The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat tr...The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat transfer in wellbore,fracture and reservoir.The influences of fracturing parameters and fracture parameters on the responses of distributed temperature sensing(DTS)are analyzed,and a diagnosis method of fracture parameters is presented based on the simulated annealing algorithm.A field case study is introduced to verify the model’s reliability.Typical V-shaped characteristics can be observed from the DTS responses in the multi-cluster fracturing process,with locations corresponding to the hydraulic fractures.The V-shape depth is shallower for a higher injection rate and longer fracturing and shut-in time.Also,the V-shape is wider for a higher fracture-surface leakoff coefficient,longer fracturing time and smaller fracture width.Additionally,the cooling effect near the wellbore continues to spread into the reservoir during the shut-in period,causing the DTS temperature to decrease instead of rise.Real-time monitoring and interpretation of DTS temperature data can help understand the fracture propagation during fracturing operation,so that immediate measures can be taken to improve the fracturing performance.展开更多
Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fractur...Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fracturing model for a horizontal well in shale with high-density bedding planes is established.The fracture morphology,fracture geometry,fracturing area and multiple fracture propagation mechanism are analyzed under simultaneous fracturing,sequential fracturing,and alternative fracturing.Results show that in the case of small cluster spacing and three clusters,the growth of the middle fracture is inhibited and develops along the bedding planes under both simultaneous fracturing and alternative fracturing.For sequential fracturing,the increase in the interval time between each fracturing advances the post fracturing fracture deflecting to the pre-existing fractures through the bedding planes.The reactivation of the bedding planes can promote the extension of the fracturing area.Increasing the injection rate and the number of clusters promotes the activation of bedding planes.However,it is preferable to reduce the number of clusters to obtain more main fractures.Compared with modified alternating fracturing and cyclic alternating fracturing,alternating shut-in fracturing creates more main fractures towards the direction of the maximum in-situ stress.The fracturing efficiency for high-density layered shale is ranked as simultaneous fracturing>alternative fracturing>sequential fracturing.展开更多
The authors regret Acknowledgements Firstly,the authors wish to acknowledge the academic support from Ruhr University Bochum during the first author's(Xiao Yan)research stay from 2018.11 to 2020.10,including the s...The authors regret Acknowledgements Firstly,the authors wish to acknowledge the academic support from Ruhr University Bochum during the first author's(Xiao Yan)research stay from 2018.11 to 2020.10,including the soft code implement and debug support from Vladislav Gudzulic and academic advising from Günther Meschke.展开更多
The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the...The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.展开更多
Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown a...Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.展开更多
The effectiveness of horizontal well multi-stage and multi-cluster fracturing in the fractured soft coal seam roof for coalbed methane(CBM) extraction has been demonstrated.This study focuses on the geological charact...The effectiveness of horizontal well multi-stage and multi-cluster fracturing in the fractured soft coal seam roof for coalbed methane(CBM) extraction has been demonstrated.This study focuses on the geological characteristics of the No.5 and No.11 coal seams in the Hancheng Block,Ordos Basin,China.A multi-functional,variable-size rock sample mold capable of securing the wellbore was developed to simulate layered formations comprising strata of varying lithology and thicknesses.A novel segmented fracturing simulation method based on an expandable pipe plugging technique is proposed.Large-scale true triaxial experiments were conducted to investigate the effects of horizontal wellbore location,perforation strategy,roof lithology,and vertical stress difference on fracture propagation,hydraulic energy variation,and the stimulated reservoir volume in horizontal wells targeting the soft coal seam roof.The results indicate that bilateral downward perforation with a phase angle of 120° optimizes hydraulic energy conservation,reduces operational costs,enhances fracture formation,and prevents fracturing failure caused by coal powder generation and migration.This perforation mode is thus considered optimal for coal seam roof fracturing.When the roof consists of sandstone,each perforation cluster tends to initiate a single dominant fracture with a regular geometry.In contrast,hydraulic fractures formed in mudstone roofs display diverse morphology.Due to its high strength,the sandstone roof requires significantly higher pressure for crack initiation and propagation,whereas the mudstone roof,with its strong water sensitivity,exhibits lower fracturing pressures.To mitigate inter-cluster interference,cluster spacing in mudstone roofs should be greater than that in sandstone roofs.Horizontal wellbore placement critically influences fracturing effectiveness.For indirect fracturing in sandstone roofs,an optimal position is 25 mm away from the lithological interface.In contrast,the optimal location for indirect fracturing in mudstone roofs is directly at the lithological interface with the coal seam.Higher vertical stress coefficients lead to increased fractu ring pressures and promote vertical,layer-penetrating fractures.A coefficient of 0.5 is identified as optimal for achieving effective indirect fracturing.This study provides valuable insights for the design and optimization of staged fracturing in horizontal wells targeting crushed soft coal seam roofs.展开更多
