group.EFE supplementation resulted in reduced nitrogen(N)excretion in feces(P=0.049)and urine(P=0.036),contributing to improved N retention and efficiency(P=0.045).Additionally,EFE products induced shifts in various microbial taxa at family and genera levels(P≤0.10),which may be associated with the changes observed in ruminal fermentation.Conclusions Our findings demonstrate that EFE supplementation enhances nitrogen retention,reduces ruminal ammonia,and alters ruminal fermentation profiles and microbial populations in feedlot cattle.While the expected synergism between amylase and xylanase did not significantly impact rumen fermentation parameters,it did induce shifts in the rumen microbiome.These results suggest that EFE supplementation may be a promising strategy for improving nutrient utilization and potentially reducing the environmental impact of feedlot operations. 展开更多
关键词 Amylolytic enzymes Beef cattle Fibrolytic enzymes Nitrogen metabolism Rumen microbiome
在线阅读 下载PDF
Metal-organic framework mimetic enzymes:Exploring new horizons in brain chemistry
10
作者 Changmin Liu Ying Wang +1 位作者 Yongqi Bao Yuqing Lin 《Chinese Chemical Letters》 2025年第9期92-103,共12页
Natural enzymes are able to precisely bind substrates and catalyze activities because of their distinct framework structures.To mimic this ability,chemists are designing framework structures that resemble real enzymes... Natural enzymes are able to precisely bind substrates and catalyze activities because of their distinct framework structures.To mimic this ability,chemists are designing framework structures that resemble real enzymes.The use of metal-organic frameworks(MOFs)to mimic natural enzymes has advanced recently;this paper reviews these developments.This research specifically focuses on how the catalytically active center of natural enzymes can be exactly replicated by carefully controlling the composition and structure of MOFs.By identifying and attaching to substrates,MOFs can accelerate changes in a manner akin to that of real enzymes.The role of MOFs in simulating catalytic processes,enzyme activity,and potential uses in brain chemistry are also investigated in this work.It also discusses the most recent MOF applications in detecting and treating chemical abnormalities of the brain.The report finishes with a discussion of future research areas and potential applications,providing useful insights for researchers in the subject. 展开更多
关键词 Natural enzymes Mimicking enzymes Metal-organic frameworks Chemical catalysis Brain chemistry
原文传递
Highly efficient non-enzyme glucose sensing by multicomponent CuCoNiFeSi alloy with feather-like Cu_(x)O
11
作者 Jianwu Wen Shuang-Qin Chen +6 位作者 Xindong Zhu Xiaochan Wu Hailong Peng Bingbing Li He Zhu Tao Feng Si Lan 《Rare Metals》 2025年第9期6471-6482,共12页
Extensive research focuses on developing costeffective,high-performance electrochemical non-enzyme glucose sensors,particularly using nanocomposites of metal oxides and multi-component alloys.In this paper,a batch of ... Extensive research focuses on developing costeffective,high-performance electrochemical non-enzyme glucose sensors,particularly using nanocomposites of metal oxides and multi-component alloys.In this paper,a batch of nano-flaky Cu_(x)O decorated CuCoNiFeSi(Cu_(x)O@Cu/Fe)and CuCoNiSi(Cu_(x)O@Cu)electrode was developed by melt-spinning following by anodization.According to the results,the sensitivity of Cu_(x)O@Cu/Fe-25/35 for glucose detection in the lower(0–1 mM)and higher region(1–15 and 15–21 mM)is 2.544,1.51 and0.64 mA mM^(-1)cm^(-2),respectively.The limit of detection(LOD)was estimated to be 0.88μM(signal noise ratio(S/N)=3).Furthermore,the Cu_(x)O@Cu/Fe-25/35 possessed various merits,such as excellent selectivity,good reusability,acceptable reproducibility,satisfying long-term stability,and high tolerance to chloride ions.The enhanced performances of the Cu_(x)O@Cu/Fe-25/35 electrodes are attributable to the feather-like Cu_(x)O and synergistic effect between Cu_(x)O and Ni(Fe,Co)_(3)Si_(2).The work provides a new pathway for detecting all glucose density by electrochemical non-enzymatic glucose sensor. 展开更多
关键词 Non-enzymatic glucose sensor multi-component alloy Copper oxides
原文传递
