High-performance terahertz(THz)logic gate devices are crucial components for signal processing and modulation,playing a significant role in the application of THz communication and imaging.Here,we propose a THz broadb...High-performance terahertz(THz)logic gate devices are crucial components for signal processing and modulation,playing a significant role in the application of THz communication and imaging.Here,we propose a THz broadband NOR logic encoder based on a graphene-metal hybrid metasurface.The unit structure consists of two symmetrical dual-gap metal split-ring resonators(DSRRs)arranged in a staggered configuration,with graphene strips embedded in their gaps.The NOR logic gate metadevice is controlled by the bias voltages independently applied to the two electrodes.Experiments show that when the bias voltages are applied to both electrodes,the metadevice achieves the NOR logic gate within a 0.52 THz bandwidth,with an average modulation depth above 80%.The experimental results match well with theoretical simulations.Additionally,the strong near-field coupling induced by the staggered DSRRs causes redshift at both LC resonance and dipole resonance.This phenomenon was demonstrated by coupled mode theory.Besides,we analyze the surface current distribution at resonances and propose four equivalent circuit models to elucidate the physical mechanisms of modulation under distinct loaded voltage conditions.The results not only advance modulation and logic gate designs for THz communication but also demonstrate significant potential applications in 6G networks,THz imaging,and radar systems.展开更多
In response to the shortcomings of the common encoders in the industry,of which the photoelectric encoders have a poor anti-interference ability in harsh industrial environments with water,oil,dust,or strong vibration...In response to the shortcomings of the common encoders in the industry,of which the photoelectric encoders have a poor anti-interference ability in harsh industrial environments with water,oil,dust,or strong vibrations and the magnetic encoders are too sensitive to magnetic field density,this paper designs a new differential encoder based on the grating eddy-current measurement principle,abbreviated as differential grating eddy-current encoder(DGECE).The grating eddy-current of DGECE consists of a circular array of trapezoidal reflection conductors and 16 trapezoidal coils with a special structure to form a differential relationship,which are respectively located on the code plate and the readout plate designed by a printed circuit board.The differential structure of DGECE corrects the common mode interference and the amplitude distortion due to the assembly to some extent,possesses a certain anti-interference capability,and greatly simplifies the regularization algorithm of the original data.By means of the corresponding readout circuit and demodulation algorithm,the DGECE can convert the periodic impedance variation of 16 coils into an angular output within the 360°cycle.Due to its simple manufacturing process and certain interference immunity,DGECE is easy to be integrated and mass-produced as well as applicable in the industrial spindles,especially in robot joints.This paper presents the measurement principle,implementation methods,and results of the experiment of the DGECE.The experimental results show that the accuracy of the DGECE can reach 0.237%and the measurement standard deviation can reach±0.14°within360°cycle.展开更多
Recent advances in AC/DC hybrid power distribution systems have enhanced convenience in daily life.However,DC distribution introduces significant power quality challenges.To address the identification and classificati...Recent advances in AC/DC hybrid power distribution systems have enhanced convenience in daily life.However,DC distribution introduces significant power quality challenges.To address the identification and classification of DC power quality disturbances,this paper proposes a novel methodology integrating Compressed Sensing(CS)with an enhanced Stacked Denoising Autoencoder(SDAE).The proposed approach first employs MATLAB/SIMULINK to model the DC distribution network and generate DC power quality disturbance signals.The measured original signals are then reconstructed using the compressive sensing-based generalized orthogonal matching pursuit(GOMP)algorithm to obtain sparse vectors as the final dataset.Subsequently,a Stacked Denoising Autoencoder model is constructed.The Root Mean Square Propagation(RMSprop)optimization algorithm is introduced to finetune network parameters,thereby reducing the probability of convergence to local optima.Finally,simulation analyses are conducted on five common types of DC power quality disturbance signals.Both raw signals and sparse vectors are utilized as datasets and fed into the encoder model.The results indicate that this method effectively reduces the feature dimensionality for DC power quality disturbance classification while improving both recognition efficiency and accuracy,with additional advantages in noise resistance.展开更多