This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion w...This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion with multi-cluster sand jetting perforation.The effects of temporary plugging agent(TPA)particle size,TPA concentration,single-cluster perforation number and cluster number on plugging pressure,multi-fracture diversion pattern and distribution of TPAs were investigated.A combination of TPAs with small particle sizes within the fracture and large particle sizes within the segment is conducive to increasing the plugging pressure and promoting the diversion of multi-fractures.The addition of fibers can quickly achieve ultra-high pressure,but it may lead to longitudinal fractures extending along the wellbore.The temporary plugging peak pressure increases with an increase in the concentration of the TPA,reaching a peak at a certain concentration,and further increases do not significantly improve the temporary plugging peak pressure.The breaking pressure and temporary plugging peak pressure show a decreasing trend with an increase in single-cluster perforation number.A lower number of single-cluster perforations is beneficial for increasing the breaking pressure and temporary plugging peak pressure,and it has a more significant control on the propagation of multi-cluster fractures.A lower number of clusters is not conducive to increasing the total number and complexity of artificial fractures,while a higher number of clusters makes it difficult to achieve effective plugging.The TPAs within the fracture is mainly concentrated in the complex fracture areas,especially at the intersections of fractures.Meanwhile,the TPAs within the segment are primarily distributed near the perforation cluster apertures which initiated complex fractures.展开更多
Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks be...Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.展开更多
To elucidate the dynamic characteristics of in-situ methane deflagration in coalbed methane wellbores and its mechanisms for fracturing coal rock,this study first developed a simulation experimental system specificall...To elucidate the dynamic characteristics of in-situ methane deflagration in coalbed methane wellbores and its mechanisms for fracturing coal rock,this study first developed a simulation experimental system specifically designed for methane in-situ deflagration fracturing.This experimental system,which is capable of withstanding pressures up to 150 MPa and meanwhile applying axial and confining pressures of up to 50 MPa to rock cores,enables the coupled simulation on methane deflagration and rock core fracturing processes.With the aid of this experimental system,physical simulation experiments on in-situ methane deflagration fracturing were conducted,and the following findings were obtained.Methane deflagration loads in enclosed wellbores exhibit characteristics of multi-level pulsed oscillation.With the rise of initial gas pressure,the peak deflagration load increases approximately linearly,with the pressure amplification factor spanning from 23.14 to 31.10,and its peak loading rate grows exponentially.Accordingly,the fracture volume and fracture porosity augment.To be specific,when the initial gas pressure rises from 0.6 to 2.4 MPa,the fracture volume and fracture porosity augment by factors of 14.0 and 8.73,respectively.The fractal dimension of spatial distribution of fractures also increases with the rise of deflagration load,indicating that a higher deflagration load conduces to the development of a larger and more complex fracture network.Methane deflagration fracturing is characterized as a composite fracture mode that involves the impact of strong stress waves and the driving force of high-pressure fluids.The primary factors influencing damage to coal-rock include the high-stress impact in the initial stage of deflagration,the fluid pressure driving effect in the middle stage,and the thermal shock resulting from high temperatures in the later stage.展开更多
Through a case analysis,this study examines the spatiotemporal evolution of microseismic(MS)events,energy characteristics,volumetric features,and fracture network development in surface well hydraulic fracturing.A tot...Through a case analysis,this study examines the spatiotemporal evolution of microseismic(MS)events,energy characteristics,volumetric features,and fracture network development in surface well hydraulic fracturing.A total of 349 MS events were analyzed across different fracturing sections,revealing significant heterogeneity in fracture propagation.Energy scanning results showed that cumulative energy values ranged from 240 to 1060 J across the sections,indicating notable differences.Stimulated reservoir volume(SRV)analysis demonstrated well-developed fracture networks in certain sections,with a total SRV exceeding 1540000 m^(3).The hydraulic fracture network analysis revealed that during the midfracturing stage,the density and spatial extent of MS events significantly increased,indicating rapid fracture propagation and the formation of complex networks.In the later stage,the number of secondary fractures near fracture edges decreased,and the fracture network stabilized.By comparing the branching index,fracture length,width,height,and SRV values across different fracturing sections,Sections No.1 and No.8 showed the best performance,with high MS event densities,extensive fracture networks,and significant energy release.However,Sections No.4 and No.5 exhibited sparse MS activity and poor fracture connectivity,indicating suboptimal stimulation effectiveness.展开更多
