Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges i...Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges including crowd multi-scale variations and high network complexity,etc.To tackle these issues,a lightweight Resconnection multi-branch network(LRMBNet)for highly accurate crowd counting and localization is proposed.Specifically,using improved ShuffleNet V2 as the backbone,a lightweight shallow extractor has been designed by employing the channel compression mechanism to reduce enormously the number of network parameters.A light multi-branch structure with different expansion rate convolutions is demonstrated to extract multi-scale features and enlarged receptive fields,where the information transmission and fusion of diverse scale features is enhanced via residual concatenation.In addition,a compound loss function is introduced for training themethod to improve global context information correlation.The proposed method is evaluated on the SHHA,SHHB,UCF-QNRF and UCF_CC_50 public datasets.The accuracy is better than those of many advanced approaches,while the number of parameters is smaller.The experimental results show that the proposed method achieves a good tradeoff between the complexity and accuracy of crowd counting,indicating a lightweight and high-precision method for crowd counting.展开更多
In non-cooperative communication systems,wireless interference classification(WIC)is one of the most essential technologies.Recently,deep learning(DL)based WIC methods have been proposed.However,conventional DL-based ...In non-cooperative communication systems,wireless interference classification(WIC)is one of the most essential technologies.Recently,deep learning(DL)based WIC methods have been proposed.However,conventional DL-based WIC methods have high computational complexity and unsatisfactory accuracy,especially when the interference-tonoise ratio(INR)is low.To this end,we propose three effective approaches.Firstly,we introduce multibranch convolutional neural networks(CNNs)for interference recognition.The multi-branch CNN is constructed by repeating a layer that aggregates several transformations with the same topology,and it notably improves the recognition ability for WIC.Our design avoids the carefully crafted selection of each transformation.Unfortunately,multi-branch CNNs are computationally expensive and memory-inefficient.To this end,we further propose Low complexity multibranch networks(LCMN),which are mathematically equivalent to multi-branch CNNs but maintain low computing costs and efficient inference.Thirdly,we present novel loss function,which encourages networks to have consistent prediction probabilities for samples with high visual similarities,resulting in increasing recognition accuracy of LCMN.Experimental results demonstrate the proposed methods consistently boost the classification performance of WIC without substantially increasing computational overhead compared to traditional DL-based methods.展开更多
Reducing the defocus blur that arises from the finite aperture size and short exposure time is an essential problem in computational photography.It is very challenging because the blur kernel is spatially varying and ...Reducing the defocus blur that arises from the finite aperture size and short exposure time is an essential problem in computational photography.It is very challenging because the blur kernel is spatially varying and difficult to estimate by traditional methods.Due to its great breakthrough in low-level tasks,convolutional neural networks(CNNs)have been introdu-ced to the defocus deblurring problem and achieved significant progress.However,previous methods apply the same learned kernel for different regions of the defocus blurred images,thus it is difficult to handle nonuniform blurred images.To this end,this study designs a novel blur-aware multi-branch network(Ba-MBNet),in which different regions are treated differentially.In particular,we estimate the blur amounts of different regions by the internal geometric constraint of the dual-pixel(DP)data,which measures the defocus disparity between the left and right views.Based on the assumption that different image regions with different blur amounts have different deblurring difficulties,we leverage different networks with different capacities to treat different image regions.Moreover,we introduce a meta-learning defocus mask generation algorithm to assign each pixel to a proper branch.In this way,we can expect to maintain the information of the clear regions well while recovering the missing details of the blurred regions.Both quantitative and qualitative experiments demonstrate that our BaMBNet outperforms the state-of-the-art(SOTA)methods.For the dual-pixel defocus deblurring(DPD)-blur dataset,the proposed BaMBNet achieves 1.20 dB gain over the previous SOTA method in term of peak signal-to-noise ratio(PSNR)and reduces learnable parameters by 85%.The details of the code and dataset are available at https://github.com/junjun-jiang/BaMBNet.展开更多
