Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components...Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components, anchor and so on is modeled by applying multi-body dynamics method. The motion equations are developed in discrete node description and fully Cartesian coordinates. Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board. The trajectories and velocities of different nodes without current and with current in buoy system are obtained. The transient tension force of each part of the cable is analyzed in the process of deployment. Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration. This work is helpful for design and deployment planning of buoy system.展开更多
The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of dril...The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.展开更多
The feasibility of using a problem-dependent method to solve systems of second order ODEs is corroborated by an eigen-based theory and a methodology to develop such a numerical method is constructed.The key steps of t...The feasibility of using a problem-dependent method to solve systems of second order ODEs is corroborated by an eigen-based theory and a methodology to develop such a numerical method is constructed.The key steps of this methodology are to decouple a system of ODEs of second order into a set of uncoupled ODEs of second order;next,an eigen-dependent method is proposed to approximate the solution of each uncoupled ODE of second order.It is vital to transform all eigen-dependent methods to a problem-dependent method to bypass an Eigen analysis.The development of an eigen-dependent method plays a key role in this methodology so that slow eigenmodes can be accurately integrated while there is no instability or excessive amplitude growth in fast eigenmodes.This can explain why a problem-dependent method can simultaneously combine the explicitness of each step and A-stability.Consequently,huge computational efforts can be saved for solving nonlinear stiff problems.A new family of problem-dependent methods is developed in this work so that the feasibility of the proposed methodology can be affirmed.It has almost the same performance as that of the HHT-αmethod.However,it can save more than 99.5%of CPU demand in approximating a solution for a system of 1000 nonlinear second order ODEs.展开更多
In recent years,scholars around the world have shown increasing interest in elastic support structures,leading to significant progress in dynamic modeling techniques for pipeline systems.Although multiple analytical a...In recent years,scholars around the world have shown increasing interest in elastic support structures,leading to significant progress in dynamic modeling techniques for pipeline systems.Although multiple analytical approaches exist,engineers increasingly prioritize computationally efficient,precise low-order models for practical implementation.In order to address this need,this study develops an innovative nonlinear dynamic formulation for pipelines accounting for both foundation and boundary nonlinearities.The proposed solution methodology initiates with global mode extraction using the global mode technique,followed by a detailed implementation procedure.Model validation is conducted through a cantilever pipeline case study featuring nonlinear support conditions,where strong agreement between the proposed model's predictions and finiteelement benchmark solutions demonstrates its reliability.Subsequently,a comprehensive parametric study investigates the combined effects of foundation stiffness,boundary constraints,excitation intensity,and nonlinear interaction terms on the vibrational response of the cantilever pipe.This systematic approach yields critical insights for practical engineering designs and applications.展开更多
The distribution-free P-box process serves as an effective quantification model for timevarying uncertainties in dynamical systems when only imprecise probabilistic information is available.However,its application to ...The distribution-free P-box process serves as an effective quantification model for timevarying uncertainties in dynamical systems when only imprecise probabilistic information is available.However,its application to nonlinear systems remains limited due to excessive computation.This work develops an efficient method for propagating distribution-free P-box processes in nonlinear dynamics.First,using the Covariance Analysis Describing Equation Technique(CADET),the dynamic problems with P-box processes are transformed into interval Ordinary Differential Equations(ODEs).These equations provide the Mean-and-Covariance(MAC)bounds of the system responses in relation to the MAC bounds of P-box-process excitations.They also separate the previously coupled P-box analysis and nonlinear-dynamic simulations into two sequential steps,including the MAC bound analysis of excitations and the MAC bounds calculation of responses by solving the interval ODEs.Afterward,a Gaussian assumption of the CADET is extended to the P-box form,i.e.,the responses are approximate parametric Gaussian P-box processes.As a result,the probability bounds of the responses are approximated by using the solutions of the interval ODEs.Moreover,the Chebyshev method is introduced and modified to efficiently solve the interval ODEs.The proposed method is validated based on test cases,including a duffing oscillator,a vehicle ride,and an engineering black-box problem of launch vehicle trajectory.Compared to the reference solutions based on the Monte Carlo method,with relative errors of less than 3%,the proposed method requires less than 0.2% calculation time.The proposed method also possesses the ability to handle complex black-box problems.展开更多
