期刊文献+
共找到204篇文章
< 1 2 11 >
每页显示 20 50 100
Enhancing Multi-Class Cyberbullying Classification with Hybrid Feature Extraction and Transformer-Based Models
1
作者 Suliman Mohamed Fati Mohammed A.Mahdi +4 位作者 Mohamed A.G.Hazber Shahanawaj Ahamad Sawsan A.Saad Mohammed Gamal Ragab Mohammed Al-Shalabi 《Computer Modeling in Engineering & Sciences》 2025年第5期2109-2131,共23页
Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or... Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content. 展开更多
关键词 Cyberbullying classification multi-class classification BERT models machine learning TF-IDF Word2Vec social media analysis transformer models
在线阅读 下载PDF
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
2
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning MRI images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
Deep Architectural Classification of Dental Pathologies Using Orthopantomogram Imaging
3
作者 Arham Adnan Muhammad Tuaha Rizwan +2 位作者 Hafiz Muhammad Attaullah Shakila Basheer Mohammad Tabrez Quasim 《Computers, Materials & Continua》 2025年第12期5073-5091,共19页
Artificial intelligence(AI),particularly deep learning algorithms utilizing convolutional neural networks,plays an increasingly pivotal role in enhancing medical image examination.It demonstrates the potential for imp... Artificial intelligence(AI),particularly deep learning algorithms utilizing convolutional neural networks,plays an increasingly pivotal role in enhancing medical image examination.It demonstrates the potential for improving diagnostic accuracy within dental care.Orthopantomograms(OPGs)are essential in dentistry;however,their manual interpretation is often inconsistent and tedious.To the best of our knowledge,this is the first comprehensive application of YOLOv5m for the simultaneous detection and classification of six distinct dental pathologies using panoramic OPG images.The model was trained and refined on a custom dataset that began with 232 panoramic radiographs and was later expanded to 604 samples.These included annotated subclasses representing Caries,Infection,Impacted Teeth,Fractured Teeth,Broken Crowns,and Healthy conditions.The training was performed using GPU resources alongside tuned hyperparameters of batch size,learning rate schedule,and early stopping tailored for generalization to prevent overfitting.Evaluation on a held-out test set showed strong performance in the detection and localization of various dental pathologies and robust overall accuracy.At an IoU of 0.5,the system obtained a mean precision of 94.22%and recall of 90.42%,with mAP being 93.71%.This research confirms the use of YOLOv5m as a robust,highly efficient AI technology for the analysis of dental pathologies using OPGs,providing a clinically useful solution to enhance workflow efficiency and aid in sustaining consistency in complex multi-dimensional case evaluations. 展开更多
关键词 Medical image analysis orthopantomogram convolutional neural networks YOLOv5m multi-class classification dental pathology detection
在线阅读 下载PDF
Granular classifier:Building traffic granules for encrypted traffic classification based on granular computing 被引量:2
4
作者 Xuyang Jing Jingjing Zhao +2 位作者 Zheng Yan Witold Pedrycz Xian Li 《Digital Communications and Networks》 CSCD 2024年第5期1428-1438,共11页
Accurate classification of encrypted traffic plays an important role in network management.However,current methods confronts several problems:inability to characterize traffic that exhibits great dispersion,inability ... Accurate classification of encrypted traffic plays an important role in network management.However,current methods confronts several problems:inability to characterize traffic that exhibits great dispersion,inability to classify traffic with multi-level features,and degradation due to limited training traffic size.To address these problems,this paper proposes a traffic granularity-based cryptographic traffic classification method,called Granular Classifier(GC).In this paper,a novel Cardinality-based Constrained Fuzzy