期刊文献+
共找到27,532篇文章
< 1 2 250 >
每页显示 20 50 100
Data fusion for fault diagnosis using multi-class Support Vector Machines 被引量:1
1
作者 胡中辉 蔡云泽 +1 位作者 李远贵 许晓鸣 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1030-1039,共10页
Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine... Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields. 展开更多
关键词 Data fusion Fault diagnosis multi-class classification multi-class support vector machines Diesel engine
在线阅读 下载PDF
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
2
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph Jeffries-Matusitadistance hyperspcctral data
在线阅读 下载PDF
Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh 被引量:1
3
作者 Liyao Yang Hongyan Ma +1 位作者 Yingda Zhang Wei He 《Energy Engineering》 EI 2025年第1期243-264,共22页
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int... Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance. 展开更多
关键词 State of health remaining useful life variational modal decomposition random forest twin support vector machine convolutional optimization algorithm
在线阅读 下载PDF
A Support Vector Machine(SVM)Model for Privacy Recommending Data Processing Model(PRDPM)in Internet of Vehicles
4
作者 Ali Alqarni 《Computers, Materials & Continua》 SCIE EI 2025年第1期389-406,共18页
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie... Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance. 展开更多
关键词 support vector machine big data IoV PRIVACY-PRESERVING
在线阅读 下载PDF
Pashto Characters Recognition Using Multi-Class Enabled Support Vector Machine
5
作者 Sulaiman Khan Shah Nazir +1 位作者 Habib Ullah Khan Anwar Hussain 《Computers, Materials & Continua》 SCIE EI 2021年第6期2831-2844,共14页
During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto lang... During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto language is because of:the absence of a standard database and of signicant research work that ultimately acts as a big barrier for the research community.The slight change in the Pashto characters’shape is an additional challenge for researchers.This paper presents an efcient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using manifold feature extraction techniques.These feature extraction techniques include,tools such as zoning feature extractor,discrete cosine transform,discrete wavelet transform,and Gabor lters and histogram of oriented gradients.A hybrid feature map is developed by combining the manifold feature maps.This research work is performed by developing a medium-sized dataset of handwritten Pashto characters that encapsulate 200 handwritten samples for each 44 characters in the Pashto language.Recognition results are generated for the proposed model based on a manifold and hybrid feature map.An overall accuracy rates of 63.30%,65.13%,68.55%,68.28%,67.02%and 83%are generated based on a zoning technique,HoGs,Gabor lter,DCT,DWT and hybrid feature maps respectively.Applicability of the proposed model is also tested by comparing its results with a convolution neural network model.The convolution neural network-based model generated an accuracy rate of 81.02%smaller than the multi-class support vector machine.The highest accuracy rate of 83%for the multi-class SVM model based on a hybrid feature map reects the applicability of the proposed model. 展开更多
关键词 Pashto multi-class support vector machine handwritten characters database ZONING and histogram of oriented gradients
在线阅读 下载PDF
Prediction of total nitrogen in water based on UV spectroscopy and Bayesian optimized least squares support vector machine
6
作者 ZHENG Peichao YANG Qin +3 位作者 LI Chenglin YIN Xukun WANG Jinmei GUO Lianbo 《Optoelectronics Letters》 2025年第11期698-704,共7页
The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herei... The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herein,a fast,highly sensitive,and pollution-free approach is proposed,which combines ultraviolet(UV)absorption spectroscopy with Bayesian optimized least squares support vector machine(LSSVM)for detecting TN content in water.Water samples collected from sampling points near the Yangtze River basin in Chongqing of China were analyzed using national standard methods to measure TN content as reference values.The prediction of TN content in water was achieved by integrating the UV absorption spectra of water samples with LSSVM.To make the model quickly and accurately select the optimal parameters to improve the accuracy of the prediction model,the Bayesian optimization(BO)algorithm was used to optimize the parameters of the LSSVM.Results show that the prediction model performs well in predicting TN concentration,with a high coefficient of prediction determination(R^(2)=0.9413)and a low root mean square error of prediction(RMSE=0.0779 mg/L).Comparative analysis with previous studies indicates that the model used in this paper achieves lower prediction errors and superior predictive performance. 展开更多