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica...The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.展开更多
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
0 INTRODUCTION In recent years,modern railways have been actively under construction in the complex mountainous area of Southwest China.However,rockfall poses a significant threat to both construction and operation ph...0 INTRODUCTION In recent years,modern railways have been actively under construction in the complex mountainous area of Southwest China.However,rockfall poses a significant threat to both construction and operation phases of railway projects(Yan et al.,2023;Chen et al.,2022;Fanos and Pradhan,2018).展开更多
With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our resu...With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.展开更多
As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canist...As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.展开更多
Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynam...Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.展开更多
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ...Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.展开更多
This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators...This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.展开更多
In order to analyze the influence of configuration parameters on dynamic characteristics of machine tools in the working space, the configuration parameters have been suggested based on the orthogonal experiment metho...In order to analyze the influence of configuration parameters on dynamic characteristics of machine tools in the working space, the configuration parameters have been suggested based on the orthogonal experiment method. Dynamic analysis of a milling machine, which is newly designed for producing turbine blades, has been conducted by utilizing the modal synthesis method. The finite element model is verified and updated by experimental modal analysis (EMA) of the machine tool. The result gained by modal synthesis method is compared with whole-model finite element method (FEM) result as well. According to the orthogonal experiment method, four configuration parameters of machine tool are considered as four factors for dynamic characteristics. The influence of configuration parameters on the first three natural frequencies is obtained by range analysis. It is pointed out that configuration parameter is the most important factor affecting the fundamental frequency of machine tools, and configuration parameter has less effect on lower-order modes of the system than others. The combination of configuration parameters which makes the fundamental frequency reach the maximum value is provided. Through demonstration, the conclusion can be drawn that the influence of configuration parameters on the natural frequencies of machine tools can be analyzed explicitly by the orthogonal experiment method, which offers a new method for estimating the dynamic characteristics of machine tools.展开更多
The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are con...The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact.展开更多
In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done t...In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done to predict the riser motion or evaluate the structural safety. A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers. In FSM, a riser is discretized into a series of flexible segments. For each flexible segment, its deflection feature and external forces are analyzed independently. For the whole riser, the nonlinear governing equations are listed according to the moment equilibrium at nodes. For the solution of the nonlinear equations, a linearization iteration scheme is provided in the paper. Owing to its flexibility, each segment can match a long part of the riser body, which enables that good results can be obtained even with a small number of segments. Moreover, the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points. The FSM-based dynamics calculation is timesaving and stable, so suitable for the shape prediction or real-time control of free hanging marine risers.展开更多
A three-dimensional discrete element model of the connective type is presented. Moreover,a three-dimensional numerical analysis code,which can carry out the transitional pro- cess from connective model(for continuum)t...A three-dimensional discrete element model of the connective type is presented. Moreover,a three-dimensional numerical analysis code,which can carry out the transitional pro- cess from connective model(for continuum)to contact model(for non-continuum),is developed for simulating the mechanical process from continuum to non-continuum.The wave propagation process in a concrete block(as continuum)made of cement grout under impact loading is numer- ically simulated with this code.By comparing its numerical results with those by LS-DYNA,the calculation accuracy of the model and algorithm is proved.Furthermore,the failure process of the concrete block under quasi-static loading is demonstrated,showing the basic dynamic tran- sitional process from continuum to non-continuum.The results of calculation can be displayed by animation.The damage modes are similar to the experimental results.The two numerical examples above prove that our model and its code are powerful and efficient in simulating the dynamic failure problems accompanying the transition from continuum to non-continuum.It also shows that the discrete element method(DEM)will have broad prospects for development and application.展开更多