C-Means(CCFCM)clustering algorithm is proposed to address the problem caused by limited training traffic,considering the ratio of cardinality that must be linked between flows to achieve good traffic partitioning.Then,an original representation format of traffic is presented based on granular computing,named Traffic Granules(TG),to accurately describe traffic structure by catching the dispersion of different traffic features.Each granule is a compact set of similar data with a refined boundary by excluding outliers.Based on TG,GC is constructed to perform traffic classification based on multi-level features.The performance of the GC is evaluated based on real-world encrypted network traffic data.Experimental results show that the GC achieves outstanding performance for encrypted traffic classification with limited size of training traffic and keeps accurate classification in dynamic network conditions. 展开更多
关键词 Encrypted traffic classification Semi-supervised clustering Granular computing anomaly detection
在线阅读 下载PDF
Multi-Class Classification Methods of Cost-Conscious LS-SVM for Fault Diagnosis of Blast Furnace 被引量:15
5
作者 LIU Li-mei WANG An-na SHA Mo ZHAO Feng-yun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第10期17-23,33,共8页
Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discre... Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discrete particle swarm optimization is applied to optimize the feature selection and the LS-SVM parameters. Secondly, cost-con- scious formula is presented for fitness function and it contains in detail training time, recognition accuracy and the feature selection. The CLS-SVM algorithm is presented to increase the performance of the LS-SVM classifier. The new method can select the best fault features in much shorter time and have fewer support vectbrs and better general- ization performance in the application of fault diagnosis of the blast furnace. Thirdly, a gradual change binary tree is established for blast furnace faults diagnosis. It is a multi-class classification method based on center-of-gravity formula distance of cluster. A gradual change classification percentage ia used to select sample randomly. The proposed new metbod raises the sped of diagnosis, optimizes the classifieation scraraey and has good generalization ability for fault diagnosis of the application of blast furnace. 展开更多
关键词 blast furnace fault diagnosis eosc-conscious LS-SVM multi-class classification
原文传递
Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects 被引量:4
6
作者 Mao-xiang CHU An-na WANG +1 位作者 Rong-fen GONG Mo SHA 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第2期174-180,共7页
Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region sam... Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region samples center method with adjustable pruning scale was used to prune data samples. This method could reduce classifierr s training time and testing time. Secondly, ELS-TWSVM was proposed to classify the data samples. By introducing error variable contribution parameter and weight parameter, ELS-TWSVM could restrain the impact of noise sam- ples and have better classification accuracy. Finally, multi-class classification algorithms of ELS-TWSVM were pro- posed by combining ELS-TWSVM and complete binary tree. Some experiments were made on two-dimensional data- sets and strip steel surface defect datasets. The experiments showed that the multi-class classification methods of ELS-TWSVM had higher classification speed and accuracy for the datasets with large-scale, unbalanced and noise samples. 展开更多
关键词 multi-class classification least squares twin support vector machine error variable contribution WEIGHT binary tree strip steel surface
原文传递
A combined algorithm of K-means and MTRL for multi-class classification 被引量:2
7
作者 XUE Mengfan HAN Lei PENG Dongliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期875-885,共11页