关键词 Bayesian optimization EUTROPHICATION total nitrogen tn bayesian optimized least squares support vector machine lssvm least squares support vector machine assessing surface water water quality total nitrogen
原文传递
Predicting Marine Fuels with Unusual Wax Appearance Temperatures Using One-Class Support Vector Machines
7
作者 Njideka Chima-Amaeshi Chris O’Malley Mark Willis 《哈尔滨工程大学学报(英文版)》 2025年第6期1208-1217,共10页
Accurate and robust detection of wax appearance(a medium-to high-molecular-weight component of crude oil)is crucial for the efficient operation of hydrocarbon transportation.The wax appearance temperature(WAT)is the l... Accurate and robust detection of wax appearance(a medium-to high-molecular-weight component of crude oil)is crucial for the efficient operation of hydrocarbon transportation.The wax appearance temperature(WAT)is the lowest temperature at which the wax begins to form.When crude oil cools to its WAT,wax crystals precipitate,forming deposits on pipelines as the solubility limit is reached.Therefore,WAT is a crucial quality assurance parameter,especially when dealing with modern fuel oil blends.In this study,we use machine learning via MATLAB’s Bioinformatics Toolbox to predict the WAT of marine fuel samples by correlating near-infrared spectral data with laboratory-measured values.The dataset provided by Intertek PLC-a total quality assurance provider of inspection,testing,and certification services-includes industrial data that is imbalanced,with a higher proportion of high-WAT samples compared to low-WAT samples.The objective is to predict marine fuel oil blends with unusually high WAT values(>35℃)without relying on time-consuming and irregular laboratory-based measurements.The results demonstrate that the developed model,based on the one-class support vector machine(OCSVM)algorithm,achieved a Recall of 96,accurately predicting 96%of fuel samples with WAT>35℃.For standard binary classification,the Recall was 85.7.The trained OCSVM model is expected to facilitate rapid and well-informed decision-making for logistics and storage when choosing fuel oils. 展开更多
关键词 Marine fuel One-class support vector machines Wax appearance temperature WAX machine learning
在线阅读 下载PDF
Research on an Air Pollutant Data Correction Method Based on Bayesian Optimization Support Vector Machine
8
作者 Xingfu Ou Miao Zhang Wenfeng Chen 《Journal of Electronic Research and Application》 2025年第4期190-203,共14页
Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by... Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data. 展开更多
关键词 Air quality monitoring Data calibration support vector regression Bayesian optimization machine learning
在线阅读 下载PDF
Decision tree support vector machine based on genetic algorithm for multi-class classification 被引量:17
9
作者 Huanhuan Chen Qiang Wang Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期322-326,共5页
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of... To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods. 展开更多
关键词 support vector machine (SVM) decision tree GENETICALGORITHM classification.
在线阅读 下载PDF
Multi-class classification method for strip steel surface defects based on support vector machine with adjustable hyper-sphere 被引量:2
10
作者 Mao-xiang Chu Xiao-ping Liu +1 位作者 Rong-fen Gong Jie Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期706-716,共11页
Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated f... Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency. 展开更多
关键词 Strip steel surface defect multi-class classification supporting vector machine Adjustable hyper-sphere
原文传递
Combination of Multi-class Probability Support Vector Machines for Fault Diagnosis 被引量:2
11
作者 蔡云泽 胡中辉 +2 位作者 尹汝泼 李烨 许晓鸣 《Journal of Donghua University(English Edition)》 EI CAS 2006年第1期12-17,共6页
To deal with multi-source multi-class classification problems, the method of combining multiple multi-class probability support vector machines (MPSVMs) using Bayesian theory is proposed in this paper. The MPSVMs are ... To deal with multi-source multi-class classification problems, the method of combining multiple multi-class probability support vector machines (MPSVMs) using Bayesian theory is proposed in this paper. The MPSVMs are designed by mapping the output of standard support vector machines into a calibrated posterior probability by using a learned sigmoid function and then combining these learned binary-class probability SVMs. Two Bayes based methods for combining multiple MPSVMs are applied to improve the performance of classification. Our proposed methods are applied to fault diagnosis of a diesel engine. The experimental results show that the new methods can improve the accuracy and robustness of fault diagnosis. 展开更多
关键词 support vector machines data fusion Bayesian theory fault diagnosis.