In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the e...In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the experiment of the emotion classification method based on the encoder.The experimental analysis shows that the encoder has higher precision than other encoders in emotion classification.It is hoped that this analysis can provide some reference for the emotion classification under the current intelligent algorithm mode.展开更多
Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the st...Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks.TheWUSTL-EHMS 2020 dataset trains and evaluates themodel,constituting an imbalanced class distribution(87.46% normal traffic and 12.53% intrusion attacks).To address this imbalance,the study balances the effect of training Bias through Stratified K-fold cross-validation(K=5),so that each class is represented similarly on training and validation splits.Second,the Auto-Stack ID method combines many base classifiers such as TabNet,LightGBM,Gaussian Naive Bayes,Histogram-Based Gradient Boosting(HGB),and Logistic Regression.We apply a two-stage training process based on the first stage,where we have base classifiers that predict out-of-fold(OOF)predictions,which we use as inputs for the second-stage meta-learner XGBoost.The meta-learner learns to refine predictions to capture complicated interactions between base models,thus improving detection accuracy without introducing bias,overfitting,or requiring domain knowledge of the meta-data.In addition,the auto-stack ID model got 98.41% accuracy and 93.45%F1 score,better than individual classifiers.It can identify intrusions due to its 90.55% recall and 96.53% precision with minimal false positives.These findings identify its suitability in ensuring healthcare networks’security through ensemble learning.Ongoing efforts will be deployed in real time to improve response to evolving threats.展开更多
To solve the problem of identification and measurement of two projectiles hitting the target at the same time,this paper proposes a projectile coordinate test method combining three photoelectric encoder detection scr...To solve the problem of identification and measurement of two projectiles hitting the target at the same time,this paper proposes a projectile coordinate test method combining three photoelectric encoder detection screens,and establishes a coordinate calculation model for two projectiles to reach the same detection screen at the same time.The design method of three photoelectric encoder detection screens and the position coordinate recognition algorithm of the blocked array photoelectric detector when projectile passing through the photoelectric encoder detection screen are studied.Using the screen projection method,the intersected linear equation of the projectile and the line laser with the main detection screen as the core coordinate plane is established,and the projectile coordinate data set formed by any two photoelectric encoder detection screens is constructed.The principle of minimum error of coordinate data set is used to determine the coordinates of two projectiles hitting the target at the same time.The rationality and feasibility of the proposed test method are verified by experiments and comparative tests.展开更多
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u...This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks.展开更多
Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi...Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems.展开更多
Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding ...Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis.展开更多
Dynamic DNA nanotechnology plays a significant role in nanomedicine and information science due to its high programmability based on Watson-Crick base pairing and nanoscale dimensions.Intelligent DNA machines and netw...Dynamic DNA nanotechnology plays a significant role in nanomedicine and information science due to its high programmability based on Watson-Crick base pairing and nanoscale dimensions.Intelligent DNA machines and networks have been widely used in various fields,including molecular imaging,biosensors,drug delivery,information processing,and logic operations.Encoders serve as crucial components for information compilation and transfer,allowing the conversion of information from diverse application scenarios into a format recognized and applied by DNA circuits.However,there are only a few encoder designs with DNA outputs.Moreover,the molecular priority encoder is hardly designed.In this study,we introduce allosteric DNAzyme-based encoders for information transfer.The design of the allosteric domain and the recognition arm allows the input and output to be independent of each other and freely programmable.The pre-packaged mode design achieves uniformity of baseline dynamics and dynamics controllability.We also integrated non-nucleic acid molecules into the encoder through the aptamer design of the allosteric domain.Furthermore,we developed the 2^(n)-n encoder and the EndoⅣ-assisted priority encoder inspired by immunoglobulin's molecular structure and effector patterns.To our knowledge,the proposed encoder is the first enzyme-free DNA encoder with DNA output,and the priority encoder is the first molecular priority encoder in the DNA reaction network.Our encoders avoid complex operations on a single molecule,and their simple structure facilitates their application in complex DNA circuits and biological scenarios.展开更多
Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of cr...Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.展开更多
In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is di...In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t...Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.展开更多
Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding ...Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding types.To achieve direct communication between the devices with different quantum encoding types,in this paper,we propose encoding conversion schemes between the polarization bases(rectilinear,diagonal and circular bases)and the time-bin phase bases(two phase bases and time-bin basis)and design the quantum encoding converters.The theoretical analysis of the encoding conversion schemes is given in detail,and the basis correspondence of encoding conversion and the property of bit flip are revealed.The conversion relationship between polarization bases and time-bin phase bases can be easily selected by controlling a phase shifter.Since no optical switches are used in our scheme,the converter can be operated with high speed.The converters can also be modularized,which may be utilized to realize miniaturization in the future.展开更多
With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A mag...With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.展开更多
Blockchain,as a distributed ledger,inherently possesses tamper-resistant capabilities,creating a natural channel for covert communication.However,the immutable nature of data storage might introduce challenges to comm...Blockchain,as a distributed ledger,inherently possesses tamper-resistant capabilities,creating a natural channel for covert communication.However,the immutable nature of data storage might introduce challenges to communication security.This study introduces a blockchain-based covert communication model utilizing dynamic Base-K encoding.The proposed encoding scheme utilizes the input address sequence to determine K to encode the secret message and determines the order of transactions based on K,thus ensuring effective concealment of the message.The dynamic encoding parameters enhance flexibility and address issues related to identical transaction amounts for the same secret message.Experimental results demonstrate that the proposed method maintains smooth communication and low susceptibility to tampering,achieving commendable concealment and embedding rates.展开更多
Given the importance of sentiment analysis in diverse environments,various methods are used for image sentiment analysis,including contextual sentiment analysis that utilizes character and scene relationships.However,...Given the importance of sentiment analysis in diverse environments,various methods are used for image sentiment analysis,including contextual sentiment analysis that utilizes character and scene relationships.However,most existing works employ character faces in conjunction with context,yet lack the capacity to analyze the emotions of characters in unconstrained environments,such as when their faces are obscured or blurred.Accordingly,this article presents the Adaptive Multi-Channel Sentiment Analysis Network(AMSA),a contextual image sentiment analysis framework,which consists of three channels:body,face,and context.AMSA employs Multi-task Cascaded Convolutional Networks(MTCNN)to detect faces within body frames;if detected,facial features are extracted and fused with body and context information for emotion recognition.If not,the model leverages body and context features alone.Meanwhile,to address class imbalance in the EMOTIC dataset,Focal Loss is introduced to improve classification performance,especially for minority emotion categories.Experimental results have shown that certain sentiment categories with lower representation in the dataset demonstrate leading classification accuracy,the AMSA yields a 2.53%increase compared with state-of-the-art methods.展开更多
High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal im...High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal importance. As critical rotating mechanical components of the transmission system, bearings make their fault diagnosis a topic of extensive attention. This paper provides a systematic review of image encoding-based bearing fault diagnosis methods tailored to the condition monitoring of HSTs. First, it categorizes the image encoding techniques applied in the field of bearing fault diagnosis. Then, a review of state-of-the-art studies has been presented, encompassing both monomodal image conversion and multimodal image fusion approaches. Finally, it highlights current challenges and proposes future research directions to advance intelligent fault diagnosis in HSTs, aiming to provide a valuable reference for researchers and engineers in the field of intelligent operation and maintenance.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62005058 and 62365006)the Natural Science Foundation of Guangxi,China(Grant No.2020GXNSFBA238012)+2 种基金the China Postdoctoral Science Foundation(Grant No.2020M683726)the Innovation Project of Guangxi Graduate Education(Grant Nos.YCSW2024345 and YCBZ2025157)the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Grant No.YQ24101).
