Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or...Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content.展开更多
Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only...Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The dataset consists of 14,186 images across 19 activity classes,from dynamic activities such as running and swimming to static activities such as sitting and sleeping.Preprocessing included resizing all images to 512512 pixels,annotating them in YOLO’s bounding box format,and applying data augmentation methods such as flipping,rotation,and cropping to enhance model generalization.The proposed model was trained for 100 epochs with adaptive learning rate methods and hyperparameter optimization for performance improvement,with a mAP@0.5 of 74.93%and a mAP@0.5-0.95 of 64.11%,outperforming previous versions of YOLO(v10,v9,and v8)and general-purpose architectures like ResNet50 and EfficientNet.It exhibited improved precision and recall for all activity classes with high precision values of 0.76 for running,0.79 for swimming,0.80 for sitting,and 0.81 for sleeping,and was tested for real-time deployment with an inference time of 8.9 ms per image,being computationally light.Proposed YOLOv11’s improvements are attributed to architectural advancements like a more complex feature extraction process,better attention modules,and an anchor-free detection mechanism.While YOLOv10 was extremely stable in static activity recognition,YOLOv9 performed well in dynamic environments but suffered from overfitting,and YOLOv8,while being a decent baseline,failed to differentiate between overlapping static activities.The experimental results determine proposed YOLOv11 to be the most appropriate model,providing an ideal balance between accuracy,computational efficiency,and robustness for real-world deployment.Nevertheless,there exist certain issues to be addressed,particularly in discriminating against visually similar activities and the use of publicly available datasets.Future research will entail the inclusion of 3D data and multimodal sensor inputs,such as depth and motion information,for enhancing recognition accuracy and generalizability to challenging real-world environments.展开更多
Change Detection(CD)provides a research basis for environmental monitoring,urban expansion and reconstruction as well as disaster assessment,by identifying the changes of ground objects in different time periods.Tradi...Change Detection(CD)provides a research basis for environmental monitoring,urban expansion and reconstruction as well as disaster assessment,by identifying the changes of ground objects in different time periods.Traditional CD focused on the Binary Change Detection(BCD),focusing solely on the change and no-change regions.Due to the dynamic progress of earth observation satellite techniques,the spatial resolution of remote sensing images continues to increase,Multi-class Change Detection(MCD)which can reflect more detailed land change has become a hot research direction in the field of CD.Although many scholars have reviewed change detection at present,most of the work still focuses on BCD.This paper focuses on the recent progress in MCD,which includes five major aspects:challenges,datasets,methods,applications and future research direction.Specifically,the background of MCD is first introduced.Then,the major difficulties and challenges in MCD are discussed and delineated.The benchmark datasets for MCD are described,and the available open datasets are listed.Moreover,MCD is further divided into three categories and the specific techniques are described,respectively.Subsequently,the common applications of MCD are described.Finally,the relevant literature in the main journals of remote sensing in the past five years are analyzed and the development and future research direction of MCD are discussed.This review will help researchers understand this field and provide a reference for the subsequent development of MCD.Our collections of MCD benchmark datasets are available at:https://zenodo.org/record/6809804#.YsfvxXZByUk.展开更多
停车诱导信息系统(Parking Guidance Information System,PGIS)被认为是改善城市交通拥挤的一项有效技术,不同的PGIS市场占有率对道路交通的影响是不同的。文章将出行者分成两类:使用PGIS和不使用PGIS,考虑了PGIS对出行者道路和停车选...停车诱导信息系统(Parking Guidance Information System,PGIS)被认为是改善城市交通拥挤的一项有效技术,不同的PGIS市场占有率对道路交通的影响是不同的。文章将出行者分成两类:使用PGIS和不使用PGIS,考虑了PGIS对出行者道路和停车选择行为的影响以及PGIS的市场占有率,构造了随机用户均衡模型来描述PGIS条件下的道路和停车选择问题,设计了相应的算法。最后,通过一个算例对模型及算法进行了验证。展开更多
This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combin...This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.展开更多
Jude the Obscure was Thomas Hardy’s last novel creation,and he spent eight year from preparation to publication.Although this novel received a lot of criticisms instead of praises when it came out,it also can be cons...Jude the Obscure was Thomas Hardy’s last novel creation,and he spent eight year from preparation to publication.Although this novel received a lot of criticisms instead of praises when it came out,it also can be considered as Thomas Hardy’s classical works.The theme of this novel is so brave to explore the existing women’s living circumstances in that time.With the industrial revolution in England,new thoughts and ideas sprang out.Women were no longer belonging to husband and family,and they began to be aware of their social roles and reconsider their identity in society and marriage.The aim of the paper is to analyze this novel from the feministic perspective and re-read the character of Sue Bridehead in the light of the theory"the girl of the period".展开更多
Fraudulent website is an important car-rier tool for telecom fraud.At present,criminals can use artificial intelligence generative content technol-ogy to quickly generate fraudulent website templates and build fraudul...Fraudulent website is an important car-rier tool for telecom fraud.At present,criminals can use artificial intelligence generative content technol-ogy to quickly generate fraudulent website templates and build fraudulent websites in batches.Accurate identification of fraudulent website will effectively re-duce the risk of public victimization.Therefore,this study developed a fraudulent website template iden-tification method based on DOM structure extraction of website fingerprint features,which solves the prob-lems of single-dimension identification,low accuracy,and the insufficient generalization ability of current fraudulent website templates.This method uses an im-proved SimHash algorithm to traverse the DOM tree of a webpage,extract website node features,calcu-late the weight of each node,and obtain the finger-print feature vector of the website through dimension-ality reduction.Finally,the random forest algorithm is used to optimize the training features for the best combination of parameters.This method automati-cally extracts fingerprint features from websites and identifies website template ownership based on these features.An experimental analysis showed that this method achieves a classification accuracy of 89.8%and demonstrates superior recognition.展开更多
基金funded by Scientific Research Deanship at University of Hail-Saudi Arabia through Project Number RG-23092.
文摘Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content.
基金supported by King Saud University,Riyadh,Saudi Arabia,under Ongoing Research Funding Program(ORF-2025-951).
文摘Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The dataset consists of 14,186 images across 19 activity classes,from dynamic activities such as running and swimming to static activities such as sitting and sleeping.Preprocessing included resizing all images to 512512 pixels,annotating them in YOLO’s bounding box format,and applying data augmentation methods such as flipping,rotation,and cropping to enhance model generalization.The proposed model was trained for 100 epochs with adaptive learning rate methods and hyperparameter optimization for performance improvement,with a mAP@0.5 of 74.93%and a mAP@0.5-0.95 of 64.11%,outperforming previous versions of YOLO(v10,v9,and v8)and general-purpose architectures like ResNet50 and EfficientNet.It exhibited improved precision and recall for all activity classes with high precision values of 0.76 for running,0.79 for swimming,0.80 for sitting,and 0.81 for sleeping,and was tested for real-time deployment with an inference time of 8.9 ms per image,being computationally light.Proposed YOLOv11’s improvements are attributed to architectural advancements like a more complex feature extraction process,better attention modules,and an anchor-free detection mechanism.While YOLOv10 was extremely stable in static activity recognition,YOLOv9 performed well in dynamic environments but suffered from overfitting,and YOLOv8,while being a decent baseline,failed to differentiate between overlapping static activities.The experimental results determine proposed YOLOv11 to be the most appropriate model,providing an ideal balance between accuracy,computational efficiency,and robustness for real-world deployment.Nevertheless,there exist certain issues to be addressed,particularly in discriminating against visually similar activities and the use of publicly available datasets.Future research will entail the inclusion of 3D data and multimodal sensor inputs,such as depth and motion information,for enhancing recognition accuracy and generalizability to challenging real-world environments.