With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,sha...With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,shale oil and gas reservoirs have become the focus of unconventional oil and gas resources exploration and development.Based on the characteristics of shale oil and gas reservoirs,supercritical CO_(2) fracturing is more conducive to improving oil recovery than other fracturing technologies.In this paper,the mechanism of fracture initiation and propagation of supercritical CO_(2) in shale is analyzed,including viscosity effect,surface tension effect,permeation diffusion effect of supercritical CO_(2),and dissolution-adsorption effect between CO_(2) and shale.The effects of natural factors,such as shale properties,bedding plane and natural fractures,and controllable factors,proppant,temperature,pressure,CO_(2) concentration and injection rate on fracture initiation and propagation are clarified.The methods of supercritical CO_(2) fracturing process,thickener and proppant optimization to improve the efficiency of supercritical CO_(2) fracturing are discussed.In addition,some new technologies of supercritical CO_(2) fracturing are introduced.The challenges and prospects in the current research are also summarized.For example,supercritical CO_(2) is prone to filtration when passing through porous media,and it is difficult to form a stable flow state.Therefore,in order to achieve stable fracturing fluid suspension and effectively support fractu res,it is urge nt to explo re new fracturing fluid additives or improve fracturing fluid formulations combined with the research of new proppants.This paper is of great significance for understanding the behavior mechanism of supercritical CO_(2) in shale and optimizing fracturing technology.展开更多
Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hyd...Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.展开更多
Supercritical CO_(2)(SC-CO_(2))fracturing stands out a promising waterless stimulation technique in the development of unconventional resources.While numerous studies have delved into the inducedfracture mechanism of ...Supercritical CO_(2)(SC-CO_(2))fracturing stands out a promising waterless stimulation technique in the development of unconventional resources.While numerous studies have delved into the inducedfracture mechanism of SC-CO_(2),the small scale of rock samples and synthetic materials used in many studies have limited a comprehensive understanding of fracture propagation in unconventional formations.In this study,cubic tight sandstone samples with dimensions of 300 mm were employed to conduct SC-CO_(2)fractu ring experiments under true-triaxial stre ss conditions.The spatial morphology and quantitative attributes of fracture induced by water and SC-CO_(2)fracturing were compared,while the impact of in-situ stress on fracture propagation was also investigated.The results indicate that the SCCO_(2)fracturing takes approximately ten times longer than water fracturing.Furthermore,under identical stress condition,the breakdown pressure(BP)for SC-CO_(2)fracturing is nearly 25%lower than that for water fracturing.A quantitative analysis of fracture morphology reveals that water fracturing typically produces relatively simple fracture pattern,with the primary fracture distribution predominantly controlled by bedding planes.In contrast,SC-CO_(2)fracturing results in a more complex fracture morphology.As the differential of horizontal principal stress increases,the BP for SC-CO_(2)fractured rock exhibits a downward trend,and the induced fracture morphology becomes more simplified.Moreover,the presence of abnormal in-situ stress leads to a further increase in the BP for SC-CO_(2)fracturing,simultaneously enhancing the development of a more conductive fracture network.These findings provide critical insights into the efficiency and behavior of SC-CO_(2)fracturing in comparison to traditional water-based fracturing,offering valuable implication for its potential applications in unconventional reservoirs.展开更多
Multi-stage and multi-cluster fracturing(MMF)is a crucial technology in unconventional oil and gas development,aiming to enhance production by creating extensive fracture networks.However,achieving uniform expansion o...Multi-stage and multi-cluster fracturing(MMF)is a crucial technology in unconventional oil and gas development,aiming to enhance production by creating extensive fracture networks.However,achieving uniform expansion of multi-cluster hydraulic fractures(HFs)in MMF remains a significant challenge.Field practice has shown that the use of temporary plugging and diversion fracturing(TPDF)can promote the balanced expansion of multi-cluster HFs.This study conducted TPDF experiments using a true triaxial fracturing simulation system setting a horizontal well completion with multi-cluster jetting perforations to investigate the equilibrium initiation and extension of multi-cluster fractures.The influence of key parameters,including cluster spacing,fracturing fluid viscosity,differential stress,and fracturing fluid injection rate,on fracture initiation and propagation was systematically examined.The results indicate that while close-spaced multi-cluster fracturing significantly increases the number of HFs,it also leads to uneven extension of HFs in their propagation.In contrast,TPDF demonstrates effectiveness in mitigating uneven HF extension,increasing the number of HFs,and creating a larger stimulated reservoir volume,ultimately leading to improved oil and gas well productivity.Moreover,under conditions of high differential stress,the differential stress within the formation exerts a stronger guiding effect in HFs,which are more closely aligned with the minimum principal stress.Low-viscosity fluids facilitate rapid and extensive fracture propagation within the rock formation.High-volume fluid injection,on the other hand,more comprehensively fills the formation.Therefore,employing lowviscosity and high-volume fracturing is advantageous for the initiation and extension of multi-cluster HFs.展开更多
To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturin...To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification.展开更多
Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring...Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials.展开更多
