期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
基于网络重构的改进GhostNet一维信号辨识研究
1
作者 余航 陈烨烨 李捍东 《软件工程》 2025年第2期52-55,66,共5页
触觉传感器采集的一维触觉数据能够用于识别并区分物体的特征,进而实现对物体类别的分类。文章以轻量级卷积神经网络GhostNet为基础框架,提出了一种改进的复合损失函数,以提升模型的分类性能。为进一步适应一维触觉数据的特性,研究对Gho... 触觉传感器采集的一维触觉数据能够用于识别并区分物体的特征,进而实现对物体类别的分类。文章以轻量级卷积神经网络GhostNet为基础框架,提出了一种改进的复合损失函数,以提升模型的分类性能。为进一步适应一维触觉数据的特性,研究对GhostNet模型进行了结构上的改进,使其能够高效处理一维数据。同时,研究将改进后的GhostNet与GRU(Gated Recurrent Unit)网络相结合,构建了GhostNet-GRU(Ghost Network-Gated Recurrent Unit)网络结构。实验结果表明,采用复合损失函数后,网络精度提高了1.85%,并且与残差网络ResNet相比,网络精度提高了3.42%,证明了所提出改进网络结构的有效性和实用价值。 展开更多
关键词 一维触觉数据 损失函数 ghostnet GRU 网络融合
在线阅读 下载PDF
基于GhostNet的改进模型轻量化方法 被引量:2
2
作者 宋中山 周珊 +2 位作者 艾勇 郑禄 肖博文 《中南民族大学学报(自然科学版)》 CAS 2024年第5期629-636,共8页
为了降低深度卷积神经网络的部署成本,优化模型的检测性能,提出一种改进的轻量化主干网络算法S-GhostNet.该算法通过引入特征图生成优化的Ghost Module结构降低卷积操作的计算量,并结合改进类残差模块提升模型的精确度.S-GhostNet具有... 为了降低深度卷积神经网络的部署成本,优化模型的检测性能,提出一种改进的轻量化主干网络算法S-GhostNet.该算法通过引入特征图生成优化的Ghost Module结构降低卷积操作的计算量,并结合改进类残差模块提升模型的精确度.S-GhostNet具有较强的即插即用性,可以应用于多数卷积神经网络模型.实验结果表明:在目标分类以及目标检测任务中,S-GhostNet相较于MobileNetV2、ShuffleNetV2以及GhostNet,模型计算量更小,模型的精确度持平,甚至更高. 展开更多
关键词 目标检测 ghostnet网络 残差网络 轻量化部署
在线阅读 下载PDF
A maximum-independent-set-based channel allocation algorithm for multi-channel wireless networks
3
作者 余旭涛 施小翔 曾绍祥 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期12-18,共7页
A channel allocation algorithm based on the maximum independent set is proposed to decrease network conflict and improve network performance. First, a channel allocation model is formulated and a series of the maximum... A channel allocation algorithm based on the maximum independent set is proposed to decrease network conflict and improve network performance. First, a channel allocation model is formulated and a series of the maximum independent sets (MISs) are obtained from a contention graph by the proposed approximation algorithm with low complexity. Then, a weighted contention graph is obtained using the number of contention vertices between two MISs as a weighted value. Links are allocated to channels by the weighted contention graph to minimize conflicts between independent sets. Finally, after channel allocation, each node allocates network interface cards (NICs) to links that are allocated channels according to the queue lengths of NICs. Simulations are conducted to evaluate the proposed algorithm. The results show that the proposed algorithm significantly improves the network throughput and decreases the end to end delay. 展开更多
关键词 wireless networks multi-channel channelaUocation maximum independent set
在线阅读 下载PDF
Joint channel assignment and cross-layer routing protocol for multi-radio multi-channel Ad Hoc networks 被引量:2
4
作者 Yang Lu Junming Guan +1 位作者 Zhen Wei Qilin Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1095-1102,共8页
To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer ro... To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads. 展开更多
关键词 Ad Hoc network multi-radio multi-channel channel assignment routing protocol channel utilization percentage.
在线阅读 下载PDF
Joint Link Allocation and Rate Assignment Algorithm for Multi-Channel Wireless Networks 被引量:1
5
作者 Yu Xutao Fang Xin Zhang Zaichen 《China Communications》 SCIE CSCD 2012年第9期96-106,共11页
This paper presents a link allocation and rate assignment algorithm for multi-channel wireless networks. The objective is to reduce network con-flicts and guarantee the fairness among links. We first design a new netw... This paper presents a link allocation and rate assignment algorithm for multi-channel wireless networks. The objective is to reduce network con-flicts and guarantee the fairness among links. We first design a new network model. With this net-work model, the multi-channel wireless network is divided into several subnets according to the num-ber of channels. Based on this, we present a link allocation algorithm with time complexity O(l^2)to al-locate all links to subnets. This link allocation algo-rithm adopts conflict matrix to minimize the network contention factor. After all links are allocated to subnets, the rate assignment algorithm to maximize a fairness utility in each subnet is presented. The rate assignment algorithm adopts a near-optirml al-gorithm based on dual decomposition and realizes in a distributed way. Simulation results demonstrate that, compared with IEEE 802.11b and slotted see-ded channel hopping algorithm, our algorithm de-creases network conflicts and improves the net-work throughput significantly. 展开更多
关键词 multi-channel networks link allocation rate assignment conflict matrix fairness utilityfunction
在线阅读 下载PDF
Performance Analysis of Multi-Channel CR Enabled IoT Network with Better Energy Harvesting
6
作者 Afiya Kiran Ahmad Karim +1 位作者 Yasser Obaid Alharbi Diaa Mohammed Uliyan 《Computers, Materials & Continua》 SCIE EI 2022年第4期183-197,共15页
Wireless Sensor Networks(WSNs)can be termed as an autoconfigured and infrastructure-less wireless networks to monitor physical or environmental conditions,such as temperature,sound,vibration,pressure and motion etc.WS... Wireless Sensor Networks(WSNs)can be termed as an autoconfigured and infrastructure-less wireless networks to monitor physical or environmental conditions,such as temperature,sound,vibration,pressure and motion etc.WSNs may comprise thousands of Internet of Things(IoT)devices to sense and collect data from its surrounding,process the data and take an automated and mechanized decision.On the other side the proliferation of these devices will soon cause radio spectrum shortage.So,to facilitate these networks,we integrate Cognitive Radio(CR)functionality in these networks.CR can sense the unutilized spectrum of licensed users and then use these empty bands when required.In order to keep the IoT nodes functional all time,continuous energy is required.For this reason the energy harvested techniques are preferred in IoT networks.Mainly it is preferred to harvest Radio Frequency(RF)energy in the network.In this paper a region based multi-channel architecture is proposed.In which the coverage area of primary node is divided as Energy Harvesting Region and Communication Region.The Secondary User(SU)that are the licensed user is IoT enabled with Cognitive Radio(CR)techniques so we call it CR-enabled IoT node/device and is encouraged to harvest energy by utilizing radio frequency energy.To harvest energy efficiently and to reduce the energy consumption during sensing,the concept of overlapping region is given that supports to sense multiple channels simultaneously and help the SU to find best channel for transmitting data or to harvest energy from the ideal channel.From the experimental analysis,it is proved that SU can harvest more energy in overlapping region and this architecture proves to consume less energy during data transmission as compared to single channel.We also show that channel load can be highly reduced and channel utilization is proved to be more proficient.Thus,this proves the proposed architecture cost-effective and energy-efficient. 展开更多
关键词 Wireless sensor network multi-channel sensing energy harvesting cognitive radio IoT network
在线阅读 下载PDF
Multi-Channel Spectrum Sensing in Cognitive Ad-hoc Networks:An Energy-Efcient Manner
7
作者 李鹤 甘小莺 +1 位作者 陈时阳 冯心欣 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第5期513-519,共7页
Cognitive radio,which is capable of enabling dynamic spectrum access,is a promising technology in future wireless communication.The feasibility of cognitive radio network greatly depends on the energy efciency and rel... Cognitive radio,which is capable of enabling dynamic spectrum access,is a promising technology in future wireless communication.The feasibility of cognitive radio network greatly depends on the energy efciency and reliability of spectrum sensing technology.In this paper,spectrum sensing in cognitive ad-hoc network(CAN)with wide-band dynamic spectrum is considered.A cognitive cluster head(CCH)is set and responsible for dividing the wide-band spectrum into multiple sub-channels;it can either sense sub-channels in a centralized manner,or make use of sensing modules to sense sub-channels in a distributed manner.Then cognitive users(CUs)can get sensing results and access to the available sub-channel.We take the cost of control message into consideration and formulate the energy consumption of CAN in terms of sub-channel sampling rate and whole-band sensing time.We define energy efciency intuitively and solve the energy efciency optimization problem with sensing reliability constraints by constructing a parametric problem and obtain the optimal sampling rate and the wholeband sensing time.Power dissipation model of a practical A/D convertor(ADC)is introduced,and numerical results are given to show the energy efciency performance of two diferent sensing manners. 展开更多
关键词 cognitive radio spectrum sensing energy efciency ad-hoc network multi-channel
原文传递
CAPACITY EVALUATION OF MULTI-CHANNEL WIRELESS AD HOC NETWORKS
8
作者 Zygmunt J.Haas 《Journal of Electronics(China)》 2003年第5期344-352,共9页
In this paper, the capacity of multi-channel, multi-hop ad hoc network is evaluated.In particular, the performance of multi-hop ad hoc network with single channel IEEE 802.11MAC utilizing different topologies is shown... In this paper, the capacity of multi-channel, multi-hop ad hoc network is evaluated.In particular, the performance of multi-hop ad hoc network with single channel IEEE 802.11MAC utilizing different topologies is shown. Also the scaling laws of throughputs for large-scale ad hoc networks and the theoretical guaranteed throughput bounds for multi-channel gridtopology systems are proposed. The results presented in this work will help researchers to choosethe proper parameter settings in evaluation of protocols for multi-hop ad hoc networks. 展开更多
关键词 multi-channel Multi-hop ad hoc network THROUGHPUT
在线阅读 下载PDF
Network-Wide Time Synchronization in Multi-Channel Wireless Sensor Networks
9
作者 Jari Nieminen Lijun Qian Riku Jantti 《Wireless Sensor Network》 2011年第2期39-53,共15页
Recent advances in wireless sensor technology have enabled simultaneous exploitation of multiple channels in wireless sensor systems. In this paper, a novel time synchronization algorithm is proposed for multi- channe... Recent advances in wireless sensor technology have enabled simultaneous exploitation of multiple channels in wireless sensor systems. In this paper, a novel time synchronization algorithm is proposed for multi- channel Wireless Sensor Networks (WSNs) called Multi-Channel Time Synchronization (MCTS) protocol. Time synchronization is critical for many WSN applications and enables efficient communications between sensor nodes along with intelligent spectrum access. Contrary to many existing protocols that do not exploit multi-channel communications, the protocol takes advantage of potential multiple channels and distributes the synchronization of different nodes to distinct channels and thus, reduces the convergence time of synchronization processes significantly. 展开更多
关键词 Time Synchronization multi-channel Communications Wireless Sensor networks
在线阅读 下载PDF
Monitoring Sea Fog over the Yellow Sea and Bohai Bay Based on Deep Convolutional Neural Network
10
作者 HUANG Bin GAO Shi-bo +2 位作者 YU Run-ling ZHAO Wei ZHOU Guan-bo 《Journal of Tropical Meteorology》 SCIE 2024年第3期223-229,共7页
In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a f... In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%. 展开更多
关键词 deep convolutional neural network satellite images sea fog detection multi-channel image fusion
在线阅读 下载PDF
面向医学和遥感图像的基于GhostNet的轻量级U-Net改进研究和对比
11
作者 郑艺 《电光系统》 2024年第4期13-17,共5页
U-Net广泛用于医学影像学和遥感图像的语义分割。针对语义分割模型庞大,极其占用CPU运行资源,运行速度慢等问题,通过U-Net轻量化改进,可达到快速识别的效果。通过轻量级特征提取网络GhostNet系列的廉价操作对U-Net轻量化改进,为U-Net的... U-Net广泛用于医学影像学和遥感图像的语义分割。针对语义分割模型庞大,极其占用CPU运行资源,运行速度慢等问题,通过U-Net轻量化改进,可达到快速识别的效果。通过轻量级特征提取网络GhostNet系列的廉价操作对U-Net轻量化改进,为U-Net的轻量化研究提供参考。目前,ChostNet系列拥有GhostNet,G-GhostNet和GhostNetV2三个版本,它们各有优势。首先,依次将GhostNet,G-GhostNet和GhostNetV2的主干部分作为U-Net的编码器嵌入模型。为实现编码器与解码器匹配,用网络的单元模块代替U-Net的卷积运算。利用医学公开数据集和遥感图像数据集对三种模型进行训练、验证和测试,获得模型的各项性能评分。最后对比三种模型的各项性能评分。实验结果表明:遥感图像分割任务中,基于G-GhostNet的轻量化模型效率最高,在损失少量精度的情况下获得非常快的速度,实现实时分割。而医学影像学分割任务中,基于GhostNet的轻量化模型速度较快,且分割精度远高于基于G-ChostNet的模型,模型的效率更高。GhostNetV2在两种分割任务中均不占优势。 展开更多
关键词 轻量级网络 U-Net ChostNet 分割
在线阅读 下载PDF
面向复杂背景环境下垃圾检测的YOLOv8n轻量化改进
12
作者 孙世政 何玲玲 +2 位作者 郑帅 徐向阳 陈仁祥 《电子测量与仪器学报》 北大核心 2025年第2期136-146,共11页
垃圾检测与分类对推动绿色经济和实现低碳循环具有重要意义,面向复杂背景环境的垃圾检测模型存在参数量大、计算成本高等问题,限制了模型在资源受限设备上的应用。为解决上述问题,提出一种轻量化的GCAW-YOLOv8n模型,旨在平衡模型轻量化... 垃圾检测与分类对推动绿色经济和实现低碳循环具有重要意义,面向复杂背景环境的垃圾检测模型存在参数量大、计算成本高等问题,限制了模型在资源受限设备上的应用。为解决上述问题,提出一种轻量化的GCAW-YOLOv8n模型,旨在平衡模型轻量化与精度检测。首先,在YOLOv8n骨干网络中引入GhostNet网络中的C3Ghost和GhostConv模块,有效降低模型参数量;其次,添加上下文锚点注意力机制,增强特征提取能力,提升检测精度;然后,在特征融合阶段,构建渐近特征金字塔网络,提升多尺度目标检测能力;接着,采用WIoU v3边界损失函数优化网络边界框回归性能;最后,结合Taco数据集和人工采集数据集进行了模型验证实验。实验结果表明,相比原YOLOv8n模型,改进后的GCAW-YOLOv8n模型在模型参数量Params和计算量FLOPs分别降低了14.3%和33.3%,而精确度和召回率分别提高了4.4%和1.9%,同时mAP@0.5达到了81.3%,提升了0.7%。改进模型更好地平衡了模型轻量化和检测精度,对模型部署与应用至边缘端检测装备具有重要的工程意义。 展开更多
关键词 垃圾检测 轻量化YOLOv8n ghostnet 上下文锚点注意力机制 渐近特征金字塔
原文传递
Traffic-aware static channel assignment algorithm in wireless mesh networks 被引量:1
13
作者 陶军 柳津 +1 位作者 邵碧锐 刘智杰 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期370-374,共5页
A channel assignment algorithm with awareness of link traffic is proposed in multi-radio multi-channel wireless mesh networks. First, the physical interference model based on the signal-to-interference-plus-noise rati... A channel assignment algorithm with awareness of link traffic is proposed in multi-radio multi-channel wireless mesh networks. First, the physical interference model based on the signal-to-interference-plus-noise ratio and successful transmission condition is described. The model is more suitable for a wireless communication environment than other existing models. Secondly, a pure integer quadratic programming (PIQP) model is used to solve the channel assignment problem and improve the capacity of wireless mesh networks. Consequently, a traffic- aware static channel assignment algorithm(TASC) is designed. The algorithm adopts some network parameters, including the network connectivity, the limitation of the number of radios and the successful transmission conditions in wireless communications. The TASC algorithm can diminish network interference and increase the efficiency of channel assignment while keeping the connectivity of the network. Finally, the feasibility and effectivity of the channel assignment solution are illustrated by the simulation results. Compared witb similar algorithms, the proposed algorithm can increase the capacity of WMNs. 展开更多
关键词 multi-radio multi-channel wireless mesh network static channel assignment traffic-aware
在线阅读 下载PDF
一种改进YOLOv8的水下声呐图像目标检测方法 被引量:1
14
作者 刘凡诚 邢传玺 +2 位作者 魏光春 崔晶 董赛蒙 《应用科技》 2025年第1期34-40,共7页
为解决水下声呐图像中目标形状小、信息少等识别精度低带来的漏检、误检问题,本文提出一种改进YOLOv8水下声呐图像目标检测方法(YOLOv8-Underwater Sonar Image,YOLOv8-USI)。首先对水下声呐图像进行图像增强、图像降噪等预处理,并利用... 为解决水下声呐图像中目标形状小、信息少等识别精度低带来的漏检、误检问题,本文提出一种改进YOLOv8水下声呐图像目标检测方法(YOLOv8-Underwater Sonar Image,YOLOv8-USI)。首先对水下声呐图像进行图像增强、图像降噪等预处理,并利用生成对抗网络对水下声呐图像训练集进行扩充,防止过拟合现象;其次,引入GhostNet模块解决YOLOv8网络结构参数量多的问题,从而提高水下目标识别速度;接着根据预处理后声呐图像的特征,提取水下声呐图像中的目标特征信息。最后,根据识别到的目标物体置信度,验证声呐图像中目标物体的漏检与误检情况。实验结果表明,输出结果图的目标识别效果与整个检测过程速度均有所提高,时间加快0.08 s,因此YOLOv8-USI网络结构可有效提高水下声呐图像目标检测精度与速度。 展开更多
关键词 侧扫声呐图像 图像降噪 目标检测 YOLOv8-USI 过拟合 数据增强 生成对抗网络 ghostnet模块
在线阅读 下载PDF
基于轻量化RT-DETR的PCB缺陷检测算法
15
作者 李鹏 余珺泽 +1 位作者 于涛 张立豪 《计算机工程与设计》 北大核心 2025年第9期2714-2721,共8页
为解决实际生产中现有DETR类印刷电路板缺陷检测模型检测速度慢、参数量大,模型部署范围受限的问题,提出了一种基于轻量化Real-Time Detection-Transformer的缺陷检测算法。通过采用轻量级的GhostNet重构特征提取网络,减少模型计算复杂... 为解决实际生产中现有DETR类印刷电路板缺陷检测模型检测速度慢、参数量大,模型部署范围受限的问题,提出了一种基于轻量化Real-Time Detection-Transformer的缺陷检测算法。通过采用轻量级的GhostNet重构特征提取网络,减少模型计算复杂度;嵌入深度特征金字塔模块,增强模型对多尺度特征的融合能力;同时设计了一种改进的Focal-SIoU损失函数,引入平衡因子减轻正负样本不均对模型的影响,加速边界框回归。实验结果表明,改进的轻量化缺陷检测算法的mAP50达到了0.93;相较于原算法,模型权重文件大小和参数量分别减少了约42%和47%,而检测精度mAP50仅下降0.02,在轻量化和模型性能之间取得了良好的平衡,能够满足实际生产中工业检测部署的轻量化需求。 展开更多
关键词 印刷电路板 目标检测 RT-DETR ghostnet网络 深度特征金字塔 深度学习 图像处理
在线阅读 下载PDF
MCN机构税收治理问题研究
16
作者 李飞 汤宁 《税收征纳》 2025年第7期13-15,共3页
MCN机构,全称为Multi-Channel Network,即多频道网络,是一种与内容创作者合作或直接生产各种独特内容的实体或组织,并在发布内容的网络平台上执行业务和营销功能,主要为网红和自媒体提供内容策划制作、宣传推广、粉丝管理、签约代理等... MCN机构,全称为Multi-Channel Network,即多频道网络,是一种与内容创作者合作或直接生产各种独特内容的实体或组织,并在发布内容的网络平台上执行业务和营销功能,主要为网红和自媒体提供内容策划制作、宣传推广、粉丝管理、签约代理等各类服务。随着平台经济与网络经济的蓬勃发展,MCN机构日益成为当下网红经济的重要载体平台。然而,在快速发展的同时,MCN机构也暴露出诸多涉税问题。本研究总结分析其运营方式及盈利模式等特征,结合税收工作实际,针对存在的涉税问题,提出有关意见建议,为税务部门引导其规范健康发展提供参考。 展开更多
关键词 multi-channel network MCN机构 税收治理
在线阅读 下载PDF
Enhancing aquaculture water quality forecasting using novel adaptive multi-channel spatial-temporal graph convolutional network
17
作者 Tianqi Xiang Xiangyun Guo +2 位作者 Junjie Chi Juan Gao Luwei Zhang 《International Journal of Agricultural and Biological Engineering》 2025年第1期279-291,共13页
In recent years,aquaculture has developed rapidly,especially in coastal and open ocean areas.In practice,water quality prediction is of critical importance.However,traditional water quality prediction models face limi... In recent years,aquaculture has developed rapidly,especially in coastal and open ocean areas.In practice,water quality prediction is of critical importance.However,traditional water quality prediction models face limitations in handling complex spatiotemporal patterns.To address this challenge,a prediction model was proposed for water quality,namely an adaptive multi-channel temporal graph convolutional network(AMTGCN).The AMTGCN integrates adaptive graph construction,multi-channel spatiotemporal graph convolutional network,and fusion layers,and can comprehensively capture the spatial relationships and spatiotemporal patterns in aquaculture water quality data.Onsite aquaculture water quality data and the metrics MAE,RMSE,MAPE,and R^(2) were collected to validate the AMTGCN.The results show that the AMTGCN presents an average improvement of 34.01%,34.59%,36.05%,and 17.71%compared to LSTM,respectively;an average improvement of 64.84%,56.78%,64.82%,and 153.16%compared to the STGCN,respectively;an average improvement of 55.25%,48.67%,57.01%,and 209.00%compared to GCN-LSTM,respectively;and an average improvement of 7.05%,5.66%,7.42%,and 2.47%compared to TCN,respectively.This indicates that the AMTGCN,integrating the innovative structure of adaptive graph construction and multi-channel spatiotemporal graph convolutional network,could provide an efficient solution for water quality prediction in aquaculture. 展开更多
关键词 water quality prediction AQUACULTURE spatial-temporal graph convolutional network multi-channel adaptive graph construction
原文传递
Prediction of Self-Care Behaviors in Patients Using High-Density Surface Electromyography Signals and an Improved Whale Optimization Algorithm-Based LSTM Model
18
作者 Shuai Huang Dan Liu +4 位作者 Youfa Fu Jiadui Chen Ling He Jing Yan Di Yang 《Journal of Bionic Engineering》 2025年第4期1963-1984,共22页
Stroke survivors often face significant challenges when performing daily self-care activities due to upper limb motor impairments.Traditional surface electromyography(sEMG)analysis typically focuses on isolated hand p... Stroke survivors often face significant challenges when performing daily self-care activities due to upper limb motor impairments.Traditional surface electromyography(sEMG)analysis typically focuses on isolated hand postures,overlooking the complexity of object-interactive behaviors that are crucial for promoting patient independence.This study introduces a novel framework that combines high-density sEMG(HD-sEMG)signals with an improved Whale Optimization Algorithm(IWOA)-optimized Long Short-Term Memory(LSTM)network to address this limitation.The key contributions of this work include:(1)the creation of a specialized HD-sEMG dataset that captures nine continuous self-care behaviors,along with time and posture markers,to better reflect real-world patient interactions;(2)the development of a multi-channel feature fusion module based on Pascal’s theorem,which enables efficient signal segmentation and spatial–temporal feature extraction;and(3)the enhancement of the IWOA algorithm,which integrates optimal point set initialization,a diversity-driven pooling mechanism,and cosine-based differential evolution to optimize LSTM hyperparameters,thereby improving convergence and global search capabilities.Experimental results demonstrate superior performance,achieving 99.58%accuracy in self-care behavior recognition and 86.19%accuracy for 17 continuous gestures on the Ninapro db2 benchmark.The framework operates with low latency,meeting the real-time requirements for assistive devices.By enabling precise,context-aware recognition of daily activities,this work advances personalized rehabilitation technologies,empowering stroke patients to regain autonomy in self-care tasks.The proposed methodology offers a robust,scalable solution for clinical applications,bridging the gap between laboratory-based gesture recognition and practical,patient-centered care. 展开更多
关键词 Self-care behaviors High-density surface electromyography(HD-sEMG) Long Short-Term Memory(LSTM)network multi-channel feature fusion
在线阅读 下载PDF
融合多尺度特征与改进SSD的可穿戴心理监测装置故障检测研究
19
作者 薛媚 《自动化与仪器仪表》 2025年第9期270-274,共5页
为提高可穿戴心理监测装置故障检测的精度,提出一种融合多尺度特征改进SSD的可穿戴心理监测装置故障检测方法。首先以SSD网络为基本框架,通过采用GhostNet网络替换SSD网络中的VGG16,并引入BiFPN多尺度融合特征,采用Mish激活函数作为损... 为提高可穿戴心理监测装置故障检测的精度,提出一种融合多尺度特征改进SSD的可穿戴心理监测装置故障检测方法。首先以SSD网络为基本框架,通过采用GhostNet网络替换SSD网络中的VGG16,并引入BiFPN多尺度融合特征,采用Mish激活函数作为损失函数,以提高SSD网络的检测精度和速度,提出融合多尺度特征改进的SSD网络;然后采用融合多尺度特征改进的SSD网络,对可穿戴心理监测装置故障进行检测。结果表明,本方法对可穿戴心理监测装置故障检测的平均精确率、查全率、敏感性、特异性分别为96.54%、96.17%、95.23%、95.41%,相较于对比方法具有明显优势。由此得出,本方法可提高可穿戴心理监测装置故障检测精度,具有一定的实际应用价值。 展开更多
关键词 多尺度特征融合 可穿戴心理监测装置 故障检测 SSD网络 ghostnet网络
原文传递
基于改进的YOLOv4-GhostNet水稻病虫害识别方法 被引量:40
20
作者 周维 牛永真 +1 位作者 王亚炜 李丹 《江苏农业学报》 CSCD 北大核心 2022年第3期685-695,共11页
针对水稻病虫害检测精度低、速度慢、模型复杂度高、部署困难等问题,改进了YOLOv4目标检测算法,结合轻量化GhostNet网络,提出了一种基于改进的YOLOv4-GhostNet水稻病虫害识别方法:1)利用幻象模块代替普通卷积结构,替换主干特征提取网络C... 针对水稻病虫害检测精度低、速度慢、模型复杂度高、部署困难等问题,改进了YOLOv4目标检测算法,结合轻量化GhostNet网络,提出了一种基于改进的YOLOv4-GhostNet水稻病虫害识别方法:1)利用幻象模块代替普通卷积结构,替换主干特征提取网络CSPDarkNet53,构建GhostNet模块进行图像的特征提取;2)改进YOLOv4网络的加强特征提取部分PANet结构;3)结合迁移学习与YOLOv4网络训练技巧。通过试验将YOLOv4及其MobileNet系列轻量化网络与Faster-RCNN系列网络和SSD系列网络进行对比,结果表明,改进的YOLOv4-GhostNet模型平均准确率达到79.38%,检测速度可达1 s 34.51帧,模型权重大小缩减为42.45 MB,在保持检测精度达到较高水平的同时模型参数量大幅度降低,适用于部署在计算能力不足的嵌入式设备上。 展开更多
关键词 水稻病虫害检测 ghostnet网络 YOLOv4 轻量化 迁移学习
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部