There are vast constraint equations in conventional dynamics analysis of deployable structures,which lead to differential-algebraic equations(DAEs)solved hard.To reduce the difficulty of solving and the amount of equa...There are vast constraint equations in conventional dynamics analysis of deployable structures,which lead to differential-algebraic equations(DAEs)solved hard.To reduce the difficulty of solving and the amount of equations,a new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements(SLEs)is presented.Firstly,a precise model of a flexible bar of SLE is established by the higher order shear deformable beam element based on the absolute nodal coordinate formulation(ANCF),and the master/slave freedom method is used to obtain the dynamics equations of SLEs without constraint equations.Secondly,according to features of deployable structures,the specification matrix method(SMM)is proposed to eliminate the constraint equations among SLEs in the frame of ANCF.With this method,the inner and the boundary nodal coordinates of element characteristic matrices can be separated simply and efficiently,especially on condition that there are vast nodal coordinates.So the element characteristic matrices can be added end to end circularly.Thus,the dynamic model of deployable structure reduces dimension and can be assembled without any constraint equation.Next,a new iteration procedure for the generalized-a algorithm is presented to solve the ordinary differential equations(ODEs)of deployable structure.Finally,the proposed methodology is used to analyze the flexible multi-body dynamics of a planar linear array deployable structure based on three scissor-like elements.The simulation results show that flexibility has a significant influence on the deployment motion of the deployable structure.The proposed methodology indeed reduce the difficulty of solving and the amount of equations by eliminating redundant degrees of freedom and the constraint equations in scissor-like elements and among scissor-like elements.展开更多
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa...Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51175484)the Science Foundation of Shandong Province (Grant No. ZR2010EM052)
文摘Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components, anchor and so on is modeled by applying multi-body dynamics method. The motion equations are developed in discrete node description and fully Cartesian coordinates. Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board. The trajectories and velocities of different nodes without current and with current in buoy system are obtained. The transient tension force of each part of the cable is analyzed in the process of deployment. Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration. This work is helpful for design and deployment planning of buoy system.
基金supported by the National Natural Science Foundation of China(52174003,52374008).
文摘The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.
文摘The feasibility of using a problem-dependent method to solve systems of second order ODEs is corroborated by an eigen-based theory and a methodology to develop such a numerical method is constructed.The key steps of this methodology are to decouple a system of ODEs of second order into a set of uncoupled ODEs of second order;next,an eigen-dependent method is proposed to approximate the solution of each uncoupled ODE of second order.It is vital to transform all eigen-dependent methods to a problem-dependent method to bypass an Eigen analysis.The development of an eigen-dependent method plays a key role in this methodology so that slow eigenmodes can be accurately integrated while there is no instability or excessive amplitude growth in fast eigenmodes.This can explain why a problem-dependent method can simultaneously combine the explicitness of each step and A-stability.Consequently,huge computational efforts can be saved for solving nonlinear stiff problems.A new family of problem-dependent methods is developed in this work so that the feasibility of the proposed methodology can be affirmed.It has almost the same performance as that of the HHT-αmethod.However,it can save more than 99.5%of CPU demand in approximating a solution for a system of 1000 nonlinear second order ODEs.
基金supported by the National Natural Science Foundation of China(Nos.52401342 and 12572025)the Fundamental Research Funds for the Central Universities of China(Nos.D5000240076 and G2025KY05171)+1 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2025JCYBMS-026)the Basic Research Programs of Taicang(No.TC2024JC36)。
文摘In recent years,scholars around the world have shown increasing interest in elastic support structures,leading to significant progress in dynamic modeling techniques for pipeline systems.Although multiple analytical approaches exist,engineers increasingly prioritize computationally efficient,precise low-order models for practical implementation.In order to address this need,this study develops an innovative nonlinear dynamic formulation for pipelines accounting for both foundation and boundary nonlinearities.The proposed solution methodology initiates with global mode extraction using the global mode technique,followed by a detailed implementation procedure.Model validation is conducted through a cantilever pipeline case study featuring nonlinear support conditions,where strong agreement between the proposed model's predictions and finiteelement benchmark solutions demonstrates its reliability.Subsequently,a comprehensive parametric study investigates the combined effects of foundation stiffness,boundary constraints,excitation intensity,and nonlinear interaction terms on the vibrational response of the cantilever pipe.This systematic approach yields critical insights for practical engineering designs and applications.