在线阅读 下载PDF
Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction 被引量:22
12
作者 史秀志 周健 +2 位作者 吴帮标 黄丹 魏威 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期432-441,共10页
Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50... Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the prediction accuracy of SVMs model is acceptable. 展开更多
关键词 rock fragmentation BLASTING mean panicle size (X50) support vector machines (SVMs) PREDICTION
在线阅读 下载PDF
Application of Least Squares Support Vector Machine for Regression to Reliability Analysis 被引量:22
13
作者 郭秩维 白广忱 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第2期160-166,共7页
In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functiona... In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functional relationship between the state variable and basic variables in reliability design. The algorithm has treated successfully some problems of implicit performance function in reliability analysis. However, its theoretical basis of empirical risk minimization narrows its range of applications for... 展开更多
关键词 mechanism design of spacecraft support vector machine for regression least squares support vector machine for regression Monte Carlo method RELIABILITY implicit performance function
原文传递
Support vector machines for emotion recognition in Chinese speech 被引量:8
14
作者 王治平 赵力 邹采荣 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期307-310,共4页
Support vector machines (SVMs) are utilized for emotion recognition in Chinese speech in this paper. Both binary class discrimination and the multi class discrimination are discussed. It proves that the emotional fe... Support vector machines (SVMs) are utilized for emotion recognition in Chinese speech in this paper. Both binary class discrimination and the multi class discrimination are discussed. It proves that the emotional features construct a nonlinear problem in the input space, and SVMs based on nonlinear mapping can solve it more effectively than other linear methods. Multi class classification based on SVMs with a soft decision function is constructed to classify the four emotion situations. Compared with principal component analysis (PCA) method and modified PCA method, SVMs perform the best result in multi class discrimination by using nonlinear kernel mapping. 展开更多
关键词 speech signal emotion recognition support vector machines
在线阅读 下载PDF
Acoustic emission source identification based on harmonic wavelet packet and support vector machine 被引量:4
15
作者 于金涛 丁明理 +2 位作者 孟凡刚 乔玉良 王祁 《Journal of Southeast University(English Edition)》 EI CAS 2011年第3期300-304,共5页
In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature... In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction. 展开更多
关键词 harmonic wavelet packet hierarchy support vector machine acoustic emission source identification
在线阅读 下载PDF
Support vector machine for prediction of siRNA silencing efficacy 被引量:2
16
作者 吴建盛 胡敏菁 +3 位作者 周童 翁建洪 江澎 孙啸 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期501-504,共4页
In order to assist the design of short interfering ribonucleic acids (siRNA), 573 non-redundant siRNAs were collected from published literatures and the relationship between siRNAs sequences and RNA interference (R... In order to assist the design of short interfering ribonucleic acids (siRNA), 573 non-redundant siRNAs were collected from published literatures and the relationship between siRNAs sequences and RNA interference (RNAi) effect is analyzed by a support vector machine (SVM) based algorithm relied on a basebase correlation (BBC) feature. The results show that the proposed algorithm has the highest area under curve (AUC) value (0. 73) of the receive operating characteristic (ROC) curve and the greatest r value (0. 43) of the Pearson's correlation coefficient. This indicates that the proposed algorithm is better than the published algorithms on the collected datasets and that more attention should be paid to the base-base correlation information in future siRNA design. 展开更多
关键词 short interfering ribonucleic acid (siRNA) support vector machine base-base correlation receive operating characteristic (ROC) curve
在线阅读 下载PDF
Application of support vector machine in trip chaining pattern recognition and analysis of explanatory variable effects 被引量:2
17
作者 杨硕 邓卫 程龙 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期106-114,共9页