文摘High-performance terahertz(THz)logic gate devices are crucial components for signal processing and modulation,playing a significant role in the application of THz communication and imaging.Here,we propose a THz broadband NOR logic encoder based on a graphene-metal hybrid metasurface.The unit structure consists of two symmetrical dual-gap metal split-ring resonators(DSRRs)arranged in a staggered configuration,with graphene strips embedded in their gaps.The NOR logic gate metadevice is controlled by the bias voltages independently applied to the two electrodes.Experiments show that when the bias voltages are applied to both electrodes,the metadevice achieves the NOR logic gate within a 0.52 THz bandwidth,with an average modulation depth above 80%.The experimental results match well with theoretical simulations.Additionally,the strong near-field coupling induced by the staggered DSRRs causes redshift at both LC resonance and dipole resonance.This phenomenon was demonstrated by coupled mode theory.Besides,we analyze the surface current distribution at resonances and propose four equivalent circuit models to elucidate the physical mechanisms of modulation under distinct loaded voltage conditions.The results not only advance modulation and logic gate designs for THz communication but also demonstrate significant potential applications in 6G networks,THz imaging,and radar systems.
基金the Biomedical Science and Technology Support Special Project of Shanghai Science and Technology Committee(No.20S31908300)。
文摘In response to the shortcomings of the common encoders in the industry,of which the photoelectric encoders have a poor anti-interference ability in harsh industrial environments with water,oil,dust,or strong vibrations and the magnetic encoders are too sensitive to magnetic field density,this paper designs a new differential encoder based on the grating eddy-current measurement principle,abbreviated as differential grating eddy-current encoder(DGECE).The grating eddy-current of DGECE consists of a circular array of trapezoidal reflection conductors and 16 trapezoidal coils with a special structure to form a differential relationship,which are respectively located on the code plate and the readout plate designed by a printed circuit board.The differential structure of DGECE corrects the common mode interference and the amplitude distortion due to the assembly to some extent,possesses a certain anti-interference capability,and greatly simplifies the regularization algorithm of the original data.By means of the corresponding readout circuit and demodulation algorithm,the DGECE can convert the periodic impedance variation of 16 coils into an angular output within the 360°cycle.Due to its simple manufacturing process and certain interference immunity,DGECE is easy to be integrated and mass-produced as well as applicable in the industrial spindles,especially in robot joints.This paper presents the measurement principle,implementation methods,and results of the experiment of the DGECE.The experimental results show that the accuracy of the DGECE can reach 0.237%and the measurement standard deviation can reach±0.14°within360°cycle.
基金funded by the National Natural Science Foundation of China(52177074).
文摘Recent advances in AC/DC hybrid power distribution systems have enhanced convenience in daily life.However,DC distribution introduces significant power quality challenges.To address the identification and classification of DC power quality disturbances,this paper proposes a novel methodology integrating Compressed Sensing(CS)with an enhanced Stacked Denoising Autoencoder(SDAE).The proposed approach first employs MATLAB/SIMULINK to model the DC distribution network and generate DC power quality disturbance signals.The measured original signals are then reconstructed using the compressive sensing-based generalized orthogonal matching pursuit(GOMP)algorithm to obtain sparse vectors as the final dataset.Subsequently,a Stacked Denoising Autoencoder model is constructed.The Root Mean Square Propagation(RMSprop)optimization algorithm is introduced to finetune network parameters,thereby reducing the probability of convergence to local optima.Finally,simulation analyses are conducted on five common types of DC power quality disturbance signals.Both raw signals and sparse vectors are utilized as datasets and fed into the encoder model.The results indicate that this method effectively reduces the feature dimensionality for DC power quality disturbance classification while improving both recognition efficiency and accuracy,with additional advantages in noise resistance.
文摘In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the experiment of the emotion classification method based on the encoder.The experimental analysis shows that the encoder has higher precision than other encoders in emotion classification.It is hoped that this analysis can provide some reference for the emotion classification under the current intelligent algorithm mode.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R319),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publicationResearchers Supporting Project Number(RSPD2025R1107),King Saud University,Riyadh,Saudi Arabia.