Multi-component decompositions,linear superpositions,and new nonlinear integrable coupled KdV-type systems
12
作者 Xiazhi Hao S Y Lou 《Communications in Theoretical Physics》 2025年第2期1-12,共12页
In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrabilit... In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrability.By focusing on single-component decompositions within the potential BKP hierarchy,it has been observed that specific linear superpositions of decomposition solutions remain consistent with the underlying equations.Moreover,through the implementation of multi-component decompositions within the potential BKP hierarchy,successful endeavors have been undertaken to formulate linear superposition solutions and novel coupled Kd V-type systems that resist decoupling via alterations in dependent variables. 展开更多
关键词 integrable system single-component decomposition multi-component decomposition linear superposition integrable coupled KdV-type system
原文传递
A facile high-efficiency preparation strategy for Al-containing multi-component boride microcrystals with superior comprehensive performance
13
作者 Yong Fan Jinfeng Nie +7 位作者 Zhigang Ding Yujing Zhang Xiang Chen Wei Liu Sen Yang Sida Liu Xiangfa Liu Yonghao Zhao 《Journal of Materials Science & Technology》 2025年第1期190-203,共14页
Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current method... Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current methods,however,are complicated and time-consuming,the mass production remains a chal-lenge.Herein,we proposed a new high-efficiency strategy for synthesis of MMB_(2)using molten aluminum as the medium for the first time.The prepared Al-containing multi-component borides(TiZrHfNbTa)B_(2)microcrystals had a homogeneous composition with a hexagonal AlB_(2)structure and ultra-high hardness value of∼35.3 GPa,which was much higher than data reported in the literature and the rule of mix-ture estimations.Furthermore,combined with the First-principles calculation results,we found that the Poisson’s ratio(v)values exhibit a clearly ascending trend from 0.17 at VEC=3.5 to 0.18 at VEC=3.4,then to 0.201 at VEC=3.2 with the increasing of Al content.This indicates that the intrinsic toughness of multi-component boride microcrystals is obviously enhanced by the trace-doped Al elements.Besides,the fabricated Al-containing multi-component boride microcrystals have superior oxidation activation en-ergy and structural stability.The enhanced oxidation resistance is mainly attributed to the formation of a protective Al2 O3 oxide layer and the lattice distortion,both of which lead to sluggish diffusion of O_(2).These findings propose a new unexplored avenue for the fabrication of MMB_(2)materials with supe-rior comprehensive performance including ultra-hardness and intrinsically improved thermo-mechanical properties. 展开更多
关键词 multi-component borides First-principles calculations Crystal growth Mechanical properties Oxidation behavior
原文传递
Preparation of Four Kinds of Fruit Enzymes and Detection of Their Antioxidant Activity
14
作者 Hongbing QI Tianling ZHOU 《Asian Agricultural Research》 2025年第9期31-36,43,共7页
[Objectives]To prepare four kinds of fruit enzymes from pitaya(dragon fruit),papaya,orange and pineapple,and to detect their physicochemical properties and antioxidant activities.[Methods]Using pitaya,papaya,orange an... [Objectives]To prepare four kinds of fruit enzymes from pitaya(dragon fruit),papaya,orange and pineapple,and to detect their physicochemical properties and antioxidant activities.[Methods]Using pitaya,papaya,orange and pineapple as raw materials,pitaya enzyme,papaya enzyme,orange enzyme and pineapple enzyme were obtained by natural fermentation.The physical and chemical properties and antioxidant activity of the four fruit enzymes were analyzed,and the dominant strains in papaya ferment were identified.[Results]The pH of the four fruit enzymes ranged from 3.32 to 3.59.The sensory evaluation of orange and papaya enzymes was relatively superior;among them,the orange enzyme exhibited the highest hydroxyl radical scavenging rate(95.76%),while the pineapple enzyme had the highest total phenol content(27.21μg/mL).The papaya enzyme showed the highest values for DPPH,reducing power,and flavonoids,at 70.55,1.699,and 0.1216 mg/mL,respectively.Through the comprehensive comparing,the physicochemical properties and antioxidant activity of the papaya enzyme were relatively superior,with its dominant microbial species being Lactobacillus and Saccharomyces cerevisiae.[Conclusions]Papaya enzyme is a kind of functional food with great development potential,and this study can provide reference for the development of fruit enzyme with high added value. 展开更多