The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class cla... The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class classification in the case of insufficient samples,this paper proposes a multi-class classification method combining K-means and multi-task relationship learning(MTRL).The method first uses the split method of One vs.Rest to disassemble the multi-class classification task into binary classification tasks.K-means is used to down sample the dataset of each task,which can prevent over-fitting of the model while reducing training costs.Finally,the sampled dataset is applied to the MTRL,and multiple binary classifiers are trained together.With the help of MTRL,this method can utilize the inter-task association to train the model,and achieve the purpose of improving the classification accuracy of each binary classifier.The effectiveness of the proposed approach is demonstrated by experimental results on the Iris dataset,Wine dataset,Multiple Features dataset,Wireless Indoor Localization dataset and Avila dataset. 展开更多
关键词 machine LEARNING multi-class classification K-MEANS MULTI-TASK RELATIONSHIP LEARNING (MTRL) OVER-FITTING
在线阅读 下载PDF
Multi-class classification method for strip steel surface defects based on support vector machine with adjustable hyper-sphere 被引量:2
8
作者 Mao-xiang Chu Xiao-ping Liu +1 位作者 Rong-fen Gong Jie Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期706-716,共11页
Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated f... Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency. 展开更多
关键词 Strip steel surface defect multi-class classification Supporting vector machine Adjustable hyper-sphere
原文传递
Multi-class classification method for steel surface defects with feature noise 被引量:2
9
作者 Mao-xiang Chu Yao Feng +1 位作者 Yong-hui Yang Xin Deng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2021年第3期303-315,共13页
Defect classification is the key task of a steel surface defect detection system.The current defect classification algorithms have not taken the feature noise into consideration.In order to reduce the adverse impact o... Defect classification is the key task of a steel surface defect detection system.The current defect classification algorithms have not taken the feature noise into consideration.In order to reduce the adverse impact of feature noise,an anti-noise multi-class classification method was proposed for steel surface defects.On the one hand,a novel anti-noise support vector hyper-spheres(ASVHs)classifier was formulated.For N types of defects,the ASVHs classifier built N hyper-spheres.These hyper-spheres were insensitive to feature and label noise.On the other hand,in order to reduce the costs of online time and storage space,the defect samples were pruned by support vector data description with parameter iteration adjustment strategy.In the end,the ASVHs classifier was built with sparse defect samples set and auxiliary information.Experimental results show that the novel multi-class classification method has high efficiency and accuracy for corrupted defect samples in steel surface. 展开更多
关键词 Steel surface defect multi-class classification Anti-noise support vector hyper-sphere Parameter iteration adjustment Feature noise
原文传递
Power Quality Disturbance Classification Method Based on Wavelet Transform and SVM Multi-class Algorithms 被引量:1
10
作者 Xiao Fei 《Energy and Power Engineering》 2013年第4期561-565,共5页
The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wav... The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification. 展开更多
关键词 Power Quality DISTURBANCE classification WAVELET TRANSFORM SVM multi-class ALGORITHMS
在线阅读 下载PDF
Anomaly Detection Based on Discrete Wavelet Transformation for Insider Threat Classification
11
作者 Dong-Wook Kim Gun-Yoon Shin Myung-Mook Han 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期153-164,共12页
Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many... Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many intrusion detection systems learn and prevent known scenarios,but because malicious behavior has similar patterns to normal behavior,in reality,these systems can be evaded.Furthermore,because insider threats share a feature space similar to normal behavior,identifying them by detecting anomalies has limitations.This study proposes an improved anomaly detection methodology for insider threats that occur in cybersecurity in which a discrete wavelet transformation technique is applied to classify normal vs.malicious users.The discrete wavelet transformation technique easily discovers new patterns or decomposes synthesized data,making it possible to distinguish between shared characteristics.To verify the efficacy of the proposed methodology,experiments were conducted in which normal users and malicious users were classified based on insider threat scenarios provided in Carnegie Mellon University’s Computer Emergency Response Team(CERT)dataset.The experimental results indicate that the proposed methodology with discrete wavelet transformation reduced the false-positive rate by 82%to 98%compared to the case with no wavelet applied.Thus,the proposed methodology has high potential for application to similar feature spaces. 展开更多
关键词 anomaly detection CYBERSECURITY discrete wavelet transformation insider threat classification
在线阅读 下载PDF
A YOLOv11-Based Deep Learning Framework for Multi-Class Human Action Recognition
12
作者 Nayeemul Islam Nayeem Shirin Mahbuba +4 位作者 Sanjida Islam Disha Md Rifat Hossain Buiyan Shakila Rahman M.Abdullah-Al-Wadud Jia Uddin 《Computers, Materials & Continua》 2025年第10期1541-1557,共17页
Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only... Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The dataset consists of 14,186 images across 19 activity classes,from dynamic activities such as running and swimming to static activities such as sitting and sleeping.Preprocessing included resizing all images to 512512 pixels,annotating them in YOLO’s bounding box format,and applying data augmentation methods such as flipping,rotation,and cropping to enhance model generalization.The proposed model was trained for 100 epochs with adaptive learning rate methods and hyperparameter optimization for performance improvement,with a mAP@0.5 of 74.93%and a mAP@0.5-0.95 of 64.11%,outperforming previous versions of YOLO(v10,v9,and v8)and general-purpose architectures like ResNet50 and EfficientNet.It exhibited improved precision and recall for all activity classes with high precision values of 0.76 for running,0.79 for swimming,0.80 for sitting,and 0.81 for sleeping,and was tested for real-time deployment with an inference time of 8.9 ms per image,being computationally light.Proposed YOLOv11’s improvements are attributed to architectural advancements like a more complex feature extraction process,better attention modules,and an anchor-free detection mechanism.While YOLOv10 was extremely stable in static activity recognition,YOLOv9 performed well in dynamic environments but suffered from overfitting,and YOLOv8,while being a decent baseline,failed to differentiate between overlapping static activities.The experimental results determine proposed YOLOv11 to be the most appropriate model,providing an ideal balance between accuracy,computational efficiency,and robustness for real-world deployment.Nevertheless,there exist certain issues to be addressed,particularly in discriminating against visually similar activities and the use of publicly available datasets.Future research will entail the inclusion of 3D data and multimodal sensor inputs,such as depth and motion information,for enhancing recognition accuracy and generalizability to challenging real-world environments. 展开更多
关键词 Human activity recognition YOLOv11 deep learning real-time detection anchor-free detection attention mechanisms object detection image classification multi-class recognition surveillance applications
在线阅读 下载PDF
A Novel Combinational Convolutional Neural Network for Automatic Food-Ingredient Classification 被引量:6
13
作者 Lili Pan Cong Li +2 位作者 Samira Pouyanfar Rongyu Chen Yan Zhou 《Computers, Materials & Continua》 SCIE EI 2020年第2期731-746,共16页