To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model ...To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model coupled with flow,stress and damage is proposed.A traction-separation law is used to describe the mixed-mode response of the damaged adhesive fractures,and the cubic law is used to describe the fluid flow within the fractures.The rock deformation is controlled by the in-situ stress,fracture cohesion and fluid pressure on the hydraulic fracture surface.The coupled finite element equations are solved by the explicit time difference method.The effects of the fracturing treatment parameters including fluid viscosity,pumping rate and cluster spacing on the geometries of multifractures are investigated.The results show that variable fluid-viscosity injection can improve the complexity of the fracture network and height of the main fractures simultaneously.The pumping rate of15 m^(3)/min,variable fluid-viscosity of 3-9-21-36-45 mPa s with a cluster spacing of 7.5 m is the ideal treatment strategy.The field application shows that the peak daily production of the application well with the optimized injection procedu re of variable fluid-viscosity fracturing is 171 tons(about 2.85 times that of the adjacent well),which is the highest daily production record of a single shale oil well in China,marking a strategic breakthrough of commercial shale oil production in the Jiyang Depression,Shengli Oilfield.The variable fluid-viscosity fracturing technique is proved to be very effective for improving shale oil production.展开更多
Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides ne...Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides new approaches to enhance hydrate development effectiveness.Addressing the current lack of quantitative and objective methods for evaluating the fracability of hydrate reservoirs,this study clarifies the relationship between geological and engineering fracability and proposes a comprehensive evaluation model for hydrate reservoir fracability based on grey relational analysis and the criteria importance through intercriteria correlation method.By integrating results from hydraulic fracturing experiments on hydrate sediments,the fracability of hydrate reservoirs is assessed.The concept of critical construction parameter curves for hydrate reservoirs is introduced for the first time.Additionally,two-dimensional fracability index evaluation charts and three-dimensional fracability construction condition discrimination charts are established.The results indicate that as the comprehensive fracability index increases,the feasibility of forming fractures in hydrate reservoirs improves,and the required normalized fracturing construction parameters gradually decrease.The accuracy rate of the charts in judging experimental results reached 89.74%,enabling quick evaluations of whether hydrate reservoirs are worth fracturing,easy to fracture,and capable of being fractured.This has significant engineering implications forthehydraulicfracturingof hydratereservoirs.展开更多
Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fract...Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.展开更多
Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude ...Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude M_(L)≥1.5 in the Changning shale gas field from January 2016 to May 2017 by fitting three-component waveforms.We then constrain the directions of the maximum horizontal stress(σ_(H_(max)))for four dense earthquake clusters using the stress tensor inversion method.The stress drops of 121 earthquakes with M_(L)≥1.5 are calculated using the spectral ratio method.We examine the spatiotemporal heterogeneity of stress field,and discuss the cause of non-double-couple(non-DC)components in seismicity clusters.Following the Mohr-Coulomb criterion,we estimate the fluid overpressure thresholds from FMS for different seismic clusters,providing insights into potential physical mechanisms for induced seismicity.The FMS results indicate that shallow reverse earthquakes,with steep dip angles,characterize most events.The source mechanisms of earthquakes with M_(L)≥1.5 are dominated by DC components(>70%),but several earthquakes with M_(L)>3.0 and the microseismic events nearby during injection period display significant non-DC components(>30%).Stress inversion results reveal that the σ_(H_(max)) direction ranges from 120°to 128°.Stress drops of earthquakes range between 0.10 and 64.49 MPa,with high values occurring on reverse faults situated at a greater distance from the shale layer,accompanied by a moderate rotation(≤25°)in the trend of σ_(H_(max)).The seismic clusters close to the shale layer exhibit low fluid overpressure thresholds,prone to being triggered by high pore-pressure fluid.The integrated results suggest that the diffusion of high pore pressures is likely to be the primary factor for observed earthquakes.The present results are expected to offer valuable insights into the origin of anomalous seismicity near the shale gas sites.展开更多
基金Supported by the National High-Tech Research Project(GJSCB-HFGDY-2024-004)National Natural Science Foundation of China(12402305)+2 种基金Postdoctoral Fellowship Program of CPSF(GZC20232200)China Postdoctoral Science Foundation(2024M762703)Sichuan Science and Technology Program(2025ZNSFSC1352)。
文摘The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat transfer in wellbore,fracture and reservoir.The influences of fracturing parameters and fracture parameters on the responses of distributed temperature sensing(DTS)are analyzed,and a diagnosis method of fracture parameters is presented based on the simulated annealing algorithm.A field case study is introduced to verify the model’s reliability.Typical V-shaped characteristics can be observed from the DTS responses in the multi-cluster fracturing process,with locations corresponding to the hydraulic fractures.The V-shape depth is shallower for a higher injection rate and longer fracturing and shut-in time.Also,the V-shape is wider for a higher fracture-surface leakoff coefficient,longer fracturing time and smaller fracture width.Additionally,the cooling effect near the wellbore continues to spread into the reservoir during the shut-in period,causing the DTS temperature to decrease instead of rise.Real-time monitoring and interpretation of DTS temperature data can help understand the fracture propagation during fracturing operation,so that immediate measures can be taken to improve the fracturing performance.