关键词 PAPAYA enzyme Antioxidant activity Correlation DOMINANT strain
在线阅读 下载PDF
A de novo biomimetic enzyme-nanozyme hybrid system for advancing lignin valorization
15
作者 Xinying Wang Qing Tian +5 位作者 Yao Chen Aipeng Li Lianbing Zhang Mingming Zhang Changzhi Li Qiang Fei 《Chinese Journal of Catalysis》 2025年第5期84-94,共11页
Directed degradation of abundant renewable lignin into small aromatic compounds is crucial for lignin valorization but challenging.The degradation of lignin in natural environments typically involves multienzyme syner... Directed degradation of abundant renewable lignin into small aromatic compounds is crucial for lignin valorization but challenging.The degradation of lignin in natural environments typically involves multienzyme synergy.However,the proteinaceous characteristics of lignin-degrading enzymes restrict their accessibility to certain regions of intricate lignin,resulting in the multienzyme systems being unable to fully demonstrate their effectiveness.Herein,a de novo biomimetic enzyme-nanozyme hybrid system was constructed by combiningλ-MnO_(2) nanozyme with laccase CotA from Bacillus subtilis,aimed at facilitating lignin degradation under mild conditions.The lignin degradation rate of the CotA+λ-MnO_(2) hybrid system was determined to be 25.15%,which was much higher than those of the lignin degradation systems with only laccase CotA(15.32%)orλ-MnO_(2) nanozyme(14.90%).Notably,the proportion of aromatic chemicals in the products derived from the hybrid system reached as much as 48%,which was 41.2%and 118.2%higher than those of the CotA-andλ-MnO_(2)-catalyzed systems,respectively.Analysis of products mapping and lignin structure changes suggested that the higher proportion of aromatic compounds in the CotA+λ-MnO_(2)hybrid system was more likely to benefit from the laccase-mediated methoxylation.Moreover,electron paramagnetic resonance analysis indicated that the intensity and kind of free radicals such as·OH and·O_(2)^(-)are closely linked to the degradation rate and reaction type.This work is the inaugural application of an enzyme-nanozyme hybrid system for lignin degradation,demonstrating the potential of the synergistic interaction between enzyme and nanozyme in the directed degradation of lignin. 展开更多
关键词 LIGNIN Biomimetic hybrid VALORIZATION Nanozyme Natural enzyme
在线阅读 下载PDF
Effects of Lignite and Biochar on Enzyme Activity and Organic Carbon in Zn-contaminated Black Soil
16
作者 Dai Jianjun Liu Zhaoting +1 位作者 Su Dezhen Wang Jingyi 《Journal of Northeast Agricultural University(English Edition)》 2025年第2期23-36,共14页
In order to explore the remediation effects of lignite and biochar on Zn-contaminated soil,this experiment studied the impacts of adding lignite and biochar on soil respiration,soil enzyme activity,and organic carbon ... In order to explore the remediation effects of lignite and biochar on Zn-contaminated soil,this experiment studied the impacts of adding lignite and biochar on soil respiration,soil enzyme activity,and organic carbon in Zn-contaminated soil through soil culture experiments,which provided a theoretical basis for the remediation and improvement as well as for the development and utilization of Zn-contaminated soil.The study was an L8(4×2^(2))orthogonal experimental design with eight treatments,in which there were four levels of Zn contamination concentration(Z0:0;Z1:125 mg•kg^(-1);Z2:250 mg•kg^(-1);Z3:500 mg•kg^(-1)),low-Zn(125-250 mg•kg^(-1))and high-Zn(500 mg•kg^(-1)),two levels of lignite(H0:0;H1:13.33 g•kg^(-1)),two levels of biochar(C0:0;C1:3.33 g•kg^(-1)),with four replicates per treatment.The results showed that lignite or biochar and their interaction had extremely significant effects on both respiration rate and accumulation in Zn-contaminated soil.Among the high