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ...Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited...Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.展开更多
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models...For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.展开更多
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based...With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.展开更多
Aiming at the problem that the current traffic safety helmet detection model can't balance the accuracy of detection with the size of the model and the poor generalization of the model,a method based on improving ...Aiming at the problem that the current traffic safety helmet detection model can't balance the accuracy of detection with the size of the model and the poor generalization of the model,a method based on improving you only look once version 5(YOLOv5) is proposed.By incorporating the lightweight Ghost Net module into the YOLOv5 backbone network,we effectively reduce the model size.The addition of the receptive fields block(RFB) module enhances feature extraction and improves the feature acquisition capability of the lightweight model.Subsequently,the high-performance lightweight convolution,GSConv,is integrated into the neck structure for further model size compression.Moreover,the baseline model's loss function is substituted with efficient insertion over union(EIoU),accelerating network convergence and enhancing detection precision.Experimental results corroborate the effectiveness of this improved algorithm in real-world traffic scenarios.展开更多
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we...Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.展开更多
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr...The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.展开更多
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user...The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.展开更多
Background Meat originating from the spent hen is an important source of poultry meat production;however,multiple factors cause the decline in the meat quality of spent hens.Chinese herbs have been widely used as medi...Background Meat originating from the spent hen is an important source of poultry meat production;however,multiple factors cause the decline in the meat quality of spent hens.Chinese herbs have been widely used as medi-cine for a long time to prevent diseases and as nutrient supplements to improve the product quality.This experi-ment explored the effects of adding 1.0%Chinese herbal formula(CHF,including 0.30%Leonurus japonicus Houtt.,0.20%Salvia miltiorrhiza Bge.,0.25%Ligustrum lucidum Ait.,and 0.25%Taraxacum mongolicum Hand.-Mazz.)for 120 d to the spent hens’diet through metabolomics,network pharmacology,and microbiome strategies.Results The results indicated that CHF supplementation improved the meat quality by reducing drip loss(P<0.05),b*value(P=0.058),and shear force(P=0.099)and increasing cooked meat percentage(P=0.054)and dry matter(P<0.05)of breast muscle.The addition of CHF improved the nutritional value of breast muscle by increasing(P<0.05)the content of C18:2n-6,n-6/n-3 polyunsaturated fatty acids(PUFA),total PUFA,PUFA-to-saturated fatty acids(SFA)ratio,and hypocholesterolemic-to-hypercholesterolemic ratio,and tending to increase serine content(P=0.069).The targeted metabolomics analysis revealed that the biosynthesis of SFA,linoleic acid metabolism,fatty acid degradation,fatty acid elongation,and fatty acid biosynthesis pathways were enriched by CHF supplementation.Furthermore,the network pharmacology analysis indicated that CHF was closely associated with oxidative stress and lipid metabo-lism.The CHF supplementation increased the glutathione peroxidase level(P<0.05)and upregulated gene expres-sion related to the Nrf2 pathway(including HO-1,P<0.05;Nrf2,P=0.098;CAT,P=0.060;GPX1,P=0.063;and SOD2,P=0.052)and lipid metabolism(including PPARγ,P<0.05;SREBP1,P=0.059;and CPT1A,P=0.058).Additionally,CHF supplementation increased Firmicutes and decreased Bacteroidetes,Spirochaetes,and Synergistetes abundances(P<0.05),which may contribute to better meat quality.Conclusions Our results suggest that CHF supplementation improved the quality and nutritional value of meat,which will provide a theoretical basis for the utilization of CHF as a feed additive in spent hens’diets.展开更多
基金Double First-Class Innovation Research Project for People’s Public Security University of China(2023SYL08).
文摘Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges including crowd multi-scale variations and high network complexity,etc.To tackle these issues,a lightweight Resconnection multi-branch network(LRMBNet)for highly accurate crowd counting and localization is proposed.Specifically,using improved ShuffleNet V2 as the backbone,a lightweight shallow extractor has been designed by employing the channel compression mechanism to reduce enormously the number of network parameters.A light multi-branch structure with different expansion rate convolutions is demonstrated to extract multi-scale features and enlarged receptive fields,where the information transmission and fusion of diverse scale features is enhanced via residual concatenation.In addition,a compound loss function is introduced for training themethod to improve global context information correlation.The proposed method is evaluated on the SHHA,SHHB,UCF-QNRF and UCF_CC_50 public datasets.The accuracy is better than those of many advanced approaches,while the number of parameters is smaller.The experimental results show that the proposed method achieves a good tradeoff between the complexity and accuracy of crowd counting,indicating a lightweight and high-precision method for crowd counting.
文摘In non-cooperative communication systems,wireless interference classification(WIC)is one of the most essential technologies.Recently,deep learning(DL)based WIC methods have been proposed.However,conventional DL-based WIC methods have high computational complexity and unsatisfactory accuracy,especially when the interference-tonoise ratio(INR)is low.To this end,we propose three effective approaches.Firstly,we introduce multibranch convolutional neural networks(CNNs)for interference recognition.The multi-branch CNN is constructed by repeating a layer that aggregates several transformations with the same topology,and it notably improves the recognition ability for WIC.Our design avoids the carefully crafted selection of each transformation.Unfortunately,multi-branch CNNs are computationally expensive and memory-inefficient.To this end,we further propose Low complexity multibranch networks(LCMN),which are mathematically equivalent to multi-branch CNNs but maintain low computing costs and efficient inference.Thirdly,we present novel loss function,which encourages networks to have consistent prediction probabilities for samples with high visual similarities,resulting in increasing recognition accuracy of LCMN.Experimental results demonstrate the proposed methods consistently boost the classification performance of WIC without substantially increasing computational overhead compared to traditional DL-based methods.
基金supported by the National Natural Science Foundation of China (61971165, 61922027, 61773295)in part by the Fundamental Research Funds for the Central Universities (FRFCU5710050119)+1 种基金the Natural Science Foundation of Heilongjiang Province(YQ2020F004)the Chinese Association for Artificial Intelligence(CAAI)-Huawei Mind Spore Open Fund
文摘Reducing the defocus blur that arises from the finite aperture size and short exposure time is an essential problem in computational photography.It is very challenging because the blur kernel is spatially varying and difficult to estimate by traditional methods.Due to its great breakthrough in low-level tasks,convolutional neural networks(CNNs)have been introdu-ced to the defocus deblurring problem and achieved significant progress.However,previous methods apply the same learned kernel for different regions of the defocus blurred images,thus it is difficult to handle nonuniform blurred images.To this end,this study designs a novel blur-aware multi-branch network(Ba-MBNet),in which different regions are treated differentially.In particular,we estimate the blur amounts of different regions by the internal geometric constraint of the dual-pixel(DP)data,which measures the defocus disparity between the left and right views.Based on the assumption that different image regions with different blur amounts have different deblurring difficulties,we leverage different networks with different capacities to treat different image regions.Moreover,we introduce a meta-learning defocus mask generation algorithm to assign each pixel to a proper branch.In this way,we can expect to maintain the information of the clear regions well while recovering the missing details of the blurred regions.Both quantitative and qualitative experiments demonstrate that our BaMBNet outperforms the state-of-the-art(SOTA)methods.For the dual-pixel defocus deblurring(DPD)-blur dataset,the proposed BaMBNet achieves 1.20 dB gain over the previous SOTA method in term of peak signal-to-noise ratio(PSNR)and reduces learnable parameters by 85%.The details of the code and dataset are available at https://github.com/junjun-jiang/BaMBNet.
基金supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.2023AH040149 and 2024AH051915)the Anhui Provincial Natural Science Foundation(Grant No.2208085MF168)+1 种基金the Science and Technology Innovation Tackle Plan Project of Maanshan(Grant No.2024RGZN001)the Scientific Research Fund Project of Anhui Medical University(Grant No.2023xkj122).
文摘Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.
基金supported by the Beijing Natural Science Foundation(Grant No.L223013)。
文摘For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.
基金supported by the National Key Research and Development Program of China No.2023YFA1009500.
文摘With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.
文摘Aiming at the problem that the current traffic safety helmet detection model can't balance the accuracy of detection with the size of the model and the poor generalization of the model,a method based on improving you only look once version 5(YOLOv5) is proposed.By incorporating the lightweight Ghost Net module into the YOLOv5 backbone network,we effectively reduce the model size.The addition of the receptive fields block(RFB) module enhances feature extraction and improves the feature acquisition capability of the lightweight model.Subsequently,the high-performance lightweight convolution,GSConv,is integrated into the neck structure for further model size compression.Moreover,the baseline model's loss function is substituted with efficient insertion over union(EIoU),accelerating network convergence and enhancing detection precision.Experimental results corroborate the effectiveness of this improved algorithm in real-world traffic scenarios.
基金supported by the National Natural Science Foundation of China(No.51605054).
文摘Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
文摘The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.
基金funding from King Saud University through Researchers Supporting Project number(RSP2024R387),King Saud University,Riyadh,Saudi Arabia.
文摘The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.
基金supported by the National Key Research and Development Project(2022YFC3400700)the City-School Cooperation Project of the Fuyang Science and Technology Special Fund undertaken by Fuyang Normal University(SXHZ2020007)+1 种基金the Basic Research Program of Shenzhen Municipal Government(JCYJ20200109114242138)the Special Commissioner for Rural Science and Technology of Guangdong Province(KTP20210345).
文摘Background Meat originating from the spent hen is an important source of poultry meat production;however,multiple factors cause the decline in the meat quality of spent hens.Chinese herbs have been widely used as medi-cine for a long time to prevent diseases and as nutrient supplements to improve the product quality.This experi-ment explored the effects of adding 1.0%Chinese herbal formula(CHF,including 0.30%Leonurus japonicus Houtt.,0.20%Salvia miltiorrhiza Bge.,0.25%Ligustrum lucidum Ait.,and 0.25%Taraxacum mongolicum Hand.-Mazz.)for 120 d to the spent hens’diet through metabolomics,network pharmacology,and microbiome strategies.Results The results indicated that CHF supplementation improved the meat quality by reducing drip loss(P<0.05),b*value(P=0.058),and shear force(P=0.099)and increasing cooked meat percentage(P=0.054)and dry matter(P<0.05)of breast muscle.The addition of CHF improved the nutritional value of breast muscle by increasing(P<0.05)the content of C18:2n-6,n-6/n-3 polyunsaturated fatty acids(PUFA),total PUFA,PUFA-to-saturated fatty acids(SFA)ratio,and hypocholesterolemic-to-hypercholesterolemic ratio,and tending to increase serine content(P=0.069).The targeted metabolomics analysis revealed that the biosynthesis of SFA,linoleic acid metabolism,fatty acid degradation,fatty acid elongation,and fatty acid biosynthesis pathways were enriched by CHF supplementation.Furthermore,the network pharmacology analysis indicated that CHF was closely associated with oxidative stress and lipid metabo-lism.The CHF supplementation increased the glutathione peroxidase level(P<0.05)and upregulated gene expres-sion related to the Nrf2 pathway(including HO-1,P<0.05;Nrf2,P=0.098;CAT,P=0.060;GPX1,P=0.063;and SOD2,P=0.052)and lipid metabolism(including PPARγ,P<0.05;SREBP1,P=0.059;and CPT1A,P=0.058).Additionally,CHF supplementation increased Firmicutes and decreased Bacteroidetes,Spirochaetes,and Synergistetes abundances(P<0.05),which may contribute to better meat quality.Conclusions Our results suggest that CHF supplementation improved the quality and nutritional value of meat,which will provide a theoretical basis for the utilization of CHF as a feed additive in spent hens’diets.