基金the financial support from Intergovernmental International Science and Technology Innovation Cooperation Key Project(2022YFE0128400)National Natural Science Foundation of China(42307209)+2 种基金Shanghai Pujiang Program(2022PJD076)State Energy Center for Shale Oil Research and Development(33550000-22-ZC0613-0365)Natural Science Foundation of Qinghai Province(No.2024-ZJ-717).
文摘Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fracturing model for a horizontal well in shale with high-density bedding planes is established.The fracture morphology,fracture geometry,fracturing area and multiple fracture propagation mechanism are analyzed under simultaneous fracturing,sequential fracturing,and alternative fracturing.Results show that in the case of small cluster spacing and three clusters,the growth of the middle fracture is inhibited and develops along the bedding planes under both simultaneous fracturing and alternative fracturing.For sequential fracturing,the increase in the interval time between each fracturing advances the post fracturing fracture deflecting to the pre-existing fractures through the bedding planes.The reactivation of the bedding planes can promote the extension of the fracturing area.Increasing the injection rate and the number of clusters promotes the activation of bedding planes.However,it is preferable to reduce the number of clusters to obtain more main fractures.Compared with modified alternating fracturing and cyclic alternating fracturing,alternating shut-in fracturing creates more main fractures towards the direction of the maximum in-situ stress.The fracturing efficiency for high-density layered shale is ranked as simultaneous fracturing>alternative fracturing>sequential fracturing.
文摘The authors regret Acknowledgements Firstly,the authors wish to acknowledge the academic support from Ruhr University Bochum during the first author's(Xiao Yan)research stay from 2018.11 to 2020.10,including the soft code implement and debug support from Vladislav Gudzulic and academic advising from Günther Meschke.
基金financial support by the National Key Research and Development Program of China (No.2022YFE0129800)the National Natural Science Foundation of China (No.52074311)。
文摘The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.
基金The work is supported by the Sub-Project of“Research on Key Technologies and Equipment of Reservoir Stimulation”of China National Petroleum Corporation Post–14th Five-Year Plan Forward-Looking Major Science and Technology Project“Research on New Technology of Monitoring and Diagnosis of Horizontal Well Hydraulic Fracture Network Distribution Pattern”(2021DJ4502).
文摘Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.
基金support from China National Natural Science Foundation (11672333)。
文摘The effectiveness of horizontal well multi-stage and multi-cluster fracturing in the fractured soft coal seam roof for coalbed methane(CBM) extraction has been demonstrated.This study focuses on the geological characteristics of the No.5 and No.11 coal seams in the Hancheng Block,Ordos Basin,China.A multi-functional,variable-size rock sample mold capable of securing the wellbore was developed to simulate layered formations comprising strata of varying lithology and thicknesses.A novel segmented fracturing simulation method based on an expandable pipe plugging technique is proposed.Large-scale true triaxial experiments were conducted to investigate the effects of horizontal wellbore location,perforation strategy,roof lithology,and vertical stress difference on fracture propagation,hydraulic energy variation,and the stimulated reservoir volume in horizontal wells targeting the soft coal seam roof.The results indicate that bilateral downward perforation with a phase angle of 120° optimizes hydraulic energy conservation,reduces operational costs,enhances fracture formation,and prevents fracturing failure caused by coal powder generation and migration.This perforation mode is thus considered optimal for coal seam roof fracturing.When the roof consists of sandstone,each perforation cluster tends to initiate a single dominant fracture with a regular geometry.In contrast,hydraulic fractures formed in mudstone roofs display diverse morphology.Due to its high strength,the sandstone roof requires significantly higher pressure for crack initiation and propagation,whereas the mudstone roof,with its strong water sensitivity,exhibits lower fracturing pressures.To mitigate inter-cluster interference,cluster spacing in mudstone roofs should be greater than that in sandstone roofs.Horizontal wellbore placement critically influences fracturing effectiveness.For indirect fracturing in sandstone roofs,an optimal position is 25 mm away from the lithological interface.In contrast,the optimal location for indirect fracturing in mudstone roofs is directly at the lithological interface with the coal seam.Higher vertical stress coefficients lead to increased fractu ring pressures and promote vertical,layer-penetrating fractures.A coefficient of 0.5 is identified as optimal for achieving effective indirect fracturing.This study provides valuable insights for the design and optimization of staged fracturing in horizontal wells targeting crushed soft coal seam roofs.
基金Supported by the National Natural Science Foundation of China(51974332).