文摘Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks.TheWUSTL-EHMS 2020 dataset trains and evaluates themodel,constituting an imbalanced class distribution(87.46% normal traffic and 12.53% intrusion attacks).To address this imbalance,the study balances the effect of training Bias through Stratified K-fold cross-validation(K=5),so that each class is represented similarly on training and validation splits.Second,the Auto-Stack ID method combines many base classifiers such as TabNet,LightGBM,Gaussian Naive Bayes,Histogram-Based Gradient Boosting(HGB),and Logistic Regression.We apply a two-stage training process based on the first stage,where we have base classifiers that predict out-of-fold(OOF)predictions,which we use as inputs for the second-stage meta-learner XGBoost.The meta-learner learns to refine predictions to capture complicated interactions between base models,thus improving detection accuracy without introducing bias,overfitting,or requiring domain knowledge of the meta-data.In addition,the auto-stack ID model got 98.41% accuracy and 93.45%F1 score,better than individual classifiers.It can identify intrusions due to its 90.55% recall and 96.53% precision with minimal false positives.These findings identify its suitability in ensuring healthcare networks’security through ensemble learning.Ongoing efforts will be deployed in real time to improve response to evolving threats.
基金supported by National Natural Science Foundation of China(Grant No.62073256)Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-342)。
文摘To solve the problem of identification and measurement of two projectiles hitting the target at the same time,this paper proposes a projectile coordinate test method combining three photoelectric encoder detection screens,and establishes a coordinate calculation model for two projectiles to reach the same detection screen at the same time.The design method of three photoelectric encoder detection screens and the position coordinate recognition algorithm of the blocked array photoelectric detector when projectile passing through the photoelectric encoder detection screen are studied.Using the screen projection method,the intersected linear equation of the projectile and the line laser with the main detection screen as the core coordinate plane is established,and the projectile coordinate data set formed by any two photoelectric encoder detection screens is constructed.The principle of minimum error of coordinate data set is used to determine the coordinates of two projectiles hitting the target at the same time.The rationality and feasibility of the proposed test method are verified by experiments and comparative tests.
基金supported by an Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(RS-2024-00438156,Development of Security Resilience Technology Based on Network Slicing Services in a 5G Specialized Network).
文摘This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks.
基金supported in part by the National Natural Science Foundation of China under Grant 6226070954Jiangxi Provincial Key R&D Programme under Grant 20244BBG73002.
文摘Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems.
基金supported by Natural Science Foundation Programme of Gansu Province(No.24JRRA231)National Natural Science Foundation of China(No.62061023)Gansu Provincial Science and Technology Plan Key Research and Development Program Project(No.24YFFA024).
文摘Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis.
基金financially supported by the National Natural Science Foundation of China(No.82172372)the Opening Research Fund of State Key Laboratory of Digital Medical Engineering(No.2023-M04)。
文摘Dynamic DNA nanotechnology plays a significant role in nanomedicine and information science due to its high programmability based on Watson-Crick base pairing and nanoscale dimensions.Intelligent DNA machines and networks have been widely used in various fields,including molecular imaging,biosensors,drug delivery,information processing,and logic operations.Encoders serve as crucial components for information compilation and transfer,allowing the conversion of information from diverse application scenarios into a format recognized and applied by DNA circuits.However,there are only a few encoder designs with DNA outputs.Moreover,the molecular priority encoder is hardly designed.In this study,we introduce allosteric DNAzyme-based encoders for information transfer.The design of the allosteric domain and the recognition arm allows the input and output to be independent of each other and freely programmable.The pre-packaged mode design achieves uniformity of baseline dynamics and dynamics controllability.We also integrated non-nucleic acid molecules into the encoder through the aptamer design of the allosteric domain.Furthermore,we developed the 2^(n)-n encoder and the EndoⅣ-assisted priority encoder inspired by immunoglobulin's molecular structure and effector patterns.To our knowledge,the proposed encoder is the first enzyme-free DNA encoder with DNA output,and the priority encoder is the first molecular priority encoder in the DNA reaction network.Our encoders avoid complex operations on a single molecule,and their simple structure facilitates their application in complex DNA circuits and biological scenarios.
基金supported by the National Natural Science Foundation of China(No.62176034)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-M202300604)the Natural Science Foundation of Chongqing(Nos.cstc2021jcyj-msxmX0518,2023NSCQ-MSX1781).
文摘Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.
文摘In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
文摘Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.
基金supported by the National Natural Science Foundation of China(Grant No.62001440).
文摘Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding types.To achieve direct communication between the devices with different quantum encoding types,in this paper,we propose encoding conversion schemes between the polarization bases(rectilinear,diagonal and circular bases)and the time-bin phase bases(two phase bases and time-bin basis)and design the quantum encoding converters.The theoretical analysis of the encoding conversion schemes is given in detail,and the basis correspondence of encoding conversion and the property of bit flip are revealed.The conversion relationship between polarization bases and time-bin phase bases can be easily selected by controlling a phase shifter.Since no optical switches are used in our scheme,the converter can be operated with high speed.The converters can also be modularized,which may be utilized to realize miniaturization in the future.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.62371258,62335012,62205160,and 62435010)the Tianjin Youth Science and Technology Talent Project(Grant No.QN20230227)+1 种基金the Natural Science Foundation of Tianjin(Grant No.24JCYBJC01860)the Fundamental Research Funds for the Central Universities,Nan-kai University(Grant No.075-63253215).
文摘With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.
基金sponsored by the National Natural Science Foundation of China No.U24B201114,6247070859,62302114 and No.62172353Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning Technology of Ministry of Education No.1331007 and No.1311022Natural Science Foundation of Guangdong Province No.2024A1515010177.
文摘Blockchain,as a distributed ledger,inherently possesses tamper-resistant capabilities,creating a natural channel for covert communication.However,the immutable nature of data storage might introduce challenges to communication security.This study introduces a blockchain-based covert communication model utilizing dynamic Base-K encoding.The proposed encoding scheme utilizes the input address sequence to determine K to encode the secret message and determines the order of transactions based on K,thus ensuring effective concealment of the message.The dynamic encoding parameters enhance flexibility and address issues related to identical transaction amounts for the same secret message.Experimental results demonstrate that the proposed method maintains smooth communication and low susceptibility to tampering,achieving commendable concealment and embedding rates.
文摘Given the importance of sentiment analysis in diverse environments,various methods are used for image sentiment analysis,including contextual sentiment analysis that utilizes character and scene relationships.However,most existing works employ character faces in conjunction with context,yet lack the capacity to analyze the emotions of characters in unconstrained environments,such as when their faces are obscured or blurred.Accordingly,this article presents the Adaptive Multi-Channel Sentiment Analysis Network(AMSA),a contextual image sentiment analysis framework,which consists of three channels:body,face,and context.AMSA employs Multi-task Cascaded Convolutional Networks(MTCNN)to detect faces within body frames;if detected,facial features are extracted and fused with body and context information for emotion recognition.If not,the model leverages body and context features alone.Meanwhile,to address class imbalance in the EMOTIC dataset,Focal Loss is introduced to improve classification performance,especially for minority emotion categories.Experimental results have shown that certain sentiment categories with lower representation in the dataset demonstrate leading classification accuracy,the AMSA yields a 2.53%increase compared with state-of-the-art methods.
基金supported by the Fundamental Research Funds for the Central Universities(No.2024JBZX027)the National Natural Science Foundation of China(No.52375078).
文摘High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal importance. As critical rotating mechanical components of the transmission system, bearings make their fault diagnosis a topic of extensive attention. This paper provides a systematic review of image encoding-based bearing fault diagnosis methods tailored to the condition monitoring of HSTs. First, it categorizes the image encoding techniques applied in the field of bearing fault diagnosis. Then, a review of state-of-the-art studies has been presented, encompassing both monomodal image conversion and multimodal image fusion approaches. Finally, it highlights current challenges and proposes future research directions to advance intelligent fault diagnosis in HSTs, aiming to provide a valuable reference for researchers and engineers in the field of intelligent operation and maintenance.