Zn-contaminated treatments,the mixed application of lignite and biochar(Z3H1C1 treatment)had the fastest soil respiration rate and the highest soil respiration accumulation.Lignite,biochar and their interaction had significant or extremely significant effects on sucrase,catalase and polyphenol oxidase activities in Zn-contaminated soil.Among the high Zn-contaminated treatments(Z3),the addition of biochar alone had the most significant effects on the increase of soil sucrase and catalase enzyme activities,while the mixed application of lignite and biochar had the most significant effects on the increase of soil polyphenol oxidase activity.Lignite,biochar and their interaction had significant or extremely significant effects on the total organic carbon,active organic carbon and microbial carbon content of Zn-contaminated soils.Soil total organic carbon content in general peaked at day 80.Among the high Zn-contaminated treatments,the addition of biochar alone had the most significant effects on the total organic carbon content of the soil,while the mixed application of lignite and biochar had the most significant effect on the microbiomass carbon content. 展开更多
关键词 Zn pollution LIGNITE BIOCHAR enzyme activity organic carbon
在线阅读 下载PDF
Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor
17
作者 Qiang Feng Jindong Hao +3 位作者 Ya Hu Rong Fu Wei Wei Dong Yi 《Chinese Chemical Letters》 2025年第6期484-488,共5页
A convenient photocatalytic multi-component reaction of alkenes,quinoxalin-2(1H)-ones,and diazo compounds has been developed in the presence of water.A number of ester-containing quinoxalin-2(1H)-ones could be efficie... A convenient photocatalytic multi-component reaction of alkenes,quinoxalin-2(1H)-ones,and diazo compounds has been developed in the presence of water.A number of ester-containing quinoxalin-2(1H)-ones could be efficiently obtained in moderate to good yields at room temperature.This metal-free visiblelight-driven tandem reaction was conducted through proton-coupled electron transfer(PCET)process using water as the hydrogen donor and 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene(4CzIPN)as the photocatalyst. 展开更多
关键词 PHOTOCATALYTIC multi-component synthesis Diazo compounds Radical reaction Quinoxalin-2(1H)-ones
原文传递
Deubiquitinating Enzyme OTUDs:Focus on Cancers and Antiviral Response
18
作者 Lang Chen Rui Dong Xuan Huan 《Oncology Research》 2025年第10期2833-2856,共24页
Deubiquitinating enzymes(DUBs)are key enzymes capable of cleaving ubiquitin chains and synergizing with ubiquitination modifications to regulate the function of key proteins andmaintain normal physiological functions.... Deubiquitinating enzymes(DUBs)are key enzymes capable of cleaving ubiquitin chains and synergizing with ubiquitination modifications to regulate the function of key proteins andmaintain normal physiological functions.OTUDs are a key subfamily of the ovarian tumor protease(OTU)family,with important DUB activities,and include mainly OTUD1,OTUD2,OTUD3,OTUD4,OTUD5,OTUD6A,and OTUD6B.In recent years,research on OTUD proteins has been gradually emphasized,and their aberrant expression has demonstrated significant research value in many diseases,such as cancer,immune abnormalities,neurological disorders,and embryonic developmental abnormalities.Therefore,a comprehensive understanding of the regulatory mechanisms of OTUD proteins and their use as therapeutic targets for diseases is of great value.This article focuses on the role of individual OTUD proteins in cancer progression and antiviral response.Importantly,in the context of cancer,we elaborate on their deubiquitinated protein targets and summarize the signaling mechanisms by which they promote or inhibit cancer progression.In the future,targeting OTUD proteins may become a therapeutic direction for cancer,and this review may be useful for research related to OTUD proteins and cancer.At present,there is a lack of research on targeted inhibitors or activators of OTUDs.More in vivo and in vitro studies on OTUDs may contribute to the development of inhibitors or agonists targeting OTUDs.Of course,when conducting these studies,researchers also need to pay attention to the impact of OTUDs on the host’s antiviral immune response. 展开更多