文摘This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion with multi-cluster sand jetting perforation.The effects of temporary plugging agent(TPA)particle size,TPA concentration,single-cluster perforation number and cluster number on plugging pressure,multi-fracture diversion pattern and distribution of TPAs were investigated.A combination of TPAs with small particle sizes within the fracture and large particle sizes within the segment is conducive to increasing the plugging pressure and promoting the diversion of multi-fractures.The addition of fibers can quickly achieve ultra-high pressure,but it may lead to longitudinal fractures extending along the wellbore.The temporary plugging peak pressure increases with an increase in the concentration of the TPA,reaching a peak at a certain concentration,and further increases do not significantly improve the temporary plugging peak pressure.The breaking pressure and temporary plugging peak pressure show a decreasing trend with an increase in single-cluster perforation number.A lower number of single-cluster perforations is beneficial for increasing the breaking pressure and temporary plugging peak pressure,and it has a more significant control on the propagation of multi-cluster fractures.A lower number of clusters is not conducive to increasing the total number and complexity of artificial fractures,while a higher number of clusters makes it difficult to achieve effective plugging.The TPAs within the fracture is mainly concentrated in the complex fracture areas,especially at the intersections of fractures.Meanwhile,the TPAs within the segment are primarily distributed near the perforation cluster apertures which initiated complex fractures.
基金financially supported by,the Fundamental Research Funds for the Central Universities(Grant No.2023QN1064)the China Postdoctoral Science Foundation(Grant No.2023M733772)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB847)。
文摘Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.
基金National Key Research and Development Program of China,2020YFA0711800,Ting LiuNational Natural Science Foundation of China,52274241,Ting Liu,52474261,Ting Liu+2 种基金Basic Research Program of Jiangsu,BK20240207,Ting Liuthe Fundamental Research Funds for the Central Universities(2023KYJD1007)China Postdoctoral Science Foundation(2022M722672).
文摘To elucidate the dynamic characteristics of in-situ methane deflagration in coalbed methane wellbores and its mechanisms for fracturing coal rock,this study first developed a simulation experimental system specifically designed for methane in-situ deflagration fracturing.This experimental system,which is capable of withstanding pressures up to 150 MPa and meanwhile applying axial and confining pressures of up to 50 MPa to rock cores,enables the coupled simulation on methane deflagration and rock core fracturing processes.With the aid of this experimental system,physical simulation experiments on in-situ methane deflagration fracturing were conducted,and the following findings were obtained.Methane deflagration loads in enclosed wellbores exhibit characteristics of multi-level pulsed oscillation.With the rise of initial gas pressure,the peak deflagration load increases approximately linearly,with the pressure amplification factor spanning from 23.14 to 31.10,and its peak loading rate grows exponentially.Accordingly,the fracture volume and fracture porosity augment.To be specific,when the initial gas pressure rises from 0.6 to 2.4 MPa,the fracture volume and fracture porosity augment by factors of 14.0 and 8.73,respectively.The fractal dimension of spatial distribution of fractures also increases with the rise of deflagration load,indicating that a higher deflagration load conduces to the development of a larger and more complex fracture network.Methane deflagration fracturing is characterized as a composite fracture mode that involves the impact of strong stress waves and the driving force of high-pressure fluids.The primary factors influencing damage to coal-rock include the high-stress impact in the initial stage of deflagration,the fluid pressure driving effect in the middle stage,and the thermal shock resulting from high temperatures in the later stage.
基金supported by Yunlong Lake Laboratory of Deep Underground Science and Engineering Project(No.104024008)the National Natural Science Foundation of China(Nos.52274241 and 52474261)the Natural Science Foundation of Jiangsu Province(No.BK20240207).
文摘Through a case analysis,this study examines the spatiotemporal evolution of microseismic(MS)events,energy characteristics,volumetric features,and fracture network development in surface well hydraulic fracturing.A total of 349 MS events were analyzed across different fracturing sections,revealing significant heterogeneity in fracture propagation.Energy scanning results showed that cumulative energy values ranged from 240 to 1060 J across the sections,indicating notable differences.Stimulated reservoir volume(SRV)analysis demonstrated well-developed fracture networks in certain sections,with a total SRV exceeding 1540000 m^(3).The hydraulic fracture network analysis revealed that during the midfracturing stage,the density and spatial extent of MS events significantly increased,indicating rapid fracture propagation and the formation of complex networks.In the later stage,the number of secondary fractures near fracture edges decreased,and the fracture network stabilized.By comparing the branching index,fracture length,width,height,and SRV values across different fracturing sections,Sections No.1 and No.8 showed the best performance,with high MS event densities,extensive fracture networks,and significant energy release.However,Sections No.4 and No.5 exhibited sparse MS activity and poor fracture connectivity,indicating suboptimal stimulation effectiveness.