In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purpos... In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purposes by applying three methods: the support vector machine (SVM) model, the radial basis function neural network (RBFNN) model and the multinomial logit (MNL) model. The effect of explanatory factors on trip chaining behaviors and their contribution to model performace were investigated by sensitivity analysis. Results show that the SVM model has a better performance than the RBFNN model and the MNL model due to its higher overall and partial accuracy, indicating its recognition advantage under a smai sample size scenario. It is also proved that the SVM model is capable of estimating the effect of multi-category factors on trip chaining behaviors more accurately. The different contribution of explanatory, factors to trip chaining pattern recognition reflects the importance of refining trip chaining patterns ad exploring factors that are specific to each pattern. It is shown that the SVM technology in travel demand forecast modeling and analysis of explanatory variable effects is practical. 展开更多
关键词 trip chaining patterns support vector machine recognition performance sensitivity analysis
在线阅读 下载PDF
Combination Computing of Support Vector Machine, Support Vector Regression and Molecular Docking for Potential Cytochrome P450 1A2 Inhibitors 被引量:1
18
作者 陈茜 乔连生 +2 位作者 蔡漪涟 张燕玲 李贡宇 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第5期629-634,I0002,共7页
The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accura... The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accuracy and reliability of prediction, the strategy of combining the above three computational approaches was applied to predict potential cytochrome P450 1A2 (CYP1A2) inhibitors. The accuracy of the optimal SVM qualitative model was 99.432%, 97.727%, and 91.667% for training set, internal test set and external test set, respectively, showing this model had high discrimination ability. The R2 and mean square error for the optimal SVR quantitative model were 0.763, 0.013 for training set, and 0.753, 0.056 for test set respectively, indicating that this SVR model has high predictive ability for the biolog-ical activities of compounds. According to the results of the SVM and SVR models, some types of descriptors were identi ed to be essential to bioactivity prediction of compounds, including the connectivity indices, constitutional descriptors and functional group counts. Moreover, molecular docking studies were used to reveal the binding poses and binding a n-ity of potential inhibitors interacting with CYP1A2. Wherein, the amino acids of THR124 and ASP320 could form key hydrogen bond interactions with active compounds. And the amino acids of ALA317 and GLY316 could form strong hydrophobic bond interactions with active compounds. The models obtained above were applied to discover potential CYP1A2 inhibitors from natural products, which could predict the CYPs-mediated drug-drug inter-actions and provide useful guidance and reference for rational drug combination therapy. A set of 20 potential CYP1A2 inhibitors were obtained. Part of the results was consistent with references, which further indicates the accuracy of these models and the reliability of this combinatorial computation strategy. 展开更多
关键词 support vector machine support vector regression Molecular docking CYPIA2 inhibitor
在线阅读 下载PDF
Support vector machine-based multi-model predictive control 被引量:3
19
作者 Zhejing BAO Youxian SUN 《控制理论与应用(英文版)》 EI 2008年第3期305-310,共6页
In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ... In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results. 展开更多
关键词 Multi-model predictive control support vector machine network multi-class support vector machine Multi-model switching
在线阅读 下载PDF
Application of a compound controller based on fuzzy control and support vector machine to ship's boiler-turbine coordinated control system 被引量:2
20
作者 刘胜 李妍妍 《Journal of Marine Science and Application》 2009年第1期33-39,共7页
Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy b... Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness. 展开更多
关键词 ship boiler-turbine coordinated system support vector machine inverse control compound control
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部