关键词 Deubiquitinating enzymes(DUBs) OTUDs CANCER antiviral response
暂未订购
Malic enzyme 3 mediated the effects of malic acid on intestinal redox status and feed efficiency in broilers
19
作者 Hongfeng Jiang Genghui Li +6 位作者 Xue Yang Xiaohua Feng Penglin Li Huisi Yang Demin Cai Qingyan Jiang Gang Shu 《Journal of Animal Science and Biotechnology》 2025年第2期913-930,共18页
Background Intestinal oxidative stress serves as an endogenous host defense against the gut microbiota by increas-ing energy expenditure and therefore decreasing feed efficiency(FE).Several systems coordinately regula... Background Intestinal oxidative stress serves as an endogenous host defense against the gut microbiota by increas-ing energy expenditure and therefore decreasing feed efficiency(FE).Several systems coordinately regulate redox bal-ance,including the mitochondrial respiratory chain,nicotinamide adenine dinucleotide phosphate(NADPH)oxidase,and different antioxidants.However,it remains unclear which redox balance compartments in the intestine are crucial for determining FE.Results In this study,we first screened the key targets of different metabolites and redox balance-related gene expression in broiler ceca.We then constructed a mouse colitis model to explore malic acid(MA)ability to allevi-ate intestinal inflammation.We further used controlled release technology to coat MA and investigated its effects on the intestinal redox status and FE in vivo.Finally,we examined the underlying mechanism by which MA modulated redox status using a porcine intestinal epithelial cell jejunum 2(IPEC-J2)cell model in vitro.Our results demonstrated that the MA/malic enzyme 3(ME3)pathway may play an important role in reducing oxidative stress in the broiler cecum.In addition,colon infusion of MA attenuated inflammatory phenotypes in the dextran sulfate sodium salt(DSS)induced mouse colitis model.Then,dietary supplementation with controlled-release MA pellet(MAP)reduced the feed to gain(F/G)ratio and promoted chicken growth,with reduced oxidative stress and increased bacterial diver-sity.Finally,the in vitro IPEC-J2 cell model revealed that ME3 mediated the effect of MA on cellular oxidative stress.Conclusion In summary,our study firstly revealed the important role of the MA/ME3 system in the hindgut of broiler chickens for improving intestinal health and FE,which may also be crucial for the implications of colon inflammation associated diseases. 展开更多
关键词 COLITIS Feed efficiency Malic acid Malic enzyme 3 Redox
在线阅读 下载PDF
Effects of Climate Warming on Resting Metabolic Rate and Metabolic Enzyme Activities of Takydromus septentrionalis
20
作者 Jixiang ZHANG Cheng QIN +4 位作者 Yubin TIAN Jiahuan WANG Shuran LI Yongpu ZHANG Weiguo DU 《Asian Herpetological Research》 2025年第2期202-209,共8页
The dependence of energy metabolism on temperature is universally recognized as a critical physiological hallmark for evaluating the susceptibility of ectothermic organisms to global warming.However,the underlying phy... The dependence of energy metabolism on temperature is universally recognized as a critical physiological hallmark for evaluating the susceptibility of ectothermic organisms to global warming.However,the underlying physiological and biochemical bases of this temperature dependence remain largely unknown.In this study,we conducted a simulated climate warming experiment under seminatural enclosure conditions and compared the differences in resting metabolic rate (RMR) and key metabolic enzyme activities between the warming and control groups of Takydromus septentrionalis at various test temperatures.We found that the activities of hexokinase,lactate dehydrogenase,alanine aminotransferase and acetyl-CoA carboxylase of T.septentrionalis were not affected by climate warming,despite a decrease in RMR measured at high temperatures of 34°C and 38°C.Overall,these findings suggest that artificial warming simulating climate change can lead to a decline in RMR,but does not alter the activity of key metabolic enzymes.Our study provides insight into how climate warming influences the energy metabolism of lizards. 展开更多
关键词 climate warming metabolic enzyme physiological plasticity resting metabolic rates
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部