文摘With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,shale oil and gas reservoirs have become the focus of unconventional oil and gas resources exploration and development.Based on the characteristics of shale oil and gas reservoirs,supercritical CO_(2) fracturing is more conducive to improving oil recovery than other fracturing technologies.In this paper,the mechanism of fracture initiation and propagation of supercritical CO_(2) in shale is analyzed,including viscosity effect,surface tension effect,permeation diffusion effect of supercritical CO_(2),and dissolution-adsorption effect between CO_(2) and shale.The effects of natural factors,such as shale properties,bedding plane and natural fractures,and controllable factors,proppant,temperature,pressure,CO_(2) concentration and injection rate on fracture initiation and propagation are clarified.The methods of supercritical CO_(2) fracturing process,thickener and proppant optimization to improve the efficiency of supercritical CO_(2) fracturing are discussed.In addition,some new technologies of supercritical CO_(2) fracturing are introduced.The challenges and prospects in the current research are also summarized.For example,supercritical CO_(2) is prone to filtration when passing through porous media,and it is difficult to form a stable flow state.Therefore,in order to achieve stable fracturing fluid suspension and effectively support fractu res,it is urge nt to explo re new fracturing fluid additives or improve fracturing fluid formulations combined with the research of new proppants.This paper is of great significance for understanding the behavior mechanism of supercritical CO_(2) in shale and optimizing fracturing technology.
基金Australian Research Council Linkage Program(LP200301404)for sponsoring this researchthe financial support provided by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology,SKLGP2021K002)National Natural Science Foundation of China(52374101,32111530138).
文摘Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.
基金funded by the National Natural Scientific Foundation of China(Nos.52304008,52404038,52474043)the China Postdoctoral Science Foundation(No.2023MD734223)+1 种基金the Key Laboratory of Well Stability and Fluid&Rock Mechanics in Oil and Gas Reservoir of Shaanxi Province(No.23JS047)the Youth Talent Lifting Program of Xi'an Science and Technology Association(No.959202413078)。
文摘Supercritical CO_(2)(SC-CO_(2))fracturing stands out a promising waterless stimulation technique in the development of unconventional resources.While numerous studies have delved into the inducedfracture mechanism of SC-CO_(2),the small scale of rock samples and synthetic materials used in many studies have limited a comprehensive understanding of fracture propagation in unconventional formations.In this study,cubic tight sandstone samples with dimensions of 300 mm were employed to conduct SC-CO_(2)fractu ring experiments under true-triaxial stre ss conditions.The spatial morphology and quantitative attributes of fracture induced by water and SC-CO_(2)fracturing were compared,while the impact of in-situ stress on fracture propagation was also investigated.The results indicate that the SCCO_(2)fracturing takes approximately ten times longer than water fracturing.Furthermore,under identical stress condition,the breakdown pressure(BP)for SC-CO_(2)fracturing is nearly 25%lower than that for water fracturing.A quantitative analysis of fracture morphology reveals that water fracturing typically produces relatively simple fracture pattern,with the primary fracture distribution predominantly controlled by bedding planes.In contrast,SC-CO_(2)fracturing results in a more complex fracture morphology.As the differential of horizontal principal stress increases,the BP for SC-CO_(2)fractured rock exhibits a downward trend,and the induced fracture morphology becomes more simplified.Moreover,the presence of abnormal in-situ stress leads to a further increase in the BP for SC-CO_(2)fracturing,simultaneously enhancing the development of a more conductive fracture network.These findings provide critical insights into the efficiency and behavior of SC-CO_(2)fracturing in comparison to traditional water-based fracturing,offering valuable implication for its potential applications in unconventional reservoirs.
基金funded by the National Natural Science Foundation of China(52104046).
文摘Multi-stage and multi-cluster fracturing(MMF)is a crucial technology in unconventional oil and gas development,aiming to enhance production by creating extensive fracture networks.However,achieving uniform expansion of multi-cluster hydraulic fractures(HFs)in MMF remains a significant challenge.Field practice has shown that the use of temporary plugging and diversion fracturing(TPDF)can promote the balanced expansion of multi-cluster HFs.This study conducted TPDF experiments using a true triaxial fracturing simulation system setting a horizontal well completion with multi-cluster jetting perforations to investigate the equilibrium initiation and extension of multi-cluster fractures.The influence of key parameters,including cluster spacing,fracturing fluid viscosity,differential stress,and fracturing fluid injection rate,on fracture initiation and propagation was systematically examined.The results indicate that while close-spaced multi-cluster fracturing significantly increases the number of HFs,it also leads to uneven extension of HFs in their propagation.In contrast,TPDF demonstrates effectiveness in mitigating uneven HF extension,increasing the number of HFs,and creating a larger stimulated reservoir volume,ultimately leading to improved oil and gas well productivity.Moreover,under conditions of high differential stress,the differential stress within the formation exerts a stronger guiding effect in HFs,which are more closely aligned with the minimum principal stress.Low-viscosity fluids facilitate rapid and extensive fracture propagation within the rock formation.High-volume fluid injection,on the other hand,more comprehensively fills the formation.Therefore,employing lowviscosity and high-volume fracturing is advantageous for the initiation and extension of multi-cluster HFs.
基金financially supported by the National Natural Science Foundation of China(Nos.51874236 and 52174207)Shaanxi Science and Technology Innovation Team(No.2022TD02)Henan University of Science and Technology PhD Funded Projects(No.B2025-9)。
文摘To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification.
基金supported by the National Key Research and Development Program(No.2022YFE0122000)National Natural Science Foundation of China under Grant Nos.52234009,52274383,52222409,and 52201113。
文摘Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials.
基金funded by the National Natural Science Foundation of China(Nos.52192622,51874253,U20A202)
文摘To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model coupled with flow,stress and damage is proposed.A traction-separation law is used to describe the mixed-mode response of the damaged adhesive fractures,and the cubic law is used to describe the fluid flow within the fractures.The rock deformation is controlled by the in-situ stress,fracture cohesion and fluid pressure on the hydraulic fracture surface.The coupled finite element equations are solved by the explicit time difference method.The effects of the fracturing treatment parameters including fluid viscosity,pumping rate and cluster spacing on the geometries of multifractures are investigated.The results show that variable fluid-viscosity injection can improve the complexity of the fracture network and height of the main fractures simultaneously.The pumping rate of15 m^(3)/min,variable fluid-viscosity of 3-9-21-36-45 mPa s with a cluster spacing of 7.5 m is the ideal treatment strategy.The field application shows that the peak daily production of the application well with the optimized injection procedu re of variable fluid-viscosity fracturing is 171 tons(about 2.85 times that of the adjacent well),which is the highest daily production record of a single shale oil well in China,marking a strategic breakthrough of commercial shale oil production in the Jiyang Depression,Shengli Oilfield.The variable fluid-viscosity fracturing technique is proved to be very effective for improving shale oil production.
基金support of the National Natural Science Foundation of China(Grant No.52074332).
文摘Natural gas hydrates(hereinafter referred to as hydrates)are a promising clean energy source.However,their current development is far from reaching commercial exploitation.Reservoir stimulation tech-nology provides new approaches to enhance hydrate development effectiveness.Addressing the current lack of quantitative and objective methods for evaluating the fracability of hydrate reservoirs,this study clarifies the relationship between geological and engineering fracability and proposes a comprehensive evaluation model for hydrate reservoir fracability based on grey relational analysis and the criteria importance through intercriteria correlation method.By integrating results from hydraulic fracturing experiments on hydrate sediments,the fracability of hydrate reservoirs is assessed.The concept of critical construction parameter curves for hydrate reservoirs is introduced for the first time.Additionally,two-dimensional fracability index evaluation charts and three-dimensional fracability construction condition discrimination charts are established.The results indicate that as the comprehensive fracability index increases,the feasibility of forming fractures in hydrate reservoirs improves,and the required normalized fracturing construction parameters gradually decrease.The accuracy rate of the charts in judging experimental results reached 89.74%,enabling quick evaluations of whether hydrate reservoirs are worth fracturing,easy to fracture,and capable of being fractured.This has significant engineering implications forthehydraulicfracturingof hydratereservoirs.
基金Project(52278421)supported by the National Natural Science Foundation of ChinaProject(2024ZZTS0754)supported by the Fundamental Research Funds for the Central Universities of Central South University,China+2 种基金Project(2023CXQD067)supported by the Central South University Innovation-Driven Research Programme,ChinaProject(2022QNRC001)supported by Young Elite Scientists Sponsorship Program by CASTProject(2023TJ-N24)supported by the Youth Talent Program by China Railway Society and the Hunan Provincial Science and Technology Promotion Talent Project。
文摘Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20266 and 12302503)Scientific and technological research projects in Sichuan province(Grant No.2024NSFSC0973).
文摘Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude M_(L)≥1.5 in the Changning shale gas field from January 2016 to May 2017 by fitting three-component waveforms.We then constrain the directions of the maximum horizontal stress(σ_(H_(max)))for four dense earthquake clusters using the stress tensor inversion method.The stress drops of 121 earthquakes with M_(L)≥1.5 are calculated using the spectral ratio method.We examine the spatiotemporal heterogeneity of stress field,and discuss the cause of non-double-couple(non-DC)components in seismicity clusters.Following the Mohr-Coulomb criterion,we estimate the fluid overpressure thresholds from FMS for different seismic clusters,providing insights into potential physical mechanisms for induced seismicity.The FMS results indicate that shallow reverse earthquakes,with steep dip angles,characterize most events.The source mechanisms of earthquakes with M_(L)≥1.5 are dominated by DC components(>70%),but several earthquakes with M_(L)>3.0 and the microseismic events nearby during injection period display significant non-DC components(>30%).Stress inversion results reveal that the σ_(H_(max)) direction ranges from 120°to 128°.Stress drops of earthquakes range between 0.10 and 64.49 MPa,with high values occurring on reverse faults situated at a greater distance from the shale layer,accompanied by a moderate rotation(≤25°)in the trend of σ_(H_(max)).The seismic clusters close to the shale layer exhibit low fluid overpressure thresholds,prone to being triggered by high pore-pressure fluid.The integrated results suggest that the diffusion of high pore pressures is likely to be the primary factor for observed earthquakes.The present results are expected to offer valuable insights into the origin of anomalous seismicity near the shale gas sites.