期刊文献+
共找到442篇文章
< 1 2 23 >
每页显示 20 50 100
Deep Support Vector Data Description Based Physical Layer Authentication
1
作者 Shao Yijie Pan Zhiwen +1 位作者 Liu Nan You Xiaohu 《China Communications》 2025年第10期214-222,共9页
In wireless communication,the problem of authenticating the transmitter’s identity is challeng-ing,especially for those terminal devices in which the security schemes based on cryptography are approxi-mately unfeasib... In wireless communication,the problem of authenticating the transmitter’s identity is challeng-ing,especially for those terminal devices in which the security schemes based on cryptography are approxi-mately unfeasible owing to limited resources.In this paper,a physical layer authentication scheme is pro-posed to detect whether there is anomalous access by the attackers disguised as legitimate users.Explicitly,channel state information(CSI)is used as a form of fingerprint to exploit spatial discrimination among de-vices in the wireless network and machine learning(ML)technology is employed to promote the improve-ment of authentication accuracy.Considering that the falsified messages are not accessible for authenticator during the training phase,deep support vector data de-scription(Deep SVDD)is selected to solve the one-class classification(OCC)problem.Simulation results show that Deep SVDD based scheme can tackle the challenges of physical layer authentication in wireless communication environments. 展开更多
关键词 deep support vector data description one-class classification physical layer authentication wireless security
在线阅读 下载PDF
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:9
2
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
在线阅读 下载PDF
Multimode Process Monitoring Based on the Density-Based Support Vector Data Description
3
作者 郭红杰 王帆 +2 位作者 宋冰 侍洪波 谭帅 《Journal of Donghua University(English Edition)》 EI CAS 2017年第3期342-348,共7页
Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the... Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the samples which are sparse in the mode.To solve this issue,a new approach called density-based support vector data description( DBSVDD) is proposed. In this article,an algorithm using Gaussian mixture model( GMM) with the DBSVDD technique is proposed for process monitoring. The GMM method is used to obtain the center of each mode and determine the number of the modes. Considering the complexity of the data distribution and discrete samples in monitoring process,the DBSVDD is utilized for process monitoring. Finally,the validity and effectiveness of the DBSVDD method are illustrated through the Tennessee Eastman( TE) process. 展开更多
关键词 Eastman Tennessee sparse utilized illustrated kernel Bayesian charts validity false
在线阅读 下载PDF
Data fusion for fault diagnosis using multi-class Support Vector Machines 被引量:1
4
作者 胡中辉 蔡云泽 +1 位作者 李远贵 许晓鸣 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1030-1039,共10页
Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine... Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields. 展开更多
关键词 data fusion Fault diagnosis multi-class classification multi-class support vector Machines Diesel engine
在线阅读 下载PDF
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
5
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph Jeffries-Matusitadistance hyperspcctral data
在线阅读 下载PDF
基于LSTM-GBSVDD模型的飞行轨迹异常检测方法
6
作者 李琳 曾雅琴 +2 位作者 朱惠民 孙世岩 梁伟阁 《兵工学报》 北大核心 2025年第5期83-93,共11页
为解决传统检测方法在处理复杂、动态以及数据长度实时变化的飞行轨迹数据时特征提取不准确、检测效率较低的问题,提出一种结合长短时记忆(Long Short-Term Memory, LSTM)网络和支持向量数据描述(Support Vector Data Description, SVDD... 为解决传统检测方法在处理复杂、动态以及数据长度实时变化的飞行轨迹数据时特征提取不准确、检测效率较低的问题,提出一种结合长短时记忆(Long Short-Term Memory, LSTM)网络和支持向量数据描述(Support Vector Data Description, SVDD)的无监督异常检测方法。利用LSTM网络提取可变长度飞行轨迹的关键特征,并将其转化为固定长度的序列表示;通过SVDD算法构建多维超球分类器,对正常飞行轨迹进行建模,从而识别潜在异常轨迹。为进一步提升模型性能,引入基于梯度的优化算法(Gradient-Based training algorithm, GB),实现LSTM与SVDD参数的联合训练,大幅度提高检测精度和计算效率。仿真实验结果表明,新提出的基于梯度优化的长短时记忆网络和支持向量数据描述模型(Long Short-Term Memory network and Support Vector Data Description model based on Gradient-Based training algorithm optimization, LSTM-GBSVDD)的飞行轨迹异常检测方法在处理复杂、多变的飞行轨迹异常检测任务中表现出较好的有效性和优越性,有较强的应用前景。 展开更多
关键词 飞行轨迹 长短时记忆 支持向量数据描述 异常检测
在线阅读 下载PDF
基于CE-Louvain分解和动态递归SVDD的分布式过程监测
7
作者 王晶 刘鹏阳 +2 位作者 卢山 周萌 陈晓露 《控制理论与应用》 北大核心 2025年第8期1650-1658,共9页
针对全厂过程的复杂非线性动态特征,本文提出了一种分布式的过程监测方法.它包括两个主要内容:基于copula entropy Louvain(CE-Louvain)的过程分解和基于动态递归支持向量数据描述(DR-SVDD)的故障检测.首先,根据机理知识将全厂过程中的... 针对全厂过程的复杂非线性动态特征,本文提出了一种分布式的过程监测方法.它包括两个主要内容:基于copula entropy Louvain(CE-Louvain)的过程分解和基于动态递归支持向量数据描述(DR-SVDD)的故障检测.首先,根据机理知识将全厂过程中的变量初步映射为和过程结构相对应的无向图模型,引入CE来描述无向图中不同节点(即过程变量)之间的权重,并基于将CE-Louvain算法精细分解为合理的子块.然后,针对每个子块提出了基于DR-SVDD的分布式故障检测方法以提高故障检测率.最后,利用贝叶斯融合推理方法得到全局过程监测结果.提出的方法在Tennesse-Eastman(TE)过程中得到了验证. 展开更多
关键词 非线性动态过程 过程监测 CE-Louvain分解 支持向量数据描述
在线阅读 下载PDF
利用支持向量数据描述和递归特征消除的水下慢速小目标轨迹特征选择方法 被引量:3
8
作者 赖凯 刘雄厚 杨益新 《声学学报》 北大核心 2025年第2期475-485,共11页
针对水下慢速小目标已有跟踪轨迹特征性能不优、信息冗余而导致分类识别性能不佳的问题,提出了利用改进支持向量数据描述(ISVDD)和递归特征消除(RFE)的ISVDD-RFE轨迹特征选择方法。首先,所提方法选择单分类SVDD以适配小目标分类识别所... 针对水下慢速小目标已有跟踪轨迹特征性能不优、信息冗余而导致分类识别性能不佳的问题,提出了利用改进支持向量数据描述(ISVDD)和递归特征消除(RFE)的ISVDD-RFE轨迹特征选择方法。首先,所提方法选择单分类SVDD以适配小目标分类识别所面临的小样本、类不平衡问题,通过逐步递归消除实现小目标的轨迹特征优选;其次,为提升SVDD-RFE轨迹特征选择能力,从递归效率、相关性和稳健性三个方面改善递归过程;最后,为克服SVDD缺乏全局信息的固有缺陷,从特征区分性和特征态势两方面评估所选轨迹特征,提升整体分类识别性能。实测数据处理结果表明,采用所提方法进行轨迹特征选择后,蛙人目标的精确率从93.8%提升至94.9%,召回率从84.7%提升至91.1%;无人水下航行器目标的精确率从89.0%提升至94.7%,召回率从83.1%提升至85.2%;小目标平均分类准确率从87.7%提升至91.5%。在小样本、类不平衡条件下,所提方法具有优于传统方法的性能。 展开更多
关键词 水下慢速小目标 分类识别 轨迹特征 特征选择 支持向量数据描述 递归特征消除
原文传递
改进ResNet结合MKSVDD的谐波减速器多状态同尺度定量评估方法
9
作者 孙宇林 罗双 +2 位作者 康守强 王玉静 刘连胜 《仪器仪表学报》 北大核心 2025年第6期304-316,共13页
针对谐波减速器故障程度难以精确量化以及不同故障位置无法在同一尺度下定量分析的问题,提出一种改进深度残差网络(ResNet)结合多核支持向量数据描述(MKSVDD)的谐波减速器多状态同尺度下的定量评估方法。该方法首先提出一种新的谐波减... 针对谐波减速器故障程度难以精确量化以及不同故障位置无法在同一尺度下定量分析的问题,提出一种改进深度残差网络(ResNet)结合多核支持向量数据描述(MKSVDD)的谐波减速器多状态同尺度下的定量评估方法。该方法首先提出一种新的谐波减速器多状态同尺度定量评估框架,并对微弱故障敏感的声发射信号进行连续小波变换构建二维时频图数据集;其次提出卷积注意力模块改进ResNet以充分挖掘二维时频图的深层特征;再引入多核核函数改进支持向量数据描述,基于谐波减速器正常状态的深层特征构建MKSVDD健康状态评估模型;然后,计算不同故障程度的特征相对于正常状态球心的距离,构建评估指标,通过拟合得到定量评估曲线;此外,根据谐波减速器的结构和声发射信号传播机理,提出相对距离补偿方案以构建多状态评估指标,实现谐波减速器不同健康状态在同一尺度下的定量评估。通过搭建谐波减速器实验台,对未知故障程度的数据进行多组对比实验的结果表明,改进后的深度残差网络提取到的特征更聚集,所提方法能实现谐波减速器不同故障位置在同一尺度下的定量分析,且评估误差不超过3.2%,有效完成谐波减速器多状态同尺度的定量评估。 展开更多
关键词 谐波减速器 卷积注意力机制 多核支持向量数据描述 多故障状态 定量评估
原文传递
面向城市排水管网缺陷诊断的鲁棒无监督多任务异常检测方法
10
作者 闫龙博 毛文涛 +1 位作者 仲志鸿 范黎林 《计算机应用》 北大核心 2025年第6期1833-1840,共8页
目前利用机器学习技术对城市排水管网渗漏等典型缺陷状态检测异常已成为城市智能管理的焦点;但实际场景下采集的管网监测数据包含了大量噪声,尤其是降雨造成的液位数据突变,会严重影响管网渗漏检测结果的准确性和可靠性。为解决上述问题... 目前利用机器学习技术对城市排水管网渗漏等典型缺陷状态检测异常已成为城市智能管理的焦点;但实际场景下采集的管网监测数据包含了大量噪声,尤其是降雨造成的液位数据突变,会严重影响管网渗漏检测结果的准确性和可靠性。为解决上述问题,提出一种面向排水管网缺陷诊断的鲁棒无监督多任务异常检测方法。首先,构建融合多个物理监测站点时空信息的深度多任务支持向量数据描述(SVDD)模型,针对各站点分别建立基于超球的单分类判别器,以提取各站点异常检测规则,并建立规则适配机制,获得多个站点的公共特征表示;其次,基于所获得的特征表示,对各站点的SVDD模型进一步引入滑动窗口,连续识别管网监测数据中的异常波动,进而确定管网监测数据序列中公共干扰因素造成的噪声点,并对噪声点进行多项式插值修正,由此排除降雨等产生的不规则噪声干扰;最后,使用修正后的监测序列进行基于自编码器(AE)重构误差的管网渗漏检测。利用常州市清潭水务管理系统采集的2017—2018年城区排水管网监测数据进行验证,结果显示,所提方法和人工检修结果相符合,同时相较于基于统计方法和传统机器学习方法,检测结果更准确,误检率更低。以清潭东区域为例,该方法在应对降雨干扰时的误检率较次优方法USAD(Unsupervised Anomaly Detection)降低了5.47个百分点,显著提升了模型在强噪声场景下的鲁棒性,进一步验证了所提方法的准确性与实用性。 展开更多
关键词 排水管网 异常检测 时间序列 多任务学习 支持向量数据描述模型
在线阅读 下载PDF
基于SVDD和SVM的高压调门油动机状态监测系统研究
11
作者 马立强 姜安琦 +2 位作者 姜万录 郑云飞 吴凤和 《振动与冲击》 北大核心 2025年第12期238-248,共11页
在高压调门油动机的运行监控中,由于正常状态的样本远多于故障样本,故障数据稀缺且采集相对困难,此外还存在故障发生的不确定性,传统的监测方法难以有效应用。对此,提出了一种基于支持向量数据描述(support vector data description,SV... 在高压调门油动机的运行监控中,由于正常状态的样本远多于故障样本,故障数据稀缺且采集相对困难,此外还存在故障发生的不确定性,传统的监测方法难以有效应用。对此,提出了一种基于支持向量数据描述(support vector data description,SVDD)异常检测和支持向量机(support vector machine,SVM)故障诊断的高压调门油动机状态监测系统。首先,从原始数据中提取时域(time domain,T)、频域(frequency domain,F)和时频域小波包子带能量(wavelet packet subband energy,W)特征,并通过特征融合及归一化的方式形成新的多维融合特征向量TFW。随后,采用卷积神经网络(convolutional neural network,CNN)对TFW进行深层次挖掘,生成更具表现力的特征TFWCNN,以此作为SVDD和SVM模型的输入。搭建了高压调门油动机故障模拟试验台,用以采集数据并验证该方法的有效性。研究结果表明:在三个具有不同阀位开度的高压调门油动机动态数据集上,SVDD异常检测的F1分数分别达到0.9991、0.9978和0.9760;SVM故障诊断的F1分数分别为0.9988、0.9950和0.9867;不仅说明该方法在高压调门油动机的状态监测中表现出的优异性能,同时也说明深度TFWCNN特征在高压调门油动机状态监测中的有效性和准确性;还为类似的汽轮机状态监测诊断系统提供了一种有效的技术方案。 展开更多
关键词 高压调门油动机 支持向量数据描述(SVDD)异常检测 支持向量机(SVM)故障诊断 状态监测系统
在线阅读 下载PDF
基于Weibull核函数与MCSVDD的轮毂电机故障诊断
12
作者 刘炳晨 薛红涛 丁殿勇 《振动.测试与诊断》 北大核心 2025年第5期922-928,1061,共8页
为监测分布式驱动电动汽车中轮毂电机运行状态,确保整车运行安全,提出一种基于改进的多类支持向量数据描述(multi-class support vector data description,简称MCSVDD)的轮毂电机故障诊断方法。首先,针对MCSVDD算法的改进,基于近邻传播(... 为监测分布式驱动电动汽车中轮毂电机运行状态,确保整车运行安全,提出一种基于改进的多类支持向量数据描述(multi-class support vector data description,简称MCSVDD)的轮毂电机故障诊断方法。首先,针对MCSVDD算法的改进,基于近邻传播(affinity propagation,简称AP)聚类算法提出了MCSVDD以“距离类内簇中心最小”的类别判断法则,并基于Weibull函数构造了Weibull核函数,用于优化数据描述模型;其次,针对轮毂电机运行状态的多维特征参数组,提出一种基于最小距离传播鉴别投影(minimum-distance propagation discriminant projection,简称MPDP)的降维法,提高了不同工况下轮毂电机故障状态的可分性;最后,定制带有典型轴承故障的轮毂电机,采集7种工况下的振动信号,验证所提出方法的有效性。结果表明:基于MPDP降维后的轮毂电机运行状态观测样本的可分性优于线性判别分析(linear discriminant analysis,简称LDA)、局部保持投影(locality preserving projection,简称LPP)及最小距离鉴别投影(minimum-distance discriminant projection,简称MDP)方法,基于Weibull核函数的MCSVDD状态识别系统的识别精度整体高于基于多项式和高斯核函数的MCSVDD系统。 展开更多
关键词 轮毂电机 振动信号 故障诊断 最小距离传播鉴别投影 多类支持向量数据描述 Weibull核函数
在线阅读 下载PDF
基于时间序列异常检测的航空发动机故障诊断 被引量:1
13
作者 王茵茹 《航空工程进展》 2025年第2期121-133,共13页
航空发动机的故障诊断存在数据偏斜问题,即故障样本数量远少于正常样本数量,且故障样本无法反映整个运行工况,导致常规的分类模型泛化能力较差。针对上述问题,提出一种基于改进的深度支持向量数据描述的时间序列异常检测模型。使用长短... 航空发动机的故障诊断存在数据偏斜问题,即故障样本数量远少于正常样本数量,且故障样本无法反映整个运行工况,导致常规的分类模型泛化能力较差。针对上述问题,提出一种基于改进的深度支持向量数据描述的时间序列异常检测模型。使用长短期记忆(LSTM)网络映射样本的输入和输出,与实际采集输出构成时序异常向量,再通过融入变分自编码器(VAE)的深度支持向量数据描述(DeepSVDD)实现航空发动机时序数据的异常检测;在某型航空发动机地面试车台进行实验验证,与孤立森林(IF)、TranAD(Transformer-based Anomaly Detection)模型及GANomaly等对比方法进行对比。结果表明:采用本文所提模型计算得到特征曲线下面积值达到0.9878,具有最好的异常检测性能,能够有效地应用于航空发动机的各项异常检测及故障诊断任务中。 展开更多
关键词 异常检测 故障诊断 支持向量数据描述 时间序列 航空发动机
在线阅读 下载PDF
基于特征重要性的质量相关故障诊断与量化评估
14
作者 华宇辉 胡文军 +1 位作者 崔胜男 王士同 《测控技术》 2025年第4期25-34,41,共11页
质量相关故障诊断是当前过程控制领域的研究热点之一,然而过程变量与质量变量间的复杂关系使得故障检测性能提升和可视化呈现面临严峻挑战。为此,提出了一种新的质量相关故障诊断方法和故障量化评估准则。首先,基于提升树模型解析过程... 质量相关故障诊断是当前过程控制领域的研究热点之一,然而过程变量与质量变量间的复杂关系使得故障检测性能提升和可视化呈现面临严峻挑战。为此,提出了一种新的质量相关故障诊断方法和故障量化评估准则。首先,基于提升树模型解析过程变量与质量变量间的关联,并根据提升树模型的3个特性定义特征重要性分数。然后,将特征重要性分数应用于支持向量数据描述的权衡参数中,构建特征重要性正则化的支持向量数据描述(Feature Importance Regularized Support Vector Data Description, FIR-SVDD)。最后,在核空间中利用投影球面距离度量进行故障量化评估。采用田纳西-伊斯曼化工数据和HYDAC液压系统数据进行对比实验,结果表明所提方法具有更好的性能。 展开更多
关键词 支持向量数据描述 过程变量 质量变量 提升树模型 距离度量
在线阅读 下载PDF
基于Transformer架构的端到端视频异常检测方法 被引量:1
15
作者 李石峰 罗晰 +1 位作者 刘晓茹 田野 《计算机技术与发展》 2025年第6期49-55,共7页
传统的卷积神经网络虽然能够处理空间结构数据,但在处理大规模视频数据时,其时空建模能力不足。为了解决这一问题,需要一个能够处理海量视频数据的高效模型。该文提出了一种新的基于Transformer架构的端到端视频异常检测方法。该方法结... 传统的卷积神经网络虽然能够处理空间结构数据,但在处理大规模视频数据时,其时空建模能力不足。为了解决这一问题,需要一个能够处理海量视频数据的高效模型。该文提出了一种新的基于Transformer架构的端到端视频异常检测方法。该方法结合Swin Transformer架构和Video Vision Transformer(ViViT)模型设计了时空信息融合模型,以提取视频帧序列的丰富时空信息。此外,通过将时空信息融合模型和深度支持向量数据描述(Deep SVDD)方法进行联合训练,实现了端到端的视频异常检测。在两个公开视频数据集上与最新的10种方法进行了对比实验,在UCSD Ped2数据集上,该模型取得了最高的96.5%的AUC;在CHUK Avenue数据集上,该模型也取得了80.7%的AUC,优于多数方法。与领先的视频异常检测方法相比,该方法具有一定的优势和竞争力。 展开更多
关键词 视频异常检测 Transformer架构 时空信息融合模型 深度支持向量数据描述 联合训练
在线阅读 下载PDF
基于直达路径信号残差和支持向量数据描述的非视距信号识别方法
16
作者 倪雪 曾海彧 杨文东 《电子与信息学报》 北大核心 2025年第6期1873-1884,共12页
非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特... 非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特征组合用于表征信号,基于此,为了使识别方法兼具样本获取成本低、环境适应能力好的特点,该文以构建在单个环境下采集单类信号数据作为分类模型的训练样本,在识别其它场景NLOS信号中有更好性能的方法为目的,设计了一种带DP信号残差训练的支持向量数据描述(SVDD)的识别方法。为了进一步提高识别准确率,将基于多层神经网络的深度特征提取技术引入SVDD中,设计了一种基于反向扩维的深度支持向量数据描述(DSVDD)的NLOS信号识别方法。实验结果表明:带DP信号残差训练的DSVDD方法只需在单个场景采集单类信号样本,且在训练集和测试集采集自不同场景时实现了85%以上的准确率,较只使用典型波形特征训练的SVDD提升了10%以上。 展开更多
关键词 超宽带定位 非视距信号识别 直达路径信号残差 支持向量数据描述 深度支持向量数据描述
在线阅读 下载PDF
kProtoClust:Towards Adaptive k-Prototype Clustering without Known k
17
作者 Yuan Ping Huina Li +1 位作者 Chun Guo Bin Hao 《Computers, Materials & Continua》 2025年第3期4949-4976,共28页
Towards optimal k-prototype discovery,k-means-like algorithms give us inspirations of central samples collection,yet the unstable seed samples selection,the hypothesis of a circle-like pattern,and the unknown K are st... Towards optimal k-prototype discovery,k-means-like algorithms give us inspirations of central samples collection,yet the unstable seed samples selection,the hypothesis of a circle-like pattern,and the unknown K are still challenges,particularly for non-predetermined data patterns.We propose an adaptive k-prototype clustering method(kProtoClust)which launches cluster exploration with a sketchy division of K clusters and finds evidence for splitting and merging.On behalf of a group of data samples,support vectors and outliers from the perspective of support vector data description are not the appropriate candidates for prototypes,while inner samples become the first candidates for instability reduction of seeds.Different from the representation of samples in traditional,we extend sample selection by encouraging fictitious samples to emphasize the representativeness of patterns.To get out of the circle-like pattern limitation,we introduce a convex decomposition-based strategy of one-cluster-multiple-prototypes in which convex hulls of varying sizes are prototypes,and accurate connection analysis makes the support of arbitrary cluster shapes possible.Inspired by geometry,the three presented strategies make kProtoClust bypassing the K dependence well with the global and local position relationship analysis for data samples.Experimental results on twelve datasets of irregular cluster shape or high dimension suggest that kProtoClust handles arbitrary cluster shapes with prominent accuracy even without the prior knowledge K. 展开更多
关键词 Prototype finding convex hull support vector data description geometrical information
在线阅读 下载PDF
基于多元模糊支持向量数据描述的供电均衡性实时一体化监测方法
18
作者 刘津铭 周智成 +1 位作者 阳晟 阮航 《微型电脑应用》 2025年第1期187-192,共6页
为了提高供电稳定性,满足用户供电需求,提出基于多元模糊支持向量数据描述的供电均衡性实时一体化监测方法。采集可衡量输电线路运行状态的电流、电压以及输电线路线芯温度实时数据,建立包含各输电线路运行状态类型的供电均衡状态样本... 为了提高供电稳定性,满足用户供电需求,提出基于多元模糊支持向量数据描述的供电均衡性实时一体化监测方法。采集可衡量输电线路运行状态的电流、电压以及输电线路线芯温度实时数据,建立包含各输电线路运行状态类型的供电均衡状态样本数据集;通过竞争凝聚算法模糊聚类和筛选供电均衡状态样本数据集,并用筛选后样本数据的隶属度对支持向量数据描述方法做加权操作,以样本数据点到运用支持向量数据描述方法获取的最小超球体中心的距离为基础,构建供电均衡状态评估函数判断供电均衡状态,实现供电均衡性实时一体化监测。实验证明:所提方法能够有效监测供电均衡性,并对异常输电线路运行状态及时预警;当隶属度临界值为0.16时,所提方法监测效果最好。 展开更多
关键词 多元模糊 支持向量数据描述 供电均衡性 实时监测 竞争凝聚算法
在线阅读 下载PDF
面向电力设备异常检测的深度自编码支持向量数据描述模型研究 被引量:3
19
作者 耿波 潘曙辉 董晓旭 《湖南电力》 2024年第1期119-127,共9页
针对深度自编码支持向量数据描述模型对电力设备部分异常区分能力不足的问题,提出自监督混合专家增强的深度自编码支持向量数据描述模型,构造多种自监督变换数据集模拟潜在未知异常,引入自监督分类和掩码重构任务以学习更具区分性的表... 针对深度自编码支持向量数据描述模型对电力设备部分异常区分能力不足的问题,提出自监督混合专家增强的深度自编码支持向量数据描述模型,构造多种自监督变换数据集模拟潜在未知异常,引入自监督分类和掩码重构任务以学习更具区分性的表示。此外,将编码器部分改造为混合专家模型结构,将数据分配给不同专家子模块进行专业化的学习,使异常决策边界更清晰。在4个公开数据集和3个电厂设备数据集上的实验结果证实了自监督学习和混合专家模型的有效性。 展开更多
关键词 异常检测 深度自编码支持向量数据描述 自监督学习 混合专家模型
在线阅读 下载PDF
带高斯核的支持向量数据描述问题的高效积极集法
20
作者 张奇业 曾心蕊 《计算机应用》 CSCD 北大核心 2024年第12期3808-3814,共7页
针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子... 针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子问题;其次,通过矩阵操作实现积极集的更新,每次更新计算只与当前支持向量及单个样本点有关,从而极大地降低计算量;另外,由于ASM-SVDD算法是传统积极集法的一种变体,应用积极集法理论得到该算法的有限终止性;最后,基于仿真和真实数据集,验证ASM-SVDD算法性能。结果表明,随着训练轮次的增加,ASM-SVDD算法可以有效提升模型性能。与求解SVDD问题的快速增量算法FISVDD (Fast Incremental SVDD)相比,ASM-SVDD算法在典型的低维高样本数据集shuttle上训练得到的目标函数值可减小25.9%,对支持向量的识别能力可提高10.0%。同时,ASM-SVDD算法在不同数据集上的F1分数相较于FISVDD算法均有提高,在超大规模数据集criteo上提高量可达0.07%。可见,ASM-SVDD算法在检测异常值的同时,训练得到的超球体更稳定,且对测试样本的判断准确率也更高,适用于大规模数据场景下的异常值检测。 展开更多
关键词 支持向量数据描述 二次规划 积极集法 异常值检测 有限终止性
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部