基金supported by the major advanced research project of Civil Aerospace from State Administration of Science,Technology and Industry of China.
文摘The distribution-free P-box process serves as an effective quantification model for timevarying uncertainties in dynamical systems when only imprecise probabilistic information is available.However,its application to nonlinear systems remains limited due to excessive computation.This work develops an efficient method for propagating distribution-free P-box processes in nonlinear dynamics.First,using the Covariance Analysis Describing Equation Technique(CADET),the dynamic problems with P-box processes are transformed into interval Ordinary Differential Equations(ODEs).These equations provide the Mean-and-Covariance(MAC)bounds of the system responses in relation to the MAC bounds of P-box-process excitations.They also separate the previously coupled P-box analysis and nonlinear-dynamic simulations into two sequential steps,including the MAC bound analysis of excitations and the MAC bounds calculation of responses by solving the interval ODEs.Afterward,a Gaussian assumption of the CADET is extended to the P-box form,i.e.,the responses are approximate parametric Gaussian P-box processes.As a result,the probability bounds of the responses are approximated by using the solutions of the interval ODEs.Moreover,the Chebyshev method is introduced and modified to efficiently solve the interval ODEs.The proposed method is validated based on test cases,including a duffing oscillator,a vehicle ride,and an engineering black-box problem of launch vehicle trajectory.Compared to the reference solutions based on the Monte Carlo method,with relative errors of less than 3%,the proposed method requires less than 0.2% calculation time.The proposed method also possesses the ability to handle complex black-box problems.
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
基金National Key R&D Program of China(No.2017YFB1304000)Fundamental Research Funds for the Central Universities,China(No.2232023G-05-1)。
文摘The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
基金supported by the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2022KDZ03)the Science and Technology Projects of Yunnan Provincial Science and Technology Department(No.202401AT070328)+1 种基金the Young talents project of“Xingdian Talent Support Program”in Yunnan Province(No.YNWR-QNBJ-2020-019)the Fund Project of China Academy of Railway Sciences Co.,Ltd.(No.2021YJ178)。
文摘0 INTRODUCTION In recent years,modern railways have been actively under construction in the complex mountainous area of Southwest China.However,rockfall poses a significant threat to both construction and operation phases of railway projects(Yan et al.,2023;Chen et al.,2022;Fanos and Pradhan,2018).
基金supported by the National Natural Science Foundation of China (Grant No. 12074329)Nanhu Scholars Program for Young Scholars of Xinyang Normal University。
文摘With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.
基金supported by National Natural Science Foundation of China(Grant No.92266201).
文摘As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.
基金supported by the National Natural Science Foundation of China (Grant Nos.12164019,11991060,12088101,and U1930402)the Natural Science Foundation of Jiangxi Province of China (Grant No.20212BAB201017).
文摘Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.
基金Project supported by the National Natural Science Foundation of China(No.52109068)the Water Conservancy Technology Project of Jiangsu Province of China(No.2022060)。
文摘Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.
基金supported by the National Natural Science Foundation of China(Grant No.52076038,U22B20112,No.52106238)the Fundamental Research Funds for Central Universities(No.423162,B230201051).
文摘This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.
基金Important National Science & Technology Specific Projects (2009ZX04001-073)National Natural Science Foundation of China (51105025)
文摘In order to analyze the influence of configuration parameters on dynamic characteristics of machine tools in the working space, the configuration parameters have been suggested based on the orthogonal experiment method. Dynamic analysis of a milling machine, which is newly designed for producing turbine blades, has been conducted by utilizing the modal synthesis method. The finite element model is verified and updated by experimental modal analysis (EMA) of the machine tool. The result gained by modal synthesis method is compared with whole-model finite element method (FEM) result as well. According to the orthogonal experiment method, four configuration parameters of machine tool are considered as four factors for dynamic characteristics. The influence of configuration parameters on the first three natural frequencies is obtained by range analysis. It is pointed out that configuration parameter is the most important factor affecting the fundamental frequency of machine tools, and configuration parameter has less effect on lower-order modes of the system than others. The combination of configuration parameters which makes the fundamental frequency reach the maximum value is provided. Through demonstration, the conclusion can be drawn that the influence of configuration parameters on the natural frequencies of machine tools can be analyzed explicitly by the orthogonal experiment method, which offers a new method for estimating the dynamic characteristics of machine tools.