With the development of deep learning and Convolutional Neural Networks(CNNs),the accuracy of automatic food recognition based on visual data have significantly improved.Some research studies have shown that the deepe... With the development of deep learning and Convolutional Neural Networks(CNNs),the accuracy of automatic food recognition based on visual data have significantly improved.Some research studies have shown that the deeper the model is,the higher the accuracy is.However,very deep neural networks would be affected by the overfitting problem and also consume huge computing resources.In this paper,a new classification scheme is proposed for automatic food-ingredient recognition based on deep learning.We construct an up-to-date combinational convolutional neural network(CBNet)with a subnet merging technique.Firstly,two different neural networks are utilized for learning interested features.Then,a well-designed feature fusion component aggregates the features from subnetworks,further extracting richer and more precise features for image classification.In order to learn more complementary features,the corresponding fusion strategies are also proposed,including auxiliary classifiers and hyperparameters setting.Finally,CBNet based on the well-known VGGNet,ResNet and DenseNet is evaluated on a dataset including 41 major categories of food ingredients and 100 images for each category.Theoretical analysis and experimental results demonstrate that CBNet achieves promising accuracy for multi-class classification and improves the performance of convolutional neural networks. 展开更多
关键词 Food-ingredient recognition multi-class classification deep learning convolutional neural network feature fusion
在线阅读 下载PDF
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
14
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph Jeffries-Matusitadistance hyperspcctral data
在线阅读 下载PDF
A holistic multimodal approach for real-time anomaly detection and classification in large-scale photovoltaic plants
15
作者 Zoubir Barraz Imane Sebari +3 位作者 Hicham Oufettoul Kenza Ait el kadi Nassim Lamrini Ibtihal Ait Abdelmoula 《Energy and AI》 2025年第3期47-61,共15页
This paper presents a holistic multimodal approach for real-time anomaly detection and classification in largescale photovoltaic plants.The approach encompasses segmentation,geolocation,and classification of individua... This paper presents a holistic multimodal approach for real-time anomaly detection and classification in largescale photovoltaic plants.The approach encompasses segmentation,geolocation,and classification of individual photovoltaic modules.A fine-tuned Yolov7 model was trained for the individual module’s segmentation of both modalities;RGB and IR images.The localization of individual solar panels relies on photogrammetric measurements to facilitate maintenance operations.The localization process also links extracted images of the same panel using their geographical coordinates and preprocesses them for the multimodal model input.The study also focuses on optimizing pre-trained models using Bayesian search to improve and fine-tune them with our dataset.The dataset was collected from different systems and technologies within our research platform.It has been curated into 1841 images and classified into five anomaly classes.Grad-CAM,an explainable AI tool,is utilized to compare the use of multimodality to a single modality.Finally,for real-time optimization,the ONNX format was used to optimize the model further for deployment in real-time.The improved ConvNext-Tiny model performed well in both modalities,with 99%precision,recall,and F1-score for binary classification and 85%for multi-class classification.In terms of latency,the segmentation models have an inference time of 14 ms and 12 ms for RGB and IR images and 24 ms for detection and classification.The proposed holistic approach includes a built-in feedback loop to ensure the model’s robustness against domain shifts in the production environment. 展开更多
关键词 anomaly classification Bayesian optimization Explainable AI Holistic multimodal approach Photovoltaic module segmentation Production environment
在线阅读 下载PDF
LLE-BASED CLASSIFICATION ALGORITHM FOR MMW RADAR TARGET RECOGNITION 被引量:1
16
作者 Luo Lei Li Yuehua Luan Yinghong 《Journal of Electronics(China)》 2010年第1期139-144,共6页
In this paper,a new multiclass classification algorithm is proposed based on the idea of Locally Linear Embedding(LLE),to avoid the defect of traditional manifold learning algorithms,which can not deal with new sample... In this paper,a new multiclass classification algorithm is proposed based on the idea of Locally Linear Embedding(LLE),to avoid the defect of traditional manifold learning algorithms,which can not deal with new sample points.The algorithm defines an error as a criterion by computing a sample's reconstruction weight using LLE.Furthermore,the existence and characteristics of low dimensional manifold in range-profile time-frequency information are explored using manifold learning algorithm,aiming at the problem of target recognition about high range resolution MilliMeter-Wave(MMW) radar.The new algorithm is applied to radar target recognition.The experiment results show the algorithm is efficient.Compared with other classification algorithms,our method improves the recognition precision and the result is not sensitive to input parameters. 展开更多
关键词 Manifold learning Locally Linear Embedding(LLE) multi-class classification MilliMeter-Wave(MMW) Target recognition
在线阅读 下载PDF
基于深度学习的时序数据异常检测研究综述 被引量:3
17
作者 陈红松 刘新蕊 +1 位作者 陶子美 王志恒 《信息网络安全》 北大核心 2025年第3期364-391,共28页
时序数据异常检测是数据挖掘及网络安全领域的重要研究课题。文章以时序数据异常检测技术为研究对象,运用文献调研与比较分析方法,深入探讨了深度学习模型在该领域的应用及其研究进展。文章首先介绍了深度时序数据异常检测的定义与应用... 时序数据异常检测是数据挖掘及网络安全领域的重要研究课题。文章以时序数据异常检测技术为研究对象,运用文献调研与比较分析方法,深入探讨了深度学习模型在该领域的应用及其研究进展。文章首先介绍了深度时序数据异常检测的定义与应用;其次,提出了深度时序数据异常检测面临的9个问题与挑战,并将时序数据异常分为10类,枚举了16种典型的时序数据异常检测数据集,其中包括5种社交网络舆情安全领域相关数据集;再次,文章将深度时序数据异常检测模型进行分类研究,分析总结了近50个相关模型,其中包括基于半监督增量学习的社交网络不良信息发布者异常检测,进一步地,文章依据深度学习模型的学习模式将模型划分为基于重构、基于预测、基于重构与预测融合3种类型,并对这些模型的优缺点及应用场景进行综合分析;最后,文章从8个方面展望了深度时序异常检测技术的未来研究方向,分析了每个方向的潜在研究价值及技术瓶颈。 展开更多
关键词 深度学习 时序数据 异常检测 模型分类 社交网络
在线阅读 下载PDF
卫星红外数据火山热点识别算法研究进展
18
作者 赵峰华 高明 +6 位作者 朱琳 孙红福 郑伟 刘诚 李欣瑜 刘涛 翁泽峰 《遥感学报》 北大核心 2025年第3期584-595,共12页
使用卫星红外数据识别火山热点可以实现安全且低成本的监测全球火山活动。本文综述了卫星红外数据在火山热点识别中的算法研究进展,特别强调了算法的分类和发展历史。这些算法主要基于火山活动时热点所在像元中红外通道亮温升高的原理,... 使用卫星红外数据识别火山热点可以实现安全且低成本的监测全球火山活动。本文综述了卫星红外数据在火山热点识别中的算法研究进展,特别强调了算法的分类和发展历史。这些算法主要基于火山活动时热点所在像元中红外通道亮温升高的原理,根据考虑火山及其周围地物的空间和时间特性来识别火山热异常,算法大致分为4种主要类型:空间特征算法、时间特征算法、综合特征算法和人工智能算法。从算法分类、特性、适用范围、局限性方面,厘清了当前国内外利用遥感的方式进行火山热点识别的现状,为理解和改进火山热点检测技术提供了全面的分类和评估,对火山热遥感前沿理论和技术发展具有重要意义。 展开更多
关键词 火山熔岩流 热红外遥感 红外卫星数据 火山监测 热异常 热点自动检测 算法分类 防灾减灾
原文传递
基于多源异构数据融合的高坝泄流结构安全智能监测预警方法
19
作者 马斌 彭志 梁超 《水利学报》 北大核心 2025年第9期1132-1142,共11页
高坝泄流结构在漫长的运行期内难避免会发生损伤,亟需实施有效的安全监测预警,以免局部异常扩大为安全事故。鉴于空气声压和流态图像等对局部异常具有良好的敏感性,将对二者的监测与传统的低频振动位移监测同步进行,以丰富监测数据类型... 高坝泄流结构在漫长的运行期内难避免会发生损伤,亟需实施有效的安全监测预警,以免局部异常扩大为安全事故。鉴于空气声压和流态图像等对局部异常具有良好的敏感性,将对二者的监测与传统的低频振动位移监测同步进行,以丰富监测数据类型、提升有效信息。针对上述多源异构数据,提出了特征级融合方法,将振动、声压的时频图与分割裁剪的流态图像等二维数据拼接为三维矩阵,尽可能地保留和融合各类数据的关键特征。基于自编码器结构,构建深度学习网络,嵌入Inception和GRU模块以提升模型的空间和时序特征学习能力,提出了Autoencoder-Inception-GRU单分类异常识别模型。采用绝对平均误差百分比和欧氏距离作为模型的重构误差函数,并将其最大值的95%设为异常阈值。基于原型监测试验,构建了振动-声压-图像多源异构数据库,详细分析了Autoencoder-Inception-GRU模型的性能,并通过多种情况下的算例研究,检验了所提方法的准确度、鲁棒性和泛化能力。结果表明所提方法性能优异,可为高坝泄流安全监测预警的工程应用提供关键技术支持。 展开更多
关键词 高坝泄流 监测预警 单分类异常识别 多源异构数据融合 原型监测
在线阅读 下载PDF
脉管性疾病ISSVA新分类(2025版)及解读 被引量:2
20
作者 杜仲 郑家伟 王延安 《中国口腔颌面外科杂志》 2025年第4期313-317,共5页
脉管性疾病主要分为脉管源性肿瘤和脉管畸形两大类。1982年,Mulliken和Glowacki提出了革命性生物学分类,即基于内皮细胞增殖特性将其分为“血管瘤”和“脉管畸形”。1996年,该分类被国际脉管性疾病研究学会(ISSVA)采纳,并持续完善至今。... 脉管性疾病主要分为脉管源性肿瘤和脉管畸形两大类。1982年,Mulliken和Glowacki提出了革命性生物学分类,即基于内皮细胞增殖特性将其分为“血管瘤”和“脉管畸形”。1996年,该分类被国际脉管性疾病研究学会(ISSVA)采纳,并持续完善至今。2025年4月,在巴黎举行的ISSVA世界大会上,针对目前广泛使用的2018版分类体系予以进一步优化,该体系做出了大量结构性和细节性调整,在实用性、可操作性、简洁性和科学性等方面均有显著提升。ISSVA分类的演进过程,反映了对脉管性疾病从形态学到分子机制的认知深化,每次更新都对全球脉管疾病的诊疗标准化具有里程碑意义,本文对2025版ISSVA新分类做一介绍和解读,以供临床、科研及学术交流参考。 展开更多
关键词 脉管性疾病 ISSVA 血管瘤 脉管畸形 分类
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部