基金supported by the National Natural Science Foundation of China[grant number 41901306]the Key Lab of Spatial Data Mining&Information Sharing of Ministry of Education[grant number 2022LSDMIS09].
文摘Change Detection(CD)provides a research basis for environmental monitoring,urban expansion and reconstruction as well as disaster assessment,by identifying the changes of ground objects in different time periods.Traditional CD focused on the Binary Change Detection(BCD),focusing solely on the change and no-change regions.Due to the dynamic progress of earth observation satellite techniques,the spatial resolution of remote sensing images continues to increase,Multi-class Change Detection(MCD)which can reflect more detailed land change has become a hot research direction in the field of CD.Although many scholars have reviewed change detection at present,most of the work still focuses on BCD.This paper focuses on the recent progress in MCD,which includes five major aspects:challenges,datasets,methods,applications and future research direction.Specifically,the background of MCD is first introduced.Then,the major difficulties and challenges in MCD are discussed and delineated.The benchmark datasets for MCD are described,and the available open datasets are listed.Moreover,MCD is further divided into three categories and the specific techniques are described,respectively.Subsequently,the common applications of MCD are described.Finally,the relevant literature in the main journals of remote sensing in the past five years are analyzed and the development and future research direction of MCD are discussed.This review will help researchers understand this field and provide a reference for the subsequent development of MCD.Our collections of MCD benchmark datasets are available at:https://zenodo.org/record/6809804#.YsfvxXZByUk.
文摘停车诱导信息系统(Parking Guidance Information System,PGIS)被认为是改善城市交通拥挤的一项有效技术,不同的PGIS市场占有率对道路交通的影响是不同的。文章将出行者分成两类:使用PGIS和不使用PGIS,考虑了PGIS对出行者道路和停车选择行为的影响以及PGIS的市场占有率,构造了随机用户均衡模型来描述PGIS条件下的道路和停车选择问题,设计了相应的算法。最后,通过一个算例对模型及算法进行了验证。
基金The National High Technology Research and Development Program of China (863 Program) (No. 2007AA11Z202)the National Key Technology R & D Program of China during the 11th Five-Year Plan Period(No. 2006BAJ18B03)the Fundamental Research Funds for the Central Universities (No. DUT10RC(3) 112)
文摘This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.
文摘Jude the Obscure was Thomas Hardy’s last novel creation,and he spent eight year from preparation to publication.Although this novel received a lot of criticisms instead of praises when it came out,it also can be considered as Thomas Hardy’s classical works.The theme of this novel is so brave to explore the existing women’s living circumstances in that time.With the industrial revolution in England,new thoughts and ideas sprang out.Women were no longer belonging to husband and family,and they began to be aware of their social roles and reconsider their identity in society and marriage.The aim of the paper is to analyze this novel from the feministic perspective and re-read the character of Sue Bridehead in the light of the theory"the girl of the period".
基金This research is a phased achievement of The National Social Science Fund of China(23BGL272).
文摘Fraudulent website is an important car-rier tool for telecom fraud.At present,criminals can use artificial intelligence generative content technol-ogy to quickly generate fraudulent website templates and build fraudulent websites in batches.Accurate identification of fraudulent website will effectively re-duce the risk of public victimization.Therefore,this study developed a fraudulent website template iden-tification method based on DOM structure extraction of website fingerprint features,which solves the prob-lems of single-dimension identification,low accuracy,and the insufficient generalization ability of current fraudulent website templates.This method uses an im-proved SimHash algorithm to traverse the DOM tree of a webpage,extract website node features,calcu-late the weight of each node,and obtain the finger-print feature vector of the website through dimension-ality reduction.Finally,the random forest algorithm is used to optimize the training features for the best combination of parameters.This method automati-cally extracts fingerprint features from websites and identifies website template ownership based on these features.An experimental analysis showed that this method achieves a classification accuracy of 89.8%and demonstrates superior recognition.