基金supported by the National Natural Science Foundation of China(Nos.11132007,11272155,and 10772085)the Fundamental Research Funds for the Central Universities(No.30920130112009)the 333 Project of Jiangsu Province of China(No.BRA2011172)
文摘The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact.
基金supported by the National Natural Science Foundation of China (Grant No. 51009092)the Doctoral Foundation of Education Ministry of China (Grant No. 20090073120013)the Scientific Research Foundation of State Education Ministry for the Returned Overseas Chinese Scholars
文摘In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done to predict the riser motion or evaluate the structural safety. A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers. In FSM, a riser is discretized into a series of flexible segments. For each flexible segment, its deflection feature and external forces are analyzed independently. For the whole riser, the nonlinear governing equations are listed according to the moment equilibrium at nodes. For the solution of the nonlinear equations, a linearization iteration scheme is provided in the paper. Owing to its flexibility, each segment can match a long part of the riser body, which enables that good results can be obtained even with a small number of segments. Moreover, the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points. The FSM-based dynamics calculation is timesaving and stable, so suitable for the shape prediction or real-time control of free hanging marine risers.
基金Project supported by the National Natural Science Foundation of China(Nos.59978005 and 10232024)the National Distinguished Youth Fund of China(No.10025212).
文摘A three-dimensional discrete element model of the connective type is presented. Moreover,a three-dimensional numerical analysis code,which can carry out the transitional pro- cess from connective model(for continuum)to contact model(for non-continuum),is developed for simulating the mechanical process from continuum to non-continuum.The wave propagation process in a concrete block(as continuum)made of cement grout under impact loading is numer- ically simulated with this code.By comparing its numerical results with those by LS-DYNA,the calculation accuracy of the model and algorithm is proved.Furthermore,the failure process of the concrete block under quasi-static loading is demonstrated,showing the basic dynamic tran- sitional process from continuum to non-continuum.The results of calculation can be displayed by animation.The damage modes are similar to the experimental results.The two numerical examples above prove that our model and its code are powerful and efficient in simulating the dynamic failure problems accompanying the transition from continuum to non-continuum.It also shows that the discrete element method(DEM)will have broad prospects for development and application.
基金Supported by National Natural Science Foundation of China(Grant No.51175422)
文摘There are vast constraint equations in conventional dynamics analysis of deployable structures,which lead to differential-algebraic equations(DAEs)solved hard.To reduce the difficulty of solving and the amount of equations,a new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements(SLEs)is presented.Firstly,a precise model of a flexible bar of SLE is established by the higher order shear deformable beam element based on the absolute nodal coordinate formulation(ANCF),and the master/slave freedom method is used to obtain the dynamics equations of SLEs without constraint equations.Secondly,according to features of deployable structures,the specification matrix method(SMM)is proposed to eliminate the constraint equations among SLEs in the frame of ANCF.With this method,the inner and the boundary nodal coordinates of element characteristic matrices can be separated simply and efficiently,especially on condition that there are vast nodal coordinates.So the element characteristic matrices can be added end to end circularly.Thus,the dynamic model of deployable structure reduces dimension and can be assembled without any constraint equation.Next,a new iteration procedure for the generalized-a algorithm is presented to solve the ordinary differential equations(ODEs)of deployable structure.Finally,the proposed methodology is used to analyze the flexible multi-body dynamics of a planar linear array deployable structure based on three scissor-like elements.The simulation results show that flexibility has a significant influence on the deployment motion of the deployable structure.The proposed methodology indeed reduce the difficulty of solving and the amount of equations by eliminating redundant degrees of freedom and the constraint equations in scissor-like elements and among scissor-like elements.
基金Project supported by the National Natural Science Foundation of China(Nos.91648101 and11672233)the Northwestern Polytechnical University(NPU)Foundation for Fundamental Research(No.3102017AX008)the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.S201710699033